메뉴 건너뛰기




Volumn 29, Issue 5, 2018, Pages 1774-1785

Efficient kNN classification with different numbers of nearest neighbors

Author keywords

Decision tree; K nearest neighbor (KNN) classification; Sparse coding

Indexed keywords

COSTS; DATA MINING; DECISION TREES; SAMPLING; TESTING;

EID: 85018487453     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2017.2673241     Document Type: Article
Times cited : (1015)

References (68)
  • 1
    • 79959375445 scopus 로고    scopus 로고
    • Shell-neighbor method and its application in missing data imputation
    • S. Zhang, "Shell-neighbor method and its application in missing data imputation, " Appl. Intell., vol. 35, no. 1, pp. 123-133, 2011.
    • (2011) Appl. Intell. , vol.35 , Issue.1 , pp. 123-133
    • Zhang, S.1
  • 2
    • 84903274914 scopus 로고    scopus 로고
    • Feature learning for image classification via multiobjective genetic programming
    • Jul
    • L. Shao, L. Liu, and X. Li, "Feature learning for image classification via multiobjective genetic programming, " IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 7, pp. 1359-1371, Jul. 2014.
    • (2014) IEEE Trans. Neural Netw. Learn. Syst. , vol.25 , Issue.7 , pp. 1359-1371
    • Shao, L.1    Liu, L.2    Li, X.3
  • 3
    • 33746424489 scopus 로고    scopus 로고
    • Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
    • Jul
    • D. Tao, X. Tang, X. Li, and X. Wu, "Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 7, pp. 1088-1099, Jul. 2006.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell , vol.28 , Issue.7 , pp. 1088-1099
    • Tao, D.1    Tang, X.2    Li, X.3    Wu, X.4
  • 4
    • 84897025208 scopus 로고    scopus 로고
    • A unified learning framework for single image super-resolution
    • Apr
    • J. Yu, X. Gao, D. Tao, X. Li, and K. Zhang, "A unified learning framework for single image super-resolution, " IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 4, pp. 780-792, Apr. 2014.
    • (2014) IEEE Trans. Neural Netw. Learn. Syst , vol.25 , Issue.4 , pp. 780-792
    • Yu, J.1    Gao, X.2    Tao, D.3    Li, X.4    Zhang, K.5
  • 5
    • 85027942548 scopus 로고    scopus 로고
    • Targeting accurate object extraction from an image: A comprehensive study of natural image matting
    • Feb
    • Q. Zhu, L. Shao, X. Li, and L. Wang, "Targeting accurate object extraction from an image: A comprehensive study of natural image matting, " IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 2, pp. 185-207, Feb. 2015.
    • (2015) IEEE Trans. Neural Netw. Learn. Syst , vol.26 , Issue.2 , pp. 185-207
    • Zhu, Q.1    Shao, L.2    Li, X.3    Wang, L.4
  • 6
    • 79551681231 scopus 로고    scopus 로고
    • Biologically inspired features for scene classification in video surveillance
    • Feb
    • K. Huang, D. Tao, Y. Yuan, X. Li, and T. Tan, "Biologically inspired features for scene classification in video surveillance, " IEEE Trans. Syst., Man, Cybern., Part B, vol. 41, no. 1, pp. 307-313, Feb. 2011.
    • (2011) IEEE Trans. Syst., Man, Cybern , vol.41 , Issue.1 , pp. 307-313
    • Huang, K.1    Tao, D.2    Yuan, Y.3    Li, X.4    Tan, T.5
  • 7
    • 84865249371 scopus 로고    scopus 로고
    • Nearest neighbor selection for iteratively KNN imputation
    • S. Zhang, "Nearest neighbor selection for iteratively KNN imputation, " J. Syst. Softw., vol. 85, no. 11, pp. 2541-2552, 2012.
    • (2012) J. Syst. Softw , vol.85 , Issue.11 , pp. 2541-2552
    • Zhang, S.1
  • 8
    • 84857794867 scopus 로고    scopus 로고
    • Cost-sensitive classification with inadequate labeled data
    • T. Wang, Z. Qin, S. Zhang, and C. Zhang, "Cost-sensitive classification with inadequate labeled data, " Inf. Syst., vol. 37, no. 5, pp. 508-516, 2012.
