메뉴 건너뛰기




Volumn 19, Issue 9, 2017, Pages 2033-2044

Graph PCA Hashing for Similarity Search

Author keywords

Hashing; image retrieval; manifold learning; similarity search; spectral clustering

Indexed keywords

CLUSTERING ALGORITHMS; HASH FUNCTIONS; IMAGE RETRIEVAL; PROBABILITY;

EID: 85029493463     PISSN: 15209210     EISSN: None     Source Type: Journal    
DOI: 10.1109/TMM.2017.2703636     Document Type: Article
Times cited : (192)

References (67)
  • 1
    • 85027522454 scopus 로고    scopus 로고
    • Hashing with pairwise correlation learning and reconstruction
    • Feb.
    • X. Mao, Y. Yang, and N. Li, "Hashing with pairwise correlation learning and reconstruction," IEEE Trans. Multimedia, vol. 19, no. 2, pp. 382-392, Feb. 2017.
    • (2017) IEEE Trans. Multimedia , vol.19 , Issue.2 , pp. 382-392
    • Mao, X.1    Yang, Y.2    Li, N.3
  • 3
    • 85007448680 scopus 로고    scopus 로고
    • Stochastic multiview hashing for large-scale near-duplicate video retrieval
    • Jan.
    • Y. Hao et al., "Stochastic multiview hashing for large-scale near-duplicate video retrieval," IEEE Trans. Multimedia, vol. 19, no. 1, pp. 1-14, Jan. 2017.
    • (2017) IEEE Trans. Multimedia , vol.19 , Issue.1 , pp. 1-14
    • Hao, Y.1
  • 4
    • 84959491769 scopus 로고    scopus 로고
    • Spherical torus-based video hashing for near-duplicate video detection
    • X. Nie, Y. Chai, J. Liu, J. Sun, and Y. Yin, "Spherical torus-based video hashing for near-duplicate video detection," Sci. China Inf. Sci., vol. 59, no. 5, 2016, Art. no. 059101.
    • (2016) Sci. China Inf. Sci. , vol.59 , Issue.5
    • Nie, X.1    Chai, Y.2    Liu, J.3    Sun, J.4    Yin, Y.5
  • 5
    • 85016397771 scopus 로고    scopus 로고
    • A novel cross-modal hashing algorithm based on multimodal deep learning
    • Q. Wen, D. Wang, S. Feng, Y. Zhang, and G. Yu, "A novel cross-modal hashing algorithm based on multimodal deep learning," Sci. China Inf. Sci., vol. 60, no. 9, 2017, Art. no. 092104.
    • (2017) Sci. China Inf. Sci. , vol.60 , Issue.9
    • Wen, Q.1    Wang, D.2    Feng, S.3    Zhang, Y.4    Yu, G.5
  • 6
    • 85007415342 scopus 로고    scopus 로고
    • Nonlinear discrete hashing
    • Jan.
    • Z. Chen, J. Lu, J. Feng, and J. Zhou, "Nonlinear discrete hashing," IEEE Trans. Multimedia, vol. 19, no. 1, pp. 123-135, Jan. 2017.
    • (2017) IEEE Trans. Multimedia , vol.19 , Issue.1 , pp. 123-135
    • Chen, Z.1    Lu, J.2    Feng, J.3    Zhou, J.4
  • 7
    • 85013453470 scopus 로고    scopus 로고
    • Latent semantic minimal hashing for image retrieval
    • Jan.
    • X. Lu, X. Zheng, and X. Li, "Latent semantic minimal hashing for image retrieval," IEEE Trans. Image Process., vol. 26, no. 1, pp. 355-368, Jan. 2017.
    • (2017) IEEE Trans. Image Process. , vol.26 , Issue.1 , pp. 355-368
    • Lu, X.1    Zheng, X.2    Li, X.3
  • 8
    • 84991702631 scopus 로고    scopus 로고
    • A survey on learning to hash
    • [Online]
    • J. Wang, T. Zhang, J. Song, N. Sebe, and H. T. Shen, "A survey on learning to hash," CoRR, 2016. [Online]. Available: http:// arxiv.org/abs/1606.00185
    • (2016) CoRR
    • Wang, J.1    Zhang, T.2    Song, J.3    Sebe, N.4    Shen, H.T.5
  • 9
    • 84897584700 scopus 로고    scopus 로고
    • Video-to-shot tag propagation by graph sparse group lasso
    • Apr.
