메뉴 건너뛰기




Volumn 33, Issue 12, 2017, Pages 943-959

Epithelial-to-Mesenchymal Transition: Epigenetic Reprogramming Driving Cellular Plasticity

Author keywords

[No Author keywords available]

Indexed keywords

BMI1 PROTEIN; HISTONE DEACETYLASE; LONG UNTRANSLATED RNA; MICRORNA; MULTIPROTEIN COMPLEX; NURD COMPLEX; POLYCOMB REPRESSIVE COMPLEX 2; SWITCH SUCROSE NONFERMENTABLE COMPLEX; TRANSCRIPTION FACTOR; TRANSCRIPTION FACTOR SIN3A; UNCLASSIFIED DRUG;

EID: 85029452284     PISSN: 01689525     EISSN: 13624555     Source Type: Journal    
DOI: 10.1016/j.tig.2017.08.004     Document Type: Review
Times cited : (207)

References (173)
  • 1
    • 0020358296 scopus 로고
    • Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells
    • Greenburg, G., Hay, E.D., Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J. Cell Biol. 95 (1982), 333–339.
    • (1982) J. Cell Biol. , vol.95 , pp. 333-339
    • Greenburg, G.1    Hay, E.D.2
  • 2
    • 70450198396 scopus 로고    scopus 로고
    • Epithelial-mesenchymal transitions in development and disease
    • Thiery, J.P., et al. Epithelial-mesenchymal transitions in development and disease. Cell 139 (2009), 871–890.
    • (2009) Cell , vol.139 , pp. 871-890
    • Thiery, J.P.1
  • 3
    • 77957551870 scopus 로고    scopus 로고
    • A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts
    • Li, R., et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7 (2010), 51–63.
    • (2010) Cell Stem Cell , vol.7 , pp. 51-63
    • Li, R.1
  • 4
    • 77956320116 scopus 로고    scopus 로고
    • Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming
    • Samavarchi-Tehrani, P., et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7 (2010), 64–77.
    • (2010) Cell Stem Cell , vol.7 , pp. 64-77
    • Samavarchi-Tehrani, P.1
  • 5
    • 84857817163 scopus 로고    scopus 로고
    • Slug and Sox9 cooperatively determine the mammary stem cell state
    • Guo, W., et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148 (2012), 1015–1028.
    • (2012) Cell , vol.148 , pp. 1015-1028
    • Guo, W.1
  • 6
    • 84887456252 scopus 로고    scopus 로고
    • The epigenetics of epithelial-mesenchymal plasticity in cancer
    • Tam, W.L., Weinberg, R.A., The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat. Med. 19 (2013), 1438–1449.
    • (2013) Nat. Med. , vol.19 , pp. 1438-1449
    • Tam, W.L.1    Weinberg, R.A.2
  • 7
    • 84976539958 scopus 로고    scopus 로고
    • EMT: 2016
    • Nieto, M.A., et al. EMT: 2016. Cell 166 (2016), 21–45.
    • (2016) Cell , vol.166 , pp. 21-45
    • Nieto, M.A.1
  • 8
    • 84941000153 scopus 로고    scopus 로고
    • Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease
    • Grande, M.T., et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat. Med. 21 (2015), 989–997.
    • (2015) Nat. Med. , vol.21 , pp. 989-997
    • Grande, M.T.1
  • 9
    • 33244463813 scopus 로고    scopus 로고
    • Complex networks orchestrate epithelial-mesenchymal transitions
    • Thiery, J.P., Sleeman, J.P., Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 7 (2006), 131–142.
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 131-142
    • Thiery, J.P.1    Sleeman, J.P.2
  • 10
    • 84993965417 scopus 로고    scopus 로고
    • Post-translational modifications of EMT transcriptional factors in cancer metastasis
    • Chang, R., et al. Post-translational modifications of EMT transcriptional factors in cancer metastasis. Open Life Sci. 11 (2016), 237–243.
    • (2016) Open Life Sci. , vol.11 , pp. 237-243
    • Chang, R.1
  • 11
    • 84873050284 scopus 로고    scopus 로고
    • Regulatory networks defining EMT during cancer initiation and progression
    • De Craene, B., Berx, G., Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer 13 (2013), 97–110.
    • (2013) Nat. Rev. Cancer , vol.13 , pp. 97-110
    • De Craene, B.1    Berx, G.2
  • 12
    • 57349114162 scopus 로고    scopus 로고
    • The cell-cell adhesion molecule E-cadherin
    • van Roy, F., Berx, G., The cell-cell adhesion molecule E-cadherin. Cell. Mol. Life Sci. 65 (2008), 3756–3788.
    • (2008) Cell. Mol. Life Sci. , vol.65 , pp. 3756-3788
    • van Roy, F.1    Berx, G.2
  • 13
    • 0033789680 scopus 로고    scopus 로고
    • The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells
    • Batlle, E., et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat. Cell Biol. 2 (2000), 84–89.
    • (2000) Nat. Cell Biol. , vol.2 , pp. 84-89
    • Batlle, E.1
  • 14
    • 0034964418 scopus 로고    scopus 로고
    • The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion
    • Comijn, J., et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol. Cell 7 (2001), 1267–1278.
    • (2001) Mol. Cell , vol.7 , pp. 1267-1278
    • Comijn, J.1
  • 15
    • 0037086277 scopus 로고    scopus 로고
    • The SLUG zinc-finger protein represses E-cadherin in breast cancer
    • Hajra, K.M., et al. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res. 62 (2002), 1613–1618.
    • (2002) Cancer Res. , vol.62 , pp. 1613-1618
    • Hajra, K.M.1
  • 16
    • 38349023012 scopus 로고    scopus 로고
    • Twist is a transcriptional repressor of E-cadherin gene expression in breast cancer
    • Vesuna, F., et al. Twist is a transcriptional repressor of E-cadherin gene expression in breast cancer. Biochem. Biophys. Res. Commun. 367 (2008), 235–241.
    • (2008) Biochem. Biophys. Res. Commun. , vol.367 , pp. 235-241
    • Vesuna, F.1
  • 17
    • 0033784843 scopus 로고    scopus 로고
    • The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression
    • Cano, A., et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2 (2000), 76–83.