    • (2012) Inf. Syst , vol.37 , Issue.5 , pp. 508-516
    • Wang, T.1    Qin, Z.2    Zhang, S.3    Zhang, C.4
  • 9
    • 84923658744 scopus 로고    scopus 로고
    • Block-row sparse multiview multilabel learning for image classification
    • Feb
    • X. Zhu, X. Li, and S. Zhang, "Block-row sparse multiview multilabel learning for image classification, " IEEE Trans. Cybern., vol. 46, no. 2, pp. 450-461, Feb. 2015.
    • (2015) IEEE Trans. Cybern , vol.46 , Issue.2 , pp. 450-461
    • Zhu, X.1    Li, X.2    Zhang, S.3
  • 10
    • 37549018049 scopus 로고    scopus 로고
    • Top 10 algorithms in data mining
    • X. Wu et al., "Top 10 algorithms in data mining, " Knowl. Inf. Syst., vol. 14, no. 1, pp. 1-37, 2008.
    • (2008) Knowl. Inf. Syst. , vol.14 , Issue.1 , pp. 1-37
    • Wu, X.1
  • 11
    • 84885190223 scopus 로고    scopus 로고
    • Single image super-resolution with multiscale similarity learning
    • Oct
    • K. Zhang, X. Gao, D. Tao, and X. Li, "Single image super-resolution with multiscale similarity learning, " IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 10, pp. 1648-1659, Oct. 2013.
    • (2013) IEEE Trans. Neural Netw. Learn. Syst. , vol.24 , Issue.10 , pp. 1648-1659
    • Zhang, K.1    Gao, X.2    Tao, D.3    Li, X.4
  • 12
    • 0026154509 scopus 로고
    • A survey of decision tree classifier methodology
    • May
    • D. Landgrebe, "A survey of decision tree classifier methodology, " IEEE Trans. Syst., Man Cybern., vol. 21, no. 3, pp. 660-674, May 1991.
    • (1991) IEEE Trans. Syst., Man Cybern , vol.21 , Issue.3 , pp. 660-674
    • Landgrebe, D.1
  • 13
    • 84958593324 scopus 로고    scopus 로고
    • Learning instance correlation functions for multi-label classification
    • Feb
    • H. Liu, X. Li, and S. Zhang, "Learning instance correlation functions for multi-label classification, " IEEE Trans. Cybern., vol. 47, no. 2, pp. 499-510, Feb. 2017.
    • (2017) IEEE Trans. Cybern. , vol.47 , Issue.2 , pp. 499-510
    • Liu, H.1    Li, X.2    Zhang, S.3
  • 14
    • 77955230230 scopus 로고    scopus 로고
    • Parimputation: From imputation and null-imputation to partially imputation
    • Jan
    • S. Zhang, "Parimputation: From imputation and null-imputation to partially imputation, " IEEE Intell. Inform. Bull., vol. 9, no. 1, pp. 32-38, Jan. 2008.
    • (2008) IEEE Intell. Inform. Bull. , vol.9 , Issue.1 , pp. 32-38
    • Zhang, S.1
  • 15
    • 84945286873 scopus 로고    scopus 로고
    • RIONA: A classifier combining rule induction and k-NN method with automated selection of optimal neighbourhood
    • G. Góra and A. Wojna, "RIONA: A classifier combining rule induction and k-NN method with automated selection of optimal neighbourhood, " in Proc. ECML, 2002, pp. 111-123.
    • (2002) Proc. ECML , pp. 111-123
    • Góra, G.1    Wojna, A.2
  • 16
    • 39649087581 scopus 로고    scopus 로고
    • The nearest neighbor algorithm of local probability centers
    • Feb
    • B. Li, Y. W. Chen, and Y. Q. Chen, "The nearest neighbor algorithm of local probability centers, " IEEE Trans. Syst., Man B, vol. 38, no. 1, pp. 141-154, Feb. 2008.