    • X. Zhu, Z. Huang, J. Cui, and H. T. Shen, "Video-to-shot tag propagation by graph sparse group lasso," IEEE Trans. Multimedia, vol. 15, no. 3, pp. 633-646, Apr. 2013.
    • (2013) IEEE Trans. Multimedia , vol.15 , Issue.3 , pp. 633-646
    • Zhu, X.1    Huang, Z.2    Cui, J.3    Shen, H.T.4
  • 10
    • 84960969128 scopus 로고    scopus 로고
    • Constructing the l2-graph for robust subspace learning and subspace clustering
    • Apr.
    • X. Peng, Z. Yu, Z. Yi, and H. Tang, "Constructing the l2-graph for robust subspace learning and subspace clustering," IEEE Trans. Cybern., vol. 47, no. 4, pp. 1053-1066, Apr. 2017.
    • (2017) IEEE Trans. Cybern. , vol.47 , Issue.4 , pp. 1053-1066
    • Peng, X.1    Yu, Z.2    Yi, Z.3    Tang, H.4
  • 11
    • 85029541405 scopus 로고    scopus 로고
    • Large graph hashing with spectral rotation
    • X. Li, D. Hu, and F. Nie, "Large graph hashing with spectral rotation," in Proc. AAAI Conf. Artif. Intell., 2017, pp. 2203-2209.
    • (2017) Proc. AAAI Conf. Artif. Intell. , pp. 2203-2209
    • Li, X.1    Hu, D.2    Nie, F.3
  • 12
    • 84962885565 scopus 로고    scopus 로고
    • Supervised hashing with pseudo labels for scalable multimedia retrieval
    • J. Song, L. Gao, Y. Yan, D. Zhang, and N. Sebe, "Supervised hashing with pseudo labels for scalable multimedia retrieval," in Proc. ACMMM, 2015, pp. 827-830.
    • (2015) Proc. ACMMM , pp. 827-830
    • Song, J.1    Gao, L.2    Yan, Y.3    Zhang, D.4    Sebe, N.5
  • 14
    • 84865584175 scopus 로고    scopus 로고
    • Aggregating local image descriptors into compact codes
    • Sep.
    • H. Jégou et al., "Aggregating local image descriptors into compact codes," IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 9, pp. 1704-1716, Sep. 2012.
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell. , vol.34 , Issue.9 , pp. 1704-1716
    • Jégou, H.1
  • 15
    • 84979702281 scopus 로고    scopus 로고
    • Graph self-representation method for unsupervised feature selection
    • R. Hu et al., "Graph self-representation method for unsupervised feature selection," Neurocomputing, vol. 220, pp. 130-137, 2017.
    • (2017) Neurocomputing , vol.220 , pp. 130-137
    • Hu, R.1
  • 16
    • 84961083586 scopus 로고    scopus 로고
    • Spectral multimodal hashing and its application to multimedia retrieval
    • Jan.
    • Y. Zhen, Y. Gao, D. Yeung, H. Zha, and X. Li, "Spectral multimodal hashing and its application to multimedia retrieval," IEEE Trans. Cybern., vol. 46, no. 1, pp. 27-38, Jan. 2016.
    • (2016) IEEE Trans. Cybern. , vol.46 , Issue.1 , pp. 27-38
    • Zhen, Y.1    Gao, Y.2    Yeung, D.3    Zha, H.4    Li, X.5
  • 18
    • 84928252705 scopus 로고    scopus 로고
    • Compact structure hashing via sparse and similarity preserving embedding
    • Mar.
    • R. Ye and X. Li, "Compact structure hashing via sparse and similarity preserving embedding," IEEE Trans. Cybern., vol. 46, no. 3, pp. 718-729, Mar. 2016.
    • (2016) IEEE Trans. Cybern. , vol.46 , Issue.3 , pp. 718-729
    • Ye, R.1    Li, X.2
  • 19
    • 84992512252 scopus 로고    scopus 로고
    • Fast neuroimaging-based retrieval for Alzheimer's disease analysis
    • X. Zhu, K. Thung, J. Zhang, and D. Shen, "Fast neuroimaging-based retrieval for Alzheimer's disease analysis," in Proc. MLMI, 2016, pp. 313-321.
    • (2016) Proc. MLMI , pp. 313-321
    • Zhu, X.1    Thung, K.2    Zhang, J.3    Shen, D.4
  • 20
    • 84455173075 scopus 로고    scopus 로고
    • Multiple feature hashing for real-time large scale near-duplicate video retrieval
    • J. Song, Y. Yang, Z. Huang, H. T. Shen, and R. Hong, "Multiple feature hashing for real-time large scale near-duplicate video retrieval," in Proc. 19th ACM Int. Conf. Multimedia, 2011, pp. 423-432.