    • (2000) Nat. Cell Biol. , vol.2 , pp. 76-83
    • Cano, A.1
  • 18
    • 20144388095 scopus 로고    scopus 로고
    • DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells
    • Eger, A., et al. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24 (2005), 2375–2385.
    • (2005) Oncogene , vol.24 , pp. 2375-2385
    • Eger, A.1
  • 19
    • 29144485712 scopus 로고    scopus 로고
    • SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions
    • Vandewalle, C., et al. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res. 33 (2005), 6566–6578.
    • (2005) Nucleic Acids Res. , vol.33 , pp. 6566-6578
    • Vandewalle, C.1
  • 20
    • 34249289041 scopus 로고    scopus 로고
    • Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?
    • Peinado, H., et al. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?. Nat. Rev. Cancer 7 (2007), 415–428.
    • (2007) Nat. Rev. Cancer , vol.7 , pp. 415-428
    • Peinado, H.1
  • 21
    • 84894593599 scopus 로고    scopus 로고
    • Molecular mechanisms of epithelial-mesenchymal transition
    • Lamouille, S., et al. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15 (2014), 178–196.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 178-196
    • Lamouille, S.1
  • 22
    • 84958555092 scopus 로고    scopus 로고
    • ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types
    • Lehmann, W., et al. ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. Nat. Commun., 7, 2016, 10498.
    • (2016) Nat. Commun. , vol.7 , pp. 10498
    • Lehmann, W.1
  • 23
    • 3042796204 scopus 로고    scopus 로고
    • Regulation of collagen type I in vascular smooth muscle cells by competition between Nkx2.5 and delta EF1/ZEB1
    • Ponticos, M., et al. Regulation of collagen type I in vascular smooth muscle cells by competition between Nkx2.5 and delta EF1/ZEB1. Mol. Cell. Biol. 24 (2004), 6151–6161.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 6151-6161
    • Ponticos, M.1
  • 24
    • 0344699350 scopus 로고    scopus 로고
    • T-cell expression of the human GATA-3 gene is regulated by a non-lineage-specific silencer
    • Gregoire, J.M., Romeo, P.H., T-cell expression of the human GATA-3 gene is regulated by a non-lineage-specific silencer. J. Biol. Chem. 274 (1999), 6567–6578.
    • (1999) J. Biol. Chem. , vol.274 , pp. 6567-6578
    • Gregoire, J.M.1    Romeo, P.H.2
  • 25
    • 0038324070 scopus 로고    scopus 로고
    • Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins
    • Postigo, A.A., et al. Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO J. 22 (2003), 2453–2462.
    • (2003) EMBO J. , vol.22 , pp. 2453-2462
    • Postigo, A.A.1
  • 26
    • 0033513540 scopus 로고    scopus 로고
    • Independent repressor domains in ZEB regulate muscle and T-cell differentiation
    • Postigo, A.A., Dean, D.C., Independent repressor domains in ZEB regulate muscle and T-cell differentiation. Mol. Cell. Biol. 19 (1999), 7961–7971.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 7961-7971
    • Postigo, A.A.1    Dean, D.C.2
  • 27
    • 77956230322 scopus 로고    scopus 로고
    • The ZEB/miR-200 feedback loop – a motor of cellular plasticity in development and cancer?
    • Brabletz, S., Brabletz, T., The ZEB/miR-200 feedback loop – a motor of cellular plasticity in development and cancer?. EMBO Rep. 11 (2010), 670–677.
    • (2010) EMBO Rep. , vol.11 , pp. 670-677
    • Brabletz, S.1    Brabletz, T.2
  • 28
    • 84856102456 scopus 로고    scopus 로고
    • MiR-34 and SNAIL: another double-negative feedback loop controlling cellular plasticity/EMT governed by p53
    • Brabletz, T., MiR-34 and SNAIL: another double-negative feedback loop controlling cellular plasticity/EMT governed by p53. Cell Cycle 11 (2012), 215–216.
    • (2012) Cell Cycle , vol.11 , pp. 215-216
    • Brabletz, T.1
  • 29
    • 84970967206 scopus 로고    scopus 로고
    • Beyond transcription factors: how oncogenic signalling reshapes the epigenetic landscape
    • Liu, F., et al. Beyond transcription factors: how oncogenic signalling reshapes the epigenetic landscape. Nat. Rev. Cancer 16 (2016), 359–372.
    • (2016) Nat. Rev. Cancer , vol.16 , pp. 359-372
    • Liu, F.1
  • 30
    • 80053305896 scopus 로고    scopus 로고
    • Signaling epigenetics: novel insights on cell signaling and epigenetic regulation
    • Arzate-Mejia, R.G., et al. Signaling epigenetics: novel insights on cell signaling and epigenetic regulation. IUBMB Life 63 (2011), 881–895.
    • (2011) IUBMB Life , vol.63 , pp. 881-895
    • Arzate-Mejia, R.G.1
  • 31
    • 0036144048 scopus 로고    scopus 로고
    • DNA methylation patterns and epigenetic memory
    • Bird, A., DNA methylation patterns and epigenetic memory. Genes Dev. 16 (2002), 6–21.
    • (2002) Genes Dev. , vol.16 , pp. 6-21
    • Bird, A.1
  • 32
    • 80052933429 scopus 로고    scopus 로고
    • DNA demethylation dynamics
    • Bhutani, N., et al. DNA demethylation dynamics. Cell 146 (2011), 866–872.
    • (2011) Cell , vol.146 , pp. 866-872
    • Bhutani, N.1
  • 33
    • 57249103576 scopus 로고    scopus 로고
    • Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter
    • 2140. e1–e8
    • Lim, S.O., et al. Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology 135 (2008), 2128–2140 2140. e1–e8.
    • (2008) Gastroenterology , vol.135 , pp. 2128-2140
    • Lim, S.O.1
  • 34
    • 82255185588 scopus 로고    scopus 로고
    • Regulation of SNAIL1 and E-cadherin function by DNMT1 in a DNA methylation-independent context
    • Espada, J., et al. Regulation of SNAIL1 and E-cadherin function by DNMT1 in a DNA methylation-independent context. Nucleic Acids Res. 39 (2011), 9194–9205.