    • (2008) IEEE Trans. Syst., Man B , vol.38 , Issue.1 , pp. 141-154
    • Li, B.1    Chen, Y.W.2    Chen, Y.Q.3
  • 17
    • 84906985073 scopus 로고    scopus 로고
    • Multi-modality canonical feature selection for Alzheimer's disease diagnosis
    • X. Zhu, H.-I. Suk, and D. Shen, "Multi-modality canonical feature selection for Alzheimer's disease diagnosis, " in Proc. MICCAI, 2014, pp. 162-169.
    • (2014) Proc. MICCAI , pp. 162-169
    • Zhu, X.1    Suk, H.-I.2    Shen, D.3
  • 18
    • 29144482039 scopus 로고    scopus 로고
    • Neighborhood size selection in the k-nearest-neighbor rule using statistical confidence
    • J. Wang, P. Neskovic, and L. N. Cooper, "Neighborhood size selection in the k-nearest-neighbor rule using statistical confidence, " Pattern Recognit., vol. 39, no. 3, pp. 417-423, 2006.
    • (2006) Pattern Recognit , vol.39 , Issue.3 , pp. 417-423
    • Wang, J.1    Neskovic, P.2    Cooper, L.N.3
  • 19
    • 0029663871 scopus 로고    scopus 로고
    • A nearest neighbor bootstrap for resampling hydrologic time series
    • U. Lall and A. Sharma, "A nearest neighbor bootstrap for resampling hydrologic time series, " Water Resour. Res., vol. 32, no. 3, pp. 679-693, 1996.
    • (1996) Water Resour. Res , vol.32 , Issue.3 , pp. 679-693
    • Lall, U.1    Sharma, A.2
  • 20
  • 21
    • 78649402552 scopus 로고    scopus 로고
    • Missing value estimation for mixed-attribute data sets
    • Jan
    • X. Zhu, S. Zhang, Z. Jin, Z. Zhang, and Z. Xu, "Missing value estimation for mixed-attribute data sets, " IEEE Trans. Knowl. Data Eng., vol. 23, no. 1, pp. 110-121, Jan. 2011.
    • (2011) IEEE Trans. Knowl. Data Eng , vol.23 , Issue.1 , pp. 110-121
    • Zhu, X.1    Zhang, S.2    Jin, Z.3    Zhang, Z.4    Xu, Z.5
  • 22
    • 67349169047 scopus 로고    scopus 로고
    • A novel template reduction approach for the K-nearest neighbor method
    • May
    • H. A. Fayed and A. F. Atiya, "A novel template reduction approach for the K-nearest neighbor method, " IEEE Trans. Neural Netw., vol. 20, no. 5, pp. 890-896, May 2009.
    • (2009) IEEE Trans. Neural Netw , vol.20 , Issue.5 , pp. 890-896
    • Fayed, H.A.1    Atiya, A.F.2
  • 23
    • 84887418815 scopus 로고    scopus 로고
    • Linear cross-modal hashing for efficient multimedia search
    • X. Zhu, Z. Huang, H. T. Shen, and X. Zhao, "Linear cross-modal hashing for efficient multimedia search, " in Proc. ACM MM, 2013, pp. 143-152.
    • (2013) Proc. ACM MM , pp. 143-152
    • Zhu, X.1    Huang, Z.2    Shen, H.T.3    Zhao, X.4
  • 24
    • 33645990298 scopus 로고    scopus 로고
    • Nearest neighbors by neighborhood counting
    • Jun
    • H. Wang, "Nearest neighbors by neighborhood counting, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 6, pp. 942-953, Jun. 2006.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell , vol.28 , Issue.6 , pp. 942-953
    • Wang, H.1
  • 25
    • 85046014427 scopus 로고    scopus 로고
    • A novel locally linear KNN method with applications to visual recognition
    • to be published
    • Q. Liu and C. Liu, "A novel locally linear KNN method with applications to visual recognition, " IEEE Trans. Neural Netw. Learn. Syst., to be published.
    • IEEE Trans. Neural Netw. Learn. Syst
    • Liu, Q.1    Liu, C.2
  • 26
    • 84881135320 scopus 로고    scopus 로고
    • Cost-sensitive imputing missing values with ordering
    • X. Zhu, S. Zhang, J. Zhang, and C. Zhang, "Cost-sensitive imputing missing values with ordering, " in Proc. AAAI, 2007, pp. 1922-1923.