    • (2011) Proc. 19th ACM Int. Conf. Multimedia , pp. 423-432
    • Song, J.1    Yang, Y.2    Huang, Z.3    Shen, H.T.4    Hong, R.5
  • 22
    • 85016331725 scopus 로고    scopus 로고
    • A unified framework for representation-based subspace clustering of out-of-sample and large-scale data
    • Dec.
    • X. Peng, H. Tang, L. Zhang, Z. Yi, and S. Xiao, "A unified framework for representation-based subspace clustering of out-of-sample and large-scale data," IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 12, pp. 2499-2512, Dec. 2016.
    • (2016) IEEE Trans. Neural Netw. Learn. Syst. , vol.27 , Issue.12 , pp. 2499-2512
    • Peng, X.1    Tang, H.2    Zhang, L.3    Yi, Z.4    Xiao, S.5
  • 25
    • 77953184849 scopus 로고    scopus 로고
    • Kernelized locality-sensitive hashing for scalable image search
    • Sep.-Oct.
    • B. Kulis and K. Grauman, "Kernelized locality-sensitive hashing for scalable image search," in Proc. IEEE Int. Conf. Comput. Vis., Sep.-Oct. 2009, pp. 2130-2137.
    • (2009) Proc. IEEE Int. Conf. Comput. Vis. , pp. 2130-2137
    • Kulis, B.1    Grauman, K.2
  • 26
    • 79954525255 scopus 로고    scopus 로고
    • Locality-sensitive binary codes from shiftinvariant kernels
    • M. Raginsky and S. Lazebnik, "Locality-sensitive binary codes from shiftinvariant kernels," in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 1509-1517.
    • (2009) Proc. Adv. Neural Inf. Process. Syst. , pp. 1509-1517
    • Raginsky, M.1    Lazebnik, S.2
  • 29
    • 84887601251 scopus 로고    scopus 로고
    • Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval
    • Dec
    • Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, "Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 12, pp. 2916-2929, Dec, 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.12 , pp. 2916-2929
    • Gong, Y.1    Lazebnik, S.2    Gordo, A.3    Perronnin, F.4
  • 30
    • 84865410773 scopus 로고    scopus 로고
    • Semi-supervised hashing for largescale search
    • Dec.
    • J.Wang, S. Kumar, and S.-F. Chang, "Semi-supervised hashing for largescale search," IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 12, pp. 2393-2406, Dec. 2012.
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell. , vol.34 , Issue.12 , pp. 2393-2406
    • Wang, J.1    Kumar, S.2    Chang, S.-F.3
  • 32
    • 84927154412 scopus 로고    scopus 로고
    • Hashing on nonlinear manifolds
    • Jun.
    • F. Shen et al., "Hashing on nonlinear manifolds," IEEE Trans. Image Process., vol. 24, no. 6, pp. 1839-1851, Jun. 2015.
    • (2015) IEEE Trans. Image Process. , vol.24 , Issue.6 , pp. 1839-1851
    • Shen, F.1
  • 33
    • 84905046755 scopus 로고    scopus 로고
    • A sparse embedding and least variance encoding approach to hashing
    • Sep.
    • X. Zhu, L. Zhang, and Z. Huang, "A sparse embedding and least variance encoding approach to hashing," IEEE Trans. Image Process., vol. 23, no. 9, pp. 3737-3750, Sep. 2014.
    • (2014) IEEE Trans. Image Process. , vol.23 , Issue.9 , pp. 3737-3750
    • Zhu, X.1    Zhang, L.2    Huang, Z.3
  • 34
    • 84897741034 scopus 로고    scopus 로고
    • Semi-supervised nonlinear hashing using bootstrap sequential projection learning
    • Jun.
    • C. Wu, J. Zhu, D. Cai, C. Chen, and J. Bu, "Semi-supervised nonlinear hashing using bootstrap sequential projection learning," IEEE Trans. Knowl. Data Eng., vol. 25, no. 6, pp. 1380-1393, Jun. 2013.
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.25 , Issue.6 , pp. 1380-1393
    • Wu, C.1    Zhu, J.2    Cai, D.3    Chen, C.4    Bu, J.5
  • 37
    • 84989166317 scopus 로고    scopus 로고
    • Metric hashing forests
    • S. Conjeti et al., "Metric hashing forests," Med. Image Anal., vol. 34, pp. 13-29, 2016.