    • (2011) Nucleic Acids Res. , vol.39 , pp. 9194-9205
    • Espada, J.1
  • 35
    • 85005916226 scopus 로고    scopus 로고
    • deltaEF1 associates with DNMT1 and maintains DNA methylation of the E-cadherin promoter in breast cancer cells
    • Fukagawa, A., et al. deltaEF1 associates with DNMT1 and maintains DNA methylation of the E-cadherin promoter in breast cancer cells. Cancer Med. 4 (2015), 125–135.
    • (2015) Cancer Med. , vol.4 , pp. 125-135
    • Fukagawa, A.1
  • 36
    • 85002194595 scopus 로고    scopus 로고
    • Zeb2 regulates cell fate at the exit from epiblast state in mouse embryonic stem cells
    • Stryjewska, A., et al. Zeb2 regulates cell fate at the exit from epiblast state in mouse embryonic stem cells. Stem Cells 35 (2016), 611–625.
    • (2016) Stem Cells , vol.35 , pp. 611-625
    • Stryjewska, A.1
  • 37
    • 84921825783 scopus 로고    scopus 로고
    • TWIST1 and TWIST2 promoter methylation and protein expression in tumor stroma influence the epithelial-mesenchymal transition-like tumor budding phenotype in colorectal cancer
    • Galvan, J.A., et al. TWIST1 and TWIST2 promoter methylation and protein expression in tumor stroma influence the epithelial-mesenchymal transition-like tumor budding phenotype in colorectal cancer. Oncotarget 6 (2015), 874–885.
    • (2015) Oncotarget , vol.6 , pp. 874-885
    • Galvan, J.A.1
  • 38
    • 79957897561 scopus 로고    scopus 로고
    • SIP1 is downregulated in hepatocellular carcinoma by promoter hypermethylation
    • Acun, T., et al. SIP1 is downregulated in hepatocellular carcinoma by promoter hypermethylation. BMC Cancer, 11, 2011, 223.
    • (2011) BMC Cancer , vol.11 , pp. 223
    • Acun, T.1
  • 39
    • 77954354936 scopus 로고    scopus 로고
    • Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels
    • Li, A., et al. Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. Cancer Res. 70 (2010), 5226–5237.
    • (2010) Cancer Res. , vol.70 , pp. 5226-5237
    • Li, A.1
  • 40
    • 84872498754 scopus 로고    scopus 로고
    • DNA methylation is associated with transcription of Snail and Slug genes
    • Chen, Y., et al. DNA methylation is associated with transcription of Snail and Slug genes. Biochem. Biophys. Res. Commun. 430 (2013), 1083–1090.
    • (2013) Biochem. Biophys. Res. Commun. , vol.430 , pp. 1083-1090
    • Chen, Y.1
  • 41
    • 77956243561 scopus 로고    scopus 로고
    • Role of DNA methylation in miR-200c/141 cluster silencing in invasive breast cancer cells
    • Neves, R., et al. Role of DNA methylation in miR-200c/141 cluster silencing in invasive breast cancer cells. BMC Res. Notes, 3, 2010, 219.
    • (2010) BMC Res. Notes , vol.3 , pp. 219
    • Neves, R.1
  • 42
    • 85014924343 scopus 로고    scopus 로고
    • The EMT regulator ZEB2 is a novel dependency of human and murine acute myeloid leukemia
    • Li, H., et al. The EMT regulator ZEB2 is a novel dependency of human and murine acute myeloid leukemia. Blood 129 (2017), 497–508.
    • (2017) Blood , vol.129 , pp. 497-508
    • Li, H.1
  • 43
    • 84879863078 scopus 로고    scopus 로고
    • Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state
    • Lim, Y.Y., et al. Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state. J. Cell Sci. 126 (2013), 2256–2266.
    • (2013) J. Cell Sci. , vol.126 , pp. 2256-2266
    • Lim, Y.Y.1
  • 44
    • 79952534189 scopus 로고    scopus 로고
    • Regulation of chromatin by histone modifications
    • Bannister, A.J., Kouzarides, T., Regulation of chromatin by histone modifications. Cell Res. 21 (2011), 381–395.
    • (2011) Cell Res. , vol.21 , pp. 381-395
    • Bannister, A.J.1    Kouzarides, T.2
  • 45
    • 79961023271 scopus 로고    scopus 로고
    • Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition
    • McDonald, O.G., et al. Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nat. Struct. Mol. Biol. 18 (2011), 867–874.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 867-874
    • McDonald, O.G.1
  • 46
    • 84880719085 scopus 로고    scopus 로고
    • The histone LSD1 demethylase in stemness and cancer transcription programs
    • Amente, S., et al. The histone LSD1 demethylase in stemness and cancer transcription programs. Biochim. Biophys. Acta 1829 (2013), 981–986.
    • (2013) Biochim. Biophys. Acta , vol.1829 , pp. 981-986
    • Amente, S.1
  • 47
    • 77953107054 scopus 로고    scopus 로고
    • The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1
    • Lin, Y., et al. The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J. 29 (2010), 1803–1816.
    • (2010) EMBO J. , vol.29 , pp. 1803-1816
    • Lin, Y.1
  • 48
    • 84984621961 scopus 로고    scopus 로고
    • Phosphorylation of LSD1 at Ser112 is crucial for its function in induction of EMT and metastasis in breast cancer
    • Feng, J., et al. Phosphorylation of LSD1 at Ser112 is crucial for its function in induction of EMT and metastasis in breast cancer. Breast Cancer Res. Treat. 159 (2016), 443–456.
    • (2016) Breast Cancer Res. Treat. , vol.159 , pp. 443-456
    • Feng, J.1
  • 49
    • 84964837453 scopus 로고    scopus 로고
    • LSD1-mediated epigenetic modification contributes to ovarian cancer cell migration and invasion
    • Li, Y., et al. LSD1-mediated epigenetic modification contributes to ovarian cancer cell migration and invasion. Oncol. Rep. 35 (2016), 3586–3592.