    • (2007) Proc. AAAI , pp. 1922-1923
    • Zhu, X.1    Zhang, S.2    Zhang, J.3    Zhang, C.4
  • 27
    • 84940703106 scopus 로고    scopus 로고
    • Feature combination and the kNN framework in object classification
    • Jun
    • J. Hou, H. Gao, Q. Xia, and N. Qi, "Feature combination and the kNN framework in object classification, " IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 6, pp. 1368-1378, Jun. 2016.
    • (2016) IEEE Trans. Neural Netw. Learn. Syst , vol.27 , Issue.6 , pp. 1368-1378
    • Hou, J.1    Gao, H.2    Xia, Q.3    Qi, N.4
  • 29
    • 85009775863 scopus 로고    scopus 로고
    • Robust sparse coding for mobile image labeling on the cloud
    • Jan
    • D. Tao, J. Cheng, X. Gao, X. Li, and C. Deng, "Robust sparse coding for mobile image labeling on the cloud, " IEEE Trans. Circuits Syst. Video Technol., vol. 27, no. 1, pp. 62-72, Jan. 2017.
    • (2017) IEEE Trans. Circuits Syst. Video Technol , vol.27 , Issue.1 , pp. 62-72
    • Tao, D.1    Cheng, J.2    Gao, X.3    Li, X.4    Deng, C.5
  • 30
    • 84918804435 scopus 로고    scopus 로고
    • Efficient kNN algorithm based on graph sparse reconstruction
    • S. Zhang, M. Zong, K. Sun, Y. Liu, and D. Cheng, "Efficient kNN algorithm based on graph sparse reconstruction, " in Proc. ADMA, 2014, pp. 356-369.
    • (2014) Proc. ADMA , pp. 356-369
    • Zhang, S.1    Zong, M.2    Sun, K.3    Liu, Y.4    Cheng, D.5
  • 31
    • 84905046755 scopus 로고    scopus 로고
    • A sparse embedding and least variance encoding approach to hashing
    • Sep
    • X. Zhu, L. Zhang, and Z. Huang, "A sparse embedding and least variance encoding approach to hashing, " IEEE Trans. Image Process., vol. 23, no. 9, pp. 3737-3750, Sep. 2014.
    • (2014) IEEE Trans. Image Process , vol.23 , Issue.9 , pp. 3737-3750
    • Zhu, X.1    Zhang, L.2    Huang, Z.3
  • 33
    • 84904763709 scopus 로고    scopus 로고
    • Assessing the validity of QSARS for ready biodegradability of chemicals: An applicability domain perspective
    • F. Sahigara, D. Ballabio, R. Todeschini, and V. Consonni, "Assessing the validity of QSARS for ready biodegradability of chemicals: An applicability domain perspective, " Current Comput. Aided Drug Design, vol. 10, no. 2, pp. 137-147, 2013.
    • (2013) Current Comput. Aided Drug, Design , vol.10 , Issue.2 , pp. 137-147
    • Sahigara, F.1    Ballabio, D.2    Todeschini, R.3    Consonni, V.4
  • 34
    • 84866033003 scopus 로고    scopus 로고
    • Selftaught dimensionality reduction on the high-dimensional small-sized data
    • X. Zhu, Z. Huang, Y. Yang, H. T. Shen, C. Xu, and J. Luo, "Selftaught dimensionality reduction on the high-dimensional small-sized data, " Pattern Recognit., vol. 46, no. 1, pp. 215-229, 2013.
    • (2013) Pattern Recognit , vol.46 , Issue.1 , pp. 215-229
    • Zhu, X.1    Huang, Z.2    Yang, Y.3    Shen, H.T.4    Xu, C.5    Luo, J.6
  • 35
    • 44049098082 scopus 로고    scopus 로고
    • Nearest neighbor classification of remote sensing images with the maximal margin principle
    • Jun
    • E. Blanzieri and F. Melgani, "Nearest neighbor classification of remote sensing images with the maximal margin principle, " IEEE Trans. Geosci. Remote Sens., vol. 46, no. 6, pp. 1804-1811, Jun. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.6 , pp. 1804-1811
    • Blanzieri, E.1    Melgani, F.2
  • 36
    • 85029913461 scopus 로고    scopus 로고
    • Robust joint graph sparse coding for unsupervised spectral feature selection
    • to be published
    • X. Zhu, X. Li, S. Zhang, C. Ju, and X. Wu, "Robust joint graph sparse coding for unsupervised spectral feature selection, " IEEE Trans. Neural Netw. Learn. Syst., to be published.