    • (2016) Med. Image Anal. , vol.34 , pp. 13-29
    • Conjeti, S.1
  • 38
    • 84962091523 scopus 로고    scopus 로고
    • Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification
    • Mar.
    • X. Zhu, H. Suk, S. Lee, and D. Shen, "Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification," IEEE Trans. Biomed. Eng., vol. 63, no. 3, pp. 607-618, Mar. 2016.
    • (2016) IEEE Trans. Biomed. Eng. , vol.63 , Issue.3 , pp. 607-618
    • Zhu, X.1    Suk, H.2    Lee, S.3    Shen, D.4
  • 39
    • 85006100988 scopus 로고    scopus 로고
    • Feature learning based deep supervised hashing with pairwise labels
    • W. Li, S. Wang, and W. Kang, "Feature learning based deep supervised hashing with pairwise labels," in Proc. 25th Int. Joint Conf. Artif. Intell., 2016, pp. 1711-1717.
    • (2016) Proc. 25th Int. Joint Conf. Artif. Intell. , pp. 1711-1717
    • Li, W.1    Wang, S.2    Kang, W.3
  • 40
    • 84868289901 scopus 로고    scopus 로고
    • Double-bit quantization for hashing
    • W. Kong and W.-J. Li, "Double-bit quantization for hashing," in Proc. 26th AAAI Conf. Artif. Intell., 2012, vol. 1, no. 2, pp. 634-640.
    • (2012) Proc. 26th AAAI Conf. Artif. Intell. , vol.1 , Issue.2 , pp. 634-640
    • Kong, W.1    Li, W.-J.2
  • 41
    • 84962259785 scopus 로고    scopus 로고
    • Learning to hash for indexing big data a survey
    • Jan.
    • J.Wang,W. Liu, S.Kumar, and S.-F. Chang, "Learning to hash for indexing big data a survey," Proc. IEEE, vol. 104, no. 1, pp. 34-57, Jan. 2016.
    • (2016) Proc. IEEE , vol.104 , Issue.1 , pp. 34-57
    • Wang, J.1    Liu, W.2    Kumar, S.3    Chang, S.-F.4
  • 42
    • 84982170334 scopus 로고    scopus 로고
    • Large-scale medical image analytics: Recent methodologies, applications and future directions
    • S. Zhang and D. Metaxas, "Large-scale medical image analytics: Recent methodologies, applications and future directions," Med. Image Anal., vol. 33, pp. 98-101, 2016.
    • (2016) Med. Image Anal. , vol.33 , pp. 98-101
    • Zhang, S.1    Metaxas, D.2
  • 44
    • 84948404548 scopus 로고    scopus 로고
    • Spherical hashing: Binary code embedding with hyperspheres
    • Nov.
    • J. Heo, Y. Lee, J. He, S. Chang, and S. Yoon, "Spherical hashing: Binary code embedding with hyperspheres," IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 11, pp. 2304-2316, Nov. 2015.
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell. , vol.37 , Issue.11 , pp. 2304-2316
    • Heo, J.1    Lee, Y.2    He, J.3    Chang, S.4    Yoon, S.5
  • 45
    • 84858740468 scopus 로고    scopus 로고
    • Learning to hash with binary reconstructive embeddings
    • B. Kulis and T. Darrell, "Learning to hash with binary reconstructive embeddings," in Proc. Adv. Neural Inf. Process. Syst., 2009, vol. 22, pp. 1042-1050.
    • (2009) Proc. Adv. Neural Inf. Process. Syst. , vol.22 , pp. 1042-1050
    • Kulis, B.1    Darrell, T.2
  • 47
    • 37549058056 scopus 로고    scopus 로고
    • Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions
    • A. Andoni and P. Indyk, "Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions," Commun. ACM, vol. 51, no. 1, pp. 117-122, 2008.
    • (2008) Commun. ACM , vol.51 , Issue.1 , pp. 117-122
    • Andoni, A.1    Indyk, P.2
  • 50
    • 85029494220 scopus 로고    scopus 로고
    • Automatic subspace learning via principal coefficients embedding
    • to be published
    • X. Peng, J. Lu, Z. Yi, and Y. Rui, "Automatic subspace learning via principal coefficients embedding," IEEE Trans. Cybern., to be published.
    • IEEE Trans. Cybern.
    • Peng, X.1    Lu, J.2    Yi, Z.3    Rui, Y.4
  • 51
    • 84995581954 scopus 로고    scopus 로고
    • Heterogeneous translated hashing: A scalable solution towards multi-modal similarity search
    • Y.Wei, Y. Song, Y. Zhen, B. Liu, and Q. Yang, "Heterogeneous translated hashing: A scalable solution towards multi-modal similarity search," ACM Trans. Knowl. Discovery Data, vol. 10, no. 4, 2016, Art. no. 36.