    • (2016) Oncol. Rep. , vol.35 , pp. 3586-3592
    • Li, Y.1
  • 50
    • 84879500615 scopus 로고    scopus 로고
    • Positive expression of LSD1 and negative expression of E-cadherin correlate with metastasis and poor prognosis of colon cancer
    • Jie, D., et al. Positive expression of LSD1 and negative expression of E-cadherin correlate with metastasis and poor prognosis of colon cancer. Dig. Dis. Sci. 58 (2013), 1581–1589.
    • (2013) Dig. Dis. Sci. , vol.58 , pp. 1581-1589
    • Jie, D.1
  • 51
    • 84871956221 scopus 로고    scopus 로고
    • Inhibiting interactions of lysine demethylase LSD1 with snail/slug blocks cancer cell invasion
    • Ferrari-Amorotti, G., et al. Inhibiting interactions of lysine demethylase LSD1 with snail/slug blocks cancer cell invasion. Cancer Res. 73 (2013), 235–245.
    • (2013) Cancer Res. , vol.73 , pp. 235-245
    • Ferrari-Amorotti, G.1
  • 52
    • 34247348215 scopus 로고    scopus 로고
    • Opposing LSD1 complexes function in developmental gene activation and repression programmes
    • 882–827
    • Wang, J., et al. Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature, 446, 2007 882–827.
    • (2007) Nature , vol.446
    • Wang, J.1
  • 53
    • 85014942819 scopus 로고    scopus 로고
    • Oncogenic ZEB2 activation drives sensitivity toward KDM1A inhibition in T-cell acute lymphoblastic leukemia
    • Goossens, S., et al. Oncogenic ZEB2 activation drives sensitivity toward KDM1A inhibition in T-cell acute lymphoblastic leukemia. Blood 129 (2017), 981–990.
    • (2017) Blood , vol.129 , pp. 981-990
    • Goossens, S.1
  • 54
    • 41849121175 scopus 로고    scopus 로고
    • Atypical Mowat-Wilson patient confirms the importance of the novel association between ZFHX1B/SIP1 and NuRD corepressor complex
    • Verstappen, G., et al. Atypical Mowat-Wilson patient confirms the importance of the novel association between ZFHX1B/SIP1 and NuRD corepressor complex. Hum. Mol. Genet. 17 (2008), 1175–1183.
    • (2008) Hum. Mol. Genet. , vol.17 , pp. 1175-1183
    • Verstappen, G.1
  • 55
    • 79651474948 scopus 로고    scopus 로고
    • The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis
    • Fu, J., et al. The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis. Cell Res. 21 (2011), 275–289.
    • (2011) Cell Res. , vol.21 , pp. 275-289
    • Fu, J.1
  • 56
    • 84979763263 scopus 로고    scopus 로고
    • Zeb2 recruits HDAC-NuRD to inhibit Notch and controls Schwann cell differentiation and remyelination
    • Wu, L.M., et al. Zeb2 recruits HDAC-NuRD to inhibit Notch and controls Schwann cell differentiation and remyelination. Nat. Neurosci. 19 (2016), 1060–1072.
    • (2016) Nat. Neurosci. , vol.19 , pp. 1060-1072
    • Wu, L.M.1
  • 57
    • 84930576402 scopus 로고    scopus 로고
    • Dysfunction of the reciprocal feedback loop between GATA3- and ZEB2-nucleated repression programs contributes to breast cancer metastasis
    • Si, W., et al. Dysfunction of the reciprocal feedback loop between GATA3- and ZEB2-nucleated repression programs contributes to breast cancer metastasis. Cancer Cell 27 (2015), 822–836.
    • (2015) Cancer Cell , vol.27 , pp. 822-836
    • Si, W.1
  • 58
    • 0346363757 scopus 로고    scopus 로고
    • Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex
    • Peinado, H., et al. Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol. Cell. Biol. 24 (2004), 306–319.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 306-319
    • Peinado, H.1
  • 59
    • 84891022708 scopus 로고    scopus 로고
    • Dynamic chromatin modification sustains epithelial-mesenchymal transition following inducible expression of Snail-1
    • Javaid, S., et al. Dynamic chromatin modification sustains epithelial-mesenchymal transition following inducible expression of Snail-1. Cell Rep. 5 (2013), 1679–1689.
    • (2013) Cell Rep. , vol.5 , pp. 1679-1689
    • Javaid, S.1
  • 60
    • 84897957021 scopus 로고    scopus 로고
    • Trichostatin A, a histone deacetylase inhibitor, suppresses proliferation and epithelial-mesenchymal transition in retinal pigment epithelium cells
    • Xiao, W., et al. Trichostatin A, a histone deacetylase inhibitor, suppresses proliferation and epithelial-mesenchymal transition in retinal pigment epithelium cells. J. Cell. Mol. Med. 18 (2014), 646–655.
    • (2014) J. Cell. Mol. Med. , vol.18 , pp. 646-655
    • Xiao, W.1
  • 61
    • 77953743748 scopus 로고    scopus 로고
    • ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1
    • Sanchez-Tillo, E., et al. ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1. Oncogene 29 (2010), 3490–3500.
    • (2010) Oncogene , vol.29 , pp. 3490-3500
    • Sanchez-Tillo, E.1
  • 62
    • 84880651479 scopus 로고    scopus 로고
    • SWI/SNF chromatin-remodeling factor Smarcd3/Baf60c controls epithelial-mesenchymal transition by inducing Wnt5a signaling
    • Jordan, N.V., et al. SWI/SNF chromatin-remodeling factor Smarcd3/Baf60c controls epithelial-mesenchymal transition by inducing Wnt5a signaling. Mol. Cell. Biol. 33 (2013), 3011–3025.
    • (2013) Mol. Cell. Biol. , vol.33 , pp. 3011-3025
    • Jordan, N.V.1
  • 63
    • 85006515707 scopus 로고    scopus 로고
    • Downregulation of Bmi-1 suppresses epithelial mesenchymal transition in melanoma
    • Liu, Y., et al. Downregulation of Bmi-1 suppresses epithelial mesenchymal transition in melanoma. Oncol. Rep. 37 (2017), 139–146.