    • IEEE Trans. Neural Netw. Learn. Syst
    • Zhu, X.1    Li, X.2    Zhang, S.3    Ju, C.4    Wu, X.5
  • 37
    • 84865233213 scopus 로고    scopus 로고
    • Noisy data elimination using mutual k-nearest neighbor for classification mining
    • H. Liu and S. Zhang, "Noisy data elimination using mutual k-nearest neighbor for classification mining, " J. Syst. Softw., vol. 85, no. 5, pp. 1067-1074, 2012.
    • (2012) J. Syst. Softw , vol.85 , Issue.5 , pp. 1067-1074
    • Liu, H.1    Zhang, S.2
  • 38
    • 69349097340 scopus 로고    scopus 로고
    • An adaptable-nearest neighbors algorithm for MMSE image interpolation
    • Mar
    • K. S. Ni and T. Q. Nguyen, "An adaptable-nearest neighbors algorithm for MMSE image interpolation, " IEEE Trans. Image Process., vol. 18, no. 9, pp. 1976-1987, Mar. 2009.
    • (2009) IEEE Trans. Image Process , vol.18 , Issue.9 , pp. 1976-1987
    • Ni, K.S.1    Nguyen, T.Q.2
  • 39
    • 84880918462 scopus 로고    scopus 로고
    • Ranking graph embedding for learning to rerank
    • Aug
    • Y. Pang, Z. Ji, P. Jing, and X. Li, "Ranking graph embedding for learning to rerank, " IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 8, pp. 1292-1303, Aug. 2013.
    • (2013) IEEE Trans. Neural Netw. Learn. Syst. , vol.24 , Issue.8 , pp. 1292-1303
    • Pang, Y.1    Ji, Z.2    Jing, P.3    Li, X.4
  • 40
    • 70349852759 scopus 로고    scopus 로고
    • Tailored aggregation for classification
    • Nov
    • T. Mary-Huard and S. Robin, "Tailored aggregation for classification, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 11, pp. 2098-2105, Nov. 2009.
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell. , vol.31 , Issue.11 , pp. 2098-2105
    • Mary-Huard, T.1    Robin, S.2
  • 41
    • 34250704657 scopus 로고    scopus 로고
    • Semi-parametric optimization for missing data imputation
    • Y. Qin, S. Zhang, X. Zhu, J. Zhang, and C. Zhang, "Semi-parametric optimization for missing data imputation, " Appl. Intell., vol. 27, no. 1, pp. 79-88, 2007.
    • (2007) Appl. Intell , vol.27 , Issue.1 , pp. 79-88
    • Qin, Y.1    Zhang, S.2    Zhu, X.3    Zhang, J.4    Zhang, C.5
  • 42
    • 38949194197 scopus 로고    scopus 로고
    • Clustering-based missing value imputation for data preprocessing
    • Aug
    • C. Zhang, Y. Qin, X. Zhu, and J. Zhang, "Clustering-based missing value imputation for data preprocessing, " in Proc. IEEE Int. Conf., Aug. 2006, pp. 1081-1086.
    • (2006) Proc. IEEE Int. Conf , pp. 1081-1086
    • Zhang, C.1    Qin, Y.2    Zhu, X.3    Zhang, J.4
  • 43
    • 84906975457 scopus 로고    scopus 로고
    • A novel multi-relation regularization method for regression and classification in ad diagnosis
    • X. Zhu, H.-I. Suk, and D. Shen, "A novel multi-relation regularization method for regression and classification in ad diagnosis, " in Proc. MICCAI, 2014, pp. 401-408.
    • (2014) Proc. MICCAI , pp. 401-408
    • Zhu, X.1    Suk, H.-I.2    Shen, D.3
  • 44
    • 61849145344 scopus 로고    scopus 로고
    • IKNN: Informative K-nearest neighbor pattern classification
    • Berlin, Germany: Springer
    • Y. Song, J. Huang, D. Zhou, H. Zha, and C. L. Giles, "IKNN: Informative K-nearest neighbor pattern classification, " in Knowledge Discovery in Databases. Berlin, Germany: Springer, 2007, pp. 248-264.