    • (2016) ACM Trans. Knowl. Discovery Data , vol.10 , Issue.4
    • Wei, Y.1    Song, Y.2    Zhen, Y.3    Liu, B.4    Yang, Q.5
  • 54
    • 84991543452 scopus 로고    scopus 로고
    • Deep cross-modal hashing
    • [Online]
    • Q.-Y. Jiang and W.-J. Li, "Deep cross-modal hashing," CoRR, 2016. [Online]. Available: http://arxiv.org/abs/1602.02255
    • (2016) CoRR
    • Jiang, Q.-Y.1    Li, W.-J.2
  • 55
    • 84960157230 scopus 로고    scopus 로고
    • Robust joint graph sparse coding for unsupervised spectral feature selection
    • Jun.
    • X. Zhu, X. Li, S. Zhang, C. Ju, and X. Wu, "Robust joint graph sparse coding for unsupervised spectral feature selection," IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 6, pp. 1263-1275, Jun. 2017.
    • (2017) IEEE Trans. Neural Netw. Learn. Syst. , vol.26 , Issue.6 , pp. 1263-1275
    • Zhu, X.1    Li, X.2    Zhang, S.3    Ju, C.4    Wu, X.5
  • 56
    • 0043278893 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • M. Belkin and P. Niyogi, "Laplacian eigenmaps and spectral techniques for embedding and clustering." in Proc. Adv. Neural Inf. Process. Syst., 2001, vol. 14, pp. 585-591.
    • (2001) Proc. Adv. Neural Inf. Process. Syst. , vol.14 , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 58
    • 84923658744 scopus 로고    scopus 로고
    • Block-row sparse multiview multilabel learning for image classification
    • Feb.
    • X. Zhu, X. Li, and S. Zhang, "Block-row sparse multiview multilabel learning for image classification," IEEE Trans. Cybern., vol. 46, no. 2, pp. 450-461, Feb. 2016.
    • (2016) IEEE Trans. Cybern. , vol.46 , Issue.2 , pp. 450-461
    • Zhu, X.1    Li, X.2    Zhang, S.3
  • 59
    • 85027924713 scopus 로고    scopus 로고
    • Large scale spectral clustering via landmark-based sparse representation
    • Aug.
    • D. Cai and X. Chen, "Large scale spectral clustering via landmark-based sparse representation," IEEE Trans. Cybern., vol. 45, no. 8, pp. 1669-1680, Aug. 2015.
    • (2015) IEEE Trans. Cybern. , vol.45 , Issue.8 , pp. 1669-1680
    • Cai, D.1    Chen, X.2
  • 61
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • B. J. Frey and D. Dueck, "Clustering by passing messages between data points," Science, vol. 315, no. 5814, pp. 972-976, 2007.
    • (2007) Science , vol.315 , Issue.5814 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 64
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. Roweis and L. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, no. 5500, pp. 2323-2326, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 65
    • 85016174179 scopus 로고    scopus 로고
    • Optimal hashing-based time-space trade-offs for approximate near neighbors
    • [Online]
    • A. Andoni, T. Laarhoven, I. Razenshteyn, and E. Waingarten, "Optimal hashing-based time-space trade-offs for approximate near neighbors," CoRR, 2016. [Online]. Available: http://arxiv.org/abs/1608.03580
    • (2016) CoRR
    • Andoni, A.1    Laarhoven, T.2    Razenshteyn, I.3    Waingarten, E.4
  • 66
    • 54749092170 scopus 로고    scopus 로고
    • 80 million tiny images: A large data set for nonparametric object and scene recognition
    • Nov.
    • A. Torralba, R. Fergus, and W. T. Freeman, "80 million tiny images: A large data set for nonparametric object and scene recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 11, pp. 1958-1970, Nov. 2008.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , Issue.11 , pp. 1958-1970
    • Torralba, A.1    Fergus, R.2    Freeman, W.T.3
  • 67
    • 74049158146 scopus 로고    scopus 로고
    • Nus-wide: A real-world web image database from National University of Singapore
    • T.-S. Chua et al., "Nus-wide: A real-world web image database from National University of Singapore," in Proc. ACM Int. Conf. Image Video Retrieval, 2009, Art. no. 48.
    • (2009) Proc. ACM Int. Conf. Image Video Retrieval
    • Chua, T.-S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.