    • (2017) Oncol. Rep. , vol.37 , pp. 139-146
    • Liu, Y.1
  • 64
    • 84986878113 scopus 로고    scopus 로고
    • Bmi-1 promotes the invasion and migration of colon cancer stem cells through the downregulation of E-cadherin
    • Zhang, Z., et al. Bmi-1 promotes the invasion and migration of colon cancer stem cells through the downregulation of E-cadherin. Int. J. Mol. Med. 38 (2016), 1199–1207.
    • (2016) Int. J. Mol. Med. , vol.38 , pp. 1199-1207
    • Zhang, Z.1
  • 65
    • 84922594763 scopus 로고    scopus 로고
    • Bmi1 regulates self-renewal and epithelial to mesenchymal transition in breast cancer cells through Nanog
    • Paranjape, A.N., et al. Bmi1 regulates self-renewal and epithelial to mesenchymal transition in breast cancer cells through Nanog. BMC Cancer, 14, 2014, 785.
    • (2014) BMC Cancer , vol.14 , pp. 785
    • Paranjape, A.N.1
  • 66
    • 84938093618 scopus 로고    scopus 로고
    • Hypoxia promotes vasculogenic mimicry formation by the Twist1-Bmi1 connection in hepatocellular carcinoma
    • Liu, K., et al. Hypoxia promotes vasculogenic mimicry formation by the Twist1-Bmi1 connection in hepatocellular carcinoma. Int. J. Mol. Med. 36 (2015), 783–791.
    • (2015) Int. J. Mol. Med. , vol.36 , pp. 783-791
    • Liu, K.1
  • 67
    • 84899532574 scopus 로고    scopus 로고
    • Is density of neighbourhood restaurants associated with BMI in rural Chinese adults? A longitudinal study from the China Health and Nutrition Survey
    • Du, W., et al. Is density of neighbourhood restaurants associated with BMI in rural Chinese adults? A longitudinal study from the China Health and Nutrition Survey. BMJ Open, 4, 2014, e004528.
    • (2014) BMJ Open , vol.4
    • Du, W.1
  • 68
    • 84908349815 scopus 로고    scopus 로고
    • EED regulates epithelial-mesenchymal transition of cancer cells induced by TGF-beta
    • Oktyabri, D., et al. EED regulates epithelial-mesenchymal transition of cancer cells induced by TGF-beta. Biochem. Biophys. Res. Commun. 453 (2014), 124–130.
    • (2014) Biochem. Biophys. Res. Commun. , vol.453 , pp. 124-130
    • Oktyabri, D.1
  • 69
    • 84919917039 scopus 로고    scopus 로고
    • JARID2 is involved in transforming growth factor-beta-induced epithelial-mesenchymal transition of lung and colon cancer cell lines
    • Tange, S., et al. JARID2 is involved in transforming growth factor-beta-induced epithelial-mesenchymal transition of lung and colon cancer cell lines. PLoS One, 9, 2014, e115684.
    • (2014) PLoS One , vol.9
    • Tange, S.1
  • 70
    • 77956547097 scopus 로고    scopus 로고
    • Loss of miR-200 inhibition of Suz12 leads to Polycomb-mediated repression required for the formation and maintenance of cancer stem cells
    • Iliopoulos, D., et al. Loss of miR-200 inhibition of Suz12 leads to Polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol. Cell 39 (2010), 761–772.
    • (2010) Mol. Cell , vol.39 , pp. 761-772
    • Iliopoulos, D.1
  • 71
    • 84922496665 scopus 로고    scopus 로고
    • Snail2/Slug cooperates with Polycomb repressive complex 2 (PRC2) to regulate neural crest development
    • Tien, C.L., et al. Snail2/Slug cooperates with Polycomb repressive complex 2 (PRC2) to regulate neural crest development. Development 142 (2015), 722–731.
    • (2015) Development , vol.142 , pp. 722-731
    • Tien, C.L.1
  • 72
    • 47949125993 scopus 로고    scopus 로고
    • Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor
    • Herranz, N., et al. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol. Cell. Biol. 28 (2008), 4772–4781.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 4772-4781
    • Herranz, N.1
  • 73
    • 84856533341 scopus 로고    scopus 로고
    • EZH2 supports nasopharyngeal carcinoma cell aggressiveness by forming a co-repressor complex with HDAC1/HDAC2 and Snail to inhibit E-cadherin
    • Tong, Z.T., et al. EZH2 supports nasopharyngeal carcinoma cell aggressiveness by forming a co-repressor complex with HDAC1/HDAC2 and Snail to inhibit E-cadherin. Oncogene 31 (2012), 583–594.
    • (2012) Oncogene , vol.31 , pp. 583-594
    • Tong, Z.T.1
  • 74
    • 85020467572 scopus 로고    scopus 로고
    • Epigenetic silencing of IRF1 dysregulates type III interferon responses to respiratory virus infection in epithelial to mesenchymal transition
    • Yang, J., et al. Epigenetic silencing of IRF1 dysregulates type III interferon responses to respiratory virus infection in epithelial to mesenchymal transition. Nat. Microbiol., 2, 2017, 17086.
    • (2017) Nat. Microbiol. , vol.2 , pp. 17086
    • Yang, J.1
  • 75
    • 77957583439 scopus 로고    scopus 로고
    • Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition
    • Yang, M.H., et al. Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat. Cell Biol. 12 (2010), 982–992.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 982-992
    • Yang, M.H.1
  • 76
    • 84905966696 scopus 로고    scopus 로고
    • Snail recruits Ring1B to mediate transcriptional repression and cell migration in pancreatic cancer cells
    • Chen, J., et al. Snail recruits Ring1B to mediate transcriptional repression and cell migration in pancreatic cancer cells. Cancer Res. 74 (2014), 4353–4363.
    • (2014) Cancer Res. , vol.74 , pp. 4353-4363
    • Chen, J.1
  • 77
    • 72849130207 scopus 로고    scopus 로고
    • The Polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells
    • Song, L.B., et al. The Polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J. Clin. Invest. 119 (2009), 3626–3636.
    • (2009) J. Clin. Invest. , vol.119 , pp. 3626-3636
    • Song, L.B.1
  • 78
    • 84894224148 scopus 로고    scopus 로고
    • The ZEB1 transcription factor acts in a negative feedback loop with miR200 downstream of Ras and Rb1 to regulate Bmi1 expression
    • Liu, Y., et al. The ZEB1 transcription factor acts in a negative feedback loop with miR200 downstream of Ras and Rb1 to regulate Bmi1 expression. J. Biol. Chem. 289 (2014), 4116–4125.