    • (2007) Knowledge Discovery in Databases , pp. 248-264
    • Song, Y.1    Huang, J.2    Zhou, D.3    Zha, H.4    Giles, C.L.5
  • 45
    • 11144330519 scopus 로고    scopus 로고
    • K-local hyperplane and convex distance nearest neighbor algorithms
    • P. Vincent and Y. Bengio, "K-local hyperplane and convex distance nearest neighbor algorithms, " in Proc. NIPS, 2001, pp. 985-992.
    • (2001) Proc. NIPS , pp. 985-992
    • Vincent, P.1    Bengio, Y.2
  • 46
    • 84953838027 scopus 로고    scopus 로고
    • Nonnegative correlation coding for image classification
    • Z. Don, W. Liang, Y. Wu, M. Pei, and Y. Jia, "Nonnegative correlation coding for image classification, " Sci. China Inf. Sci., vol. 59, no. 1, pp. 1-14, 2016.
    • (2016) Sci. China Inf. Sci , vol.59 , Issue.1 , pp. 1-14
    • Don, Z.1    Liang, W.2    Wu, Y.3    Pei, M.4    Jia, Y.5
  • 47
    • 84867300320 scopus 로고    scopus 로고
    • Design of an enhanced fuzzy k-nearest neighbor classifier based computer aided diagnostic system for thyroid disease
    • D.-Y. Liu, H.-L. Chen, B. Yang, X.-E. Lv, L.-N. Li, and J. Liu, "Design of an enhanced fuzzy k-nearest neighbor classifier based computer aided diagnostic system for thyroid disease, " J. Med. Syst., vol. 36, no. 5, pp. 3243-3254, 2012.
    • (2012) J. Med. Syst , vol.36 , Issue.5 , pp. 3243-3254
    • Liu, D.-Y.1    Chen, H.-L.2    Yang, B.3    Lv, X.-E.4    Li, L.-N.5    Liu, J.6
  • 48
    • 79955935035 scopus 로고    scopus 로고
    • A novel weighted voting for k-nearest neighbor rule
    • J. Gou, T. Xiong, and Y. Kuang, "A novel weighted voting for k-nearest neighbor rule, " J. Comput., vol. 6, no. 5, pp. 833-840, 2011.
    • (2011) J. Comput , vol.6 , Issue.5 , pp. 833-840
    • Gou, J.1    Xiong, T.2    Kuang, Y.3
  • 49
    • 84887338008 scopus 로고    scopus 로고
    • Consensus of k-NNs for robust neighborhood selection on graph-based manifolds
    • Jun
    • V. Premachandran and R. Kakarala, "Consensus of k-NNs for robust neighborhood selection on graph-based manifolds, " in Proc. CVPR, Jun. 2013, pp. 1594-1601.
    • (2013) Proc. CVPR , pp. 1594-1601
    • Premachandran, V.1    Kakarala, R.2
  • 51
    • 34447299893 scopus 로고    scopus 로고
    • An empirical analysis of the probabilistic k-nearest neighbour classifier
    • S. Manocha and M. Girolami, "An empirical analysis of the probabilistic k-nearest neighbour classifier, " Pattern Recognit. Lett., vol. 28, no. 13, pp. 1818-1824, 2007.
    • (2007) Pattern Recognit. Lett , vol.28 , Issue.13 , pp. 1818-1824
    • Manocha, S.1    Girolami, M.2
  • 52
    • 78649309309 scopus 로고    scopus 로고
    • An adaptive k-nearest neighbor algorithm
    • S. Sun and R. Huang, "An adaptive k-nearest neighbor algorithm, " in Proc. FSKD, vol. 1. 2010, pp. 91-94.
    • (2010) Proc. FSKD , vol.1 , pp. 91-94
    • Sun, S.1    Huang, R.2
  • 53
    • 84911457687 scopus 로고    scopus 로고
    • Matrix-similarity based loss function and feature selection for Alzheimer's disease diagnosis
    • X. Zhu, H.-I. Suk, and D. Shen, "Matrix-similarity based loss function and feature selection for Alzheimer's disease diagnosis, " in Proc. CVPR, 2014, pp. 3089-3096.