    • (2014) J. Biol. Chem. , vol.289 , pp. 4116-4125
    • Liu, Y.1
  • 79
    • 84885393469 scopus 로고    scopus 로고
    • Transcriptional regulation by Polycomb group proteins
    • Di Croce, L., Helin, K., Transcriptional regulation by Polycomb group proteins. Nat. Struct. Mol. Biol. 20 (2013), 1147–1155.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 1147-1155
    • Di Croce, L.1    Helin, K.2
  • 80
    • 81355142141 scopus 로고    scopus 로고
    • Non-coding RNAs in human disease
    • Esteller, M., Non-coding RNAs in human disease. Nat. Rev. Genet. 12 (2011), 861–874.
    • (2011) Nat. Rev. Genet. , vol.12 , pp. 861-874
    • Esteller, M.1
  • 81
    • 84984537201 scopus 로고    scopus 로고
    • miR-544a induces epithelial-mesenchymal transition through the activation of WNT signaling pathway in gastric cancer
    • Yanaka, Y., et al. miR-544a induces epithelial-mesenchymal transition through the activation of WNT signaling pathway in gastric cancer. Carcinogenesis 36 (2015), 1363–1371.
    • (2015) Carcinogenesis , vol.36 , pp. 1363-1371
    • Yanaka, Y.1
  • 82
    • 84937960845 scopus 로고    scopus 로고
    • MicroRNA-21 regulates biological behavior by inducing EMT in human cholangiocarcinoma
    • Liu, Z., et al. MicroRNA-21 regulates biological behavior by inducing EMT in human cholangiocarcinoma. Int. J. Clin. Exp. Pathol. 8 (2015), 4684–4694.
    • (2015) Int. J. Clin. Exp. Pathol. , vol.8 , pp. 4684-4694
    • Liu, Z.1
  • 83
    • 84892376937 scopus 로고    scopus 로고
    • A core microRNA signature associated with inducers of the epithelial-to-mesenchymal transition
    • Diaz-Martin, J., et al. A core microRNA signature associated with inducers of the epithelial-to-mesenchymal transition. J. Pathol. 232 (2014), 319–329.
    • (2014) J. Pathol. , vol.232 , pp. 319-329
    • Diaz-Martin, J.1
  • 84
    • 41649091906 scopus 로고    scopus 로고
    • The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2
    • Park, S.M., et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22 (2008), 894–907.
    • (2008) Genes Dev. , vol.22 , pp. 894-907
    • Park, S.M.1
  • 85
    • 84055184850 scopus 로고    scopus 로고
    • miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions
    • Siemens, H., et al. miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 10 (2011), 4256–4271.
    • (2011) Cell Cycle , vol.10 , pp. 4256-4271
    • Siemens, H.1
  • 86
    • 84930999448 scopus 로고    scopus 로고
    • Upregulation of long noncoding RNA ZEB1-AS1 promotes tumor metastasis and predicts poor prognosis in hepatocellular carcinoma
    • Li, T., et al. Upregulation of long noncoding RNA ZEB1-AS1 promotes tumor metastasis and predicts poor prognosis in hepatocellular carcinoma. Oncogene 35 (2016), 1575–1584.
    • (2016) Oncogene , vol.35 , pp. 1575-1584
    • Li, T.1
  • 87
    • 41149112564 scopus 로고    scopus 로고
    • A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition
    • Beltran, M., et al. A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev. 22 (2008), 756–769.
    • (2008) Genes Dev. , vol.22 , pp. 756-769
    • Beltran, M.1
  • 88
    • 85062189204 scopus 로고    scopus 로고
    • Long non-coding RNAs as key regulators of cancer metastasis
    • Koirala, P., et al. Long non-coding RNAs as key regulators of cancer metastasis. J. Cancer Metastasis Treat. 2 (2016), 1–10.
    • (2016) J. Cancer Metastasis Treat. , vol.2 , pp. 1-10
    • Koirala, P.1
  • 89
    • 84979641106 scopus 로고    scopus 로고
    • The Snail repressor recruits EZH2 to specific genomic sites through the enrollment of the lncRNA HOTAIR in epithelial-to-mesenchymal transition
    • Battistelli, C., et al. The Snail repressor recruits EZH2 to specific genomic sites through the enrollment of the lncRNA HOTAIR in epithelial-to-mesenchymal transition. Oncogene 36 (2016), 942–955.
    • (2016) Oncogene , vol.36 , pp. 942-955
    • Battistelli, C.1
  • 90
    • 84942857000 scopus 로고    scopus 로고
    • LincHOTAIR epigenetically silences miR34a by binding to PRC2 to promote the epithelial-to-mesenchymal transition in human gastric cancer
    • Liu, Y.W., et al. LincHOTAIR epigenetically silences miR34a by binding to PRC2 to promote the epithelial-to-mesenchymal transition in human gastric cancer. Cell Death Dis., 6, 2015, e1802.
    • (2015) Cell Death Dis. , vol.6
    • Liu, Y.W.1
  • 91
    • 85009273122 scopus 로고    scopus 로고
    • MEG3 long noncoding RNA contributes to the epigenetic regulation of epithelial-mesenchymal transition in lung cancer cell lines
    • Terashima, M., et al. MEG3 long noncoding RNA contributes to the epigenetic regulation of epithelial-mesenchymal transition in lung cancer cell lines. J. Biol. Chem. 292 (2017), 82–99.
    • (2017) J. Biol. Chem. , vol.292 , pp. 82-99
    • Terashima, M.1
  • 92
    • 84962086887 scopus 로고    scopus 로고
    • Endogenous microRNA sponges: evidence and controversy
    • Thomson, D.W., Dinger, M.E., Endogenous microRNA sponges: evidence and controversy. Nat. Rev. Genet. 17 (2016), 272–283.
    • (2016) Nat. Rev. Genet. , vol.17 , pp. 272-283
    • Thomson, D.W.1    Dinger, M.E.2
  • 93
    • 85011095959 scopus 로고    scopus 로고
    • Long non-coding RNA regulation of epithelial-mesenchymal transition in cancer metastasis
    • Xu, Q., et al. Long non-coding RNA regulation of epithelial-mesenchymal transition in cancer metastasis. Cell Death Dis., 7, 2016, e2254.
    • (2016) Cell Death Dis. , vol.7
    • Xu, Q.1
  • 94
    • 84955619540 scopus 로고    scopus 로고
    • Epithelial-mesenchymal transition: a new target in anticancer drug discovery
    • Marcucci, F., et al. Epithelial-mesenchymal transition: a new target in anticancer drug discovery. Nat. Rev. Drug Discov. 15 (2016), 311–325.
    • (2016) Nat. Rev. Drug Discov. , vol.15 , pp. 311-325
    • Marcucci, F.1
  • 95
    • 84863247475 scopus 로고    scopus 로고
    • A cell-based small molecule screening method for identifying inhibitors of epithelial-mesenchymal transition in carcinoma
    • Chua, K.N., et al. A cell-based small molecule screening method for identifying inhibitors of epithelial-mesenchymal transition in carcinoma. PLoS One, 7, 2012, e33183.
    • (2012) PLoS One , vol.7
    • Chua, K.N.1
  • 96
    • 84945144045 scopus 로고    scopus 로고
    • Combinatorial treatment using targeted MEK and SRC inhibitors synergistically abrogates tumor cell growth and induces mesenchymal-epithelial transition in non-small-cell lung carcinoma
    • Chua, K.N., et al. Combinatorial treatment using targeted MEK and SRC inhibitors synergistically abrogates tumor cell growth and induces mesenchymal-epithelial transition in non-small-cell lung carcinoma. Oncotarget 6 (2015), 29991–30005.
    • (2015) Oncotarget , vol.6 , pp. 29991-30005
    • Chua, K.N.1
  • 97
    • 84998854239 scopus 로고    scopus 로고
    • HS-173, a novel PI3K inhibitor suppresses EMT and metastasis in pancreatic cancer
    • Rumman, M., et al. HS-173, a novel PI3K inhibitor suppresses EMT and metastasis in pancreatic cancer. Oncotarget 7 (2016), 78029–78047.
    • (2016) Oncotarget , vol.7 , pp. 78029-78047
    • Rumman, M.1
  • 98
    • 84939783826 scopus 로고    scopus 로고
    • Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway
    • Herbertz, S., et al. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des. Dev. Ther. 9 (2015), 4479–4499.
    • (2015) Drug Des. Dev. Ther. , vol.9 , pp. 4479-4499
    • Herbertz, S.1
  • 99
    • 84874607100 scopus 로고    scopus 로고
    • TGF-beta inhibition enhances chemotherapy action against triple-negative breast cancer
    • Bhola, N.E., et al. TGF-beta inhibition enhances chemotherapy action against triple-negative breast cancer. J. Clin. Invest. 123 (2013), 1348–1358.
    • (2013) J. Clin. Invest. , vol.123 , pp. 1348-1358
    • Bhola, N.E.1
  • 100
    • 0028151343 scopus 로고
    • Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation
    • Juttermann, R., et al. Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc. Natl. Acad. Sci. U. S. A. 91 (1994), 11797–11801.
    • (1994) Proc. Natl. Acad. Sci. U. S. A. , vol.91 , pp. 11797-11801
    • Juttermann, R.1
  • 101
    • 0031964055 scopus 로고    scopus 로고
    • Inhibition of DNA methylation by 5-aza-2′-deoxycytidine suppresses the growth of human tumor cell lines
    • Bender, C.M., et al. Inhibition of DNA methylation by 5-aza-2′-deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res. 58 (1998), 95–101.
    • (1998) Cancer Res. , vol.58 , pp. 95-101
    • Bender, C.M.1
  • 102
    • 52949144622 scopus 로고    scopus 로고
    • DNA methylation: its role in cancer development and therapy
    • Kurkjian, C., et al. DNA methylation: its role in cancer development and therapy. Curr. Probl. Cancer 32 (2008), 187–235.
    • (2008) Curr. Probl. Cancer , vol.32 , pp. 187-235
    • Kurkjian, C.1
  • 103
    • 79960391940 scopus 로고    scopus 로고
    • miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells
    • Eades, G., et al. miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J. Biol. Chem. 286 (2011), 25992–26002.
    • (2011) J. Biol. Chem. , vol.286 , pp. 25992-26002
    • Eades, G.1
  • 104
    • 84944462954 scopus 로고    scopus 로고
    • Genome-wide pharmacologic unmasking identifies tumor suppressive microRNAs in multiple myeloma
    • Bi, C., et al. Genome-wide pharmacologic unmasking identifies tumor suppressive microRNAs in multiple myeloma. Oncotarget 6 (2015), 26508–26518.
    • (2015) Oncotarget , vol.6 , pp. 26508-26518
    • Bi, C.1
  • 105
    • 84935031617 scopus 로고    scopus 로고
    • Epigenetic control of EMT/MET dynamics: HNF4alpha impacts DNMT3s through miRs-29
    • Cicchini, C., et al. Epigenetic control of EMT/MET dynamics: HNF4alpha impacts DNMT3s through miRs-29. Biochim. Biophys. Acta 1849 (2015), 919–929.
    • (2015) Biochim. Biophys. Acta , vol.1849 , pp. 919-929
    • Cicchini, C.1
  • 106
    • 84993964748 scopus 로고    scopus 로고
    • DNMT1 regulates epithelial-mesenchymal transition and cancer stem cells, which promotes prostate cancer metastasis
    • Lee, E., et al. DNMT1 regulates epithelial-mesenchymal transition and cancer stem cells, which promotes prostate cancer metastasis. Neoplasia 18 (2016), 553–566.
    • (2016) Neoplasia , vol.18 , pp. 553-566
    • Lee, E.1
  • 107
    • 84954053900 scopus 로고    scopus 로고
    • A histone deacetylase inhibitor suppresses epithelial-mesenchymal transition and attenuates chemoresistance in biliary tract cancer
    • Sakamoto, T., et al. A histone deacetylase inhibitor suppresses epithelial-mesenchymal transition and attenuates chemoresistance in biliary tract cancer. PLoS One, 11, 2016, e0145985.
    • (2016) PLoS One , vol.11
    • Sakamoto, T.1
  • 108
    • 85069157892 scopus 로고    scopus 로고
    • An epithelial marker promoter induction screen identifies histone deacetylase inhibitors to restore epithelial differentiation and abolishes anchorage independence growth in cancers
    • Tang, H.M., et al. An epithelial marker promoter induction screen identifies histone deacetylase inhibitors to restore epithelial differentiation and abolishes anchorage independence growth in cancers. Cell Death Discov., 2, 2016, 16041.
    • (2016) Cell Death Discov. , vol.2 , pp. 16041
    • Tang, H.M.1
  • 109
    • 84927127599 scopus 로고    scopus 로고
    • HDAC inhibitors induce epithelial-mesenchymal transition in colon carcinoma cells
    • Ji, M., et al. HDAC inhibitors induce epithelial-mesenchymal transition in colon carcinoma cells. Oncol. Rep. 33 (2015), 2299–2308.
    • (2015) Oncol. Rep. , vol.33 , pp. 2299-2308
    • Ji, M.1
  • 110
    • 84866419172 scopus 로고    scopus 로고
    • Histone deacetylase inhibitors induce epithelial-to-mesenchymal transition in prostate cancer cells
    • Kong, D., et al. Histone deacetylase inhibitors induce epithelial-to-mesenchymal transition in prostate cancer cells. PLoS One, 7, 2012, e45045.
    • (2012) PLoS One , vol.7
    • Kong, D.1
  • 111
    • 84908265816 scopus 로고    scopus 로고
    • Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders
    • Falkenberg, K.J., Johnstone, R.W., Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 13 (2014), 673–691.
    • (2014) Nat. Rev. Drug Discov. , vol.13 , pp. 673-691
    • Falkenberg, K.J.1    Johnstone, R.W.2
  • 112
    • 51049100212 scopus 로고    scopus 로고
    • Requirement of HDAC6 for transforming growth factor-beta1-induced epithelial-mesenchymal transition
    • Shan, B., et al. Requirement of HDAC6 for transforming growth factor-beta1-induced epithelial-mesenchymal transition. J. Biol. Chem. 283 (2008), 21065–21073.
    • (2008) J. Biol. Chem. , vol.283 , pp. 21065-21073
    • Shan, B.1
  • 113
    • 84981290368 scopus 로고    scopus 로고
    • Requirement of HDAC6 for activation of Notch1 by TGF-beta1
    • Deskin, B., et al. Requirement of HDAC6 for activation of Notch1 by TGF-beta1. Sci. Rep., 6, 2016, 31086.
    • (2016) Sci. Rep. , vol.6 , pp. 31086
    • Deskin, B.1
  • 114
    • 85014562239 scopus 로고    scopus 로고
    • MAP3K4 controls the chromatin modifier HDAC6 during trophoblast stem cell epithelial-to-mesenchymal transition
    • Mobley, R.J., et al. MAP3K4 controls the chromatin modifier HDAC6 during trophoblast stem cell epithelial-to-mesenchymal transition. Cell Rep. 18 (2017), 2387–2400.
    • (2017) Cell Rep. , vol.18 , pp. 2387-2400
    • Mobley, R.J.1
  • 115
    • 84930181902 scopus 로고    scopus 로고
    • ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat
    • Meidhof, S., et al. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol. Med 7 (2015), 831–847.
    • (2015) EMBO Mol. Med , vol.7 , pp. 831-847
    • Meidhof, S.1
  • 116
    • 82655179979 scopus 로고    scopus 로고
    • Novel histone demethylase LSD1 inhibitors selectively target cancer cells with pluripotent stem cell properties
    • Wang, J., et al. Novel histone demethylase LSD1 inhibitors selectively target cancer cells with pluripotent stem cell properties. Cancer Res. 71 (2011), 7238–7249.
    • (2011) Cancer Res. , vol.71 , pp. 7238-7249
    • Wang, J.1
  • 117
    • 84937429405 scopus 로고    scopus 로고
    • A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC
    • Mohammad, H.P., et al. A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC. Cancer Cell 28 (2015), 57–69.
    • (2015) Cancer Cell , vol.28 , pp. 57-69
    • Mohammad, H.P.1
  • 118
    • 84964613530 scopus 로고    scopus 로고
    • Corrigendum: Selective inhibition of EZH2 by ZLD1039 blocks H3K27 methylation and leads to potent anti-tumor activity in breast cancer
    • Song, X., et al. Corrigendum: Selective inhibition of EZH2 by ZLD1039 blocks H3K27 methylation and leads to potent anti-tumor activity in breast cancer. Sci. Rep., 6, 2016, 24893.
    • (2016) Sci. Rep. , vol.6 , pp. 24893
    • Song, X.1
  • 119
    • 84964584345 scopus 로고    scopus 로고
    • Reversing epigenetic mechanisms of drug resistance in solid tumors using targeted microRNA delivery
    • Berman, M., et al. Reversing epigenetic mechanisms of drug resistance in solid tumors using targeted microRNA delivery. Expert Opin. Drug Deliv. 13 (2016), 987–998.
    • (2016) Expert Opin. Drug Deliv. , vol.13 , pp. 987-998
    • Berman, M.1
  • 120
    • 79960844248 scopus 로고    scopus 로고
    • Cancer biology and NuRD: a multifaceted chromatin remodelling complex
    • Lai, A.Y., Wade, P.A., Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nat. Rev. Cancer 11 (2011), 588–596.
    • (2011) Nat. Rev. Cancer , vol.11 , pp. 588-596
    • Lai, A.Y.1    Wade, P.A.2
  • 121
    • 68749108259 scopus 로고    scopus 로고
    • LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer
    • Wang, Y., et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138 (2009), 660–672.
    • (2009) Cell , vol.138 , pp. 660-672
    • Wang, Y.1
  • 122
    • 84914098166 scopus 로고    scopus 로고
    • Clinical implications of MTA proteins in human cancer
    • Kaur, E., et al. Clinical implications of MTA proteins in human cancer. Cancer