    • (2014) Proc. CVPR , pp. 3089-3096
    • Zhu, X.1    Suk, H.-I.2    Shen, D.3
  • 54
    • 84940704075 scopus 로고    scopus 로고
    • Spatiochromatic context modeling for color saliency analysis
    • Jun
    • J. Zhang, M. Wang, S. Zhang, X. Li, and X. Wu, "Spatiochromatic context modeling for color saliency analysis, " IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 6, pp. 1177-1189, Jun. 2016.
    • (2016) IEEE Trans. Neural Netw. Learn. Syst , vol.27 , Issue.6 , pp. 1177-1189
    • Zhang, J.1    Wang, M.2    Zhang, S.3    Li, X.4    Wu, X.5
  • 60
    • 58349092749 scopus 로고    scopus 로고
    • Majority voting combination of multiple case-based reasoning for financial distress prediction
    • H. Li and J. Sun, "Majority voting combination of multiple case-based reasoning for financial distress prediction, " Expert Syst. Appl., vol. 36, no. 3, pp. 4363-4373, 2009.
    • (2009) Expert Syst. Appl , vol.36 , Issue.3 , pp. 4363-4373
    • Li, H.1    Sun, J.2
  • 61
    • 85046026845 scopus 로고    scopus 로고
    • Extension and evaluation of ID3-decision tree algorithm
    • A. Bahety, "Extension and Evaluation of ID3-Decision Tree Algorithm, " Entropy, vol. 2, no. 1, p. 1, 2014.
    • (2014) Entropy , vol.2 , Issue.1 , pp. 1
    • Bahety, A.1
  • 62
    • 24644441048 scopus 로고    scopus 로고
    • Ensembling local learners throughmultimodal perturbation
    • Apr
    • Z. H. Zhou and Y. Yu, "Ensembling local learners throughmultimodal perturbation, " IEEE Trans. Syst. Man B, vol. 35, no. 4, pp. 725-735, Apr. 2005.
    • (2005) IEEE Trans. Syst. Man B , vol.35 , Issue.4 , pp. 725-735
    • Zhou, Z.H.1    Yu, Y.2
  • 64
    • 84975745637 scopus 로고    scopus 로고
    • Efficient kNN classification algorithm for big, data
    • Jun
    • Z. Deng, X. Zhu, D. Cheng, M. Zong, and S. Zhang, "Efficient kNN classification algorithm for big data, " Neurocomputing, vol. 195, pp. 143-148, Jun. 2016.
    • (2016) Neurocomputing , vol.195 , pp. 143-148
    • Deng, Z.1    Zhu, X.2    Cheng, D.3    Zong, M.4    Zhang, S.5
  • 65
  • 66
    • 84903899707 scopus 로고    scopus 로고
    • A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis
    • Oct
    • X. Zhu, H.-I. Suk, and D. Shen, "A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis, " NeuroImage, vol. 100, pp. 91-105, Oct. 2014.
    • (2014) NeuroImage , vol.100 , pp. 91-105
    • Zhu, X.1    Suk, H.-I.2    Shen, D.3
  • 67
    • 57049188382 scopus 로고    scopus 로고
    • Effective feature extraction in high- dimensional space
    • Dec
    • Y. Pang, Y. Yuan, and X. Li, "Effective Feature Extraction in High- Dimensional Space, " IEEE Trans. Syst., Man B, vol. 38, no. 6, pp. 1652-1656, Dec. 2008.
    • (2008) IEEE Trans. Syst., Man B , vol.38 , Issue.6 , pp. 1652-1656
    • Pang, Y.1    Yuan, Y.2    Li, X.3
  • 68
    • 0012845566 scopus 로고    scopus 로고
    • Large scale data mining based on data partitioning
    • S. Zhang and X. Wu, "Large scale data mining based on data partitioning, " Appl. Artif. Intell., vol. 15, no. 2, pp. 129-139, 2001.
    • (2001) Appl. Artif. Intell , vol.15 , Issue.2 , pp. 129-139
    • Zhang, S.1    Wu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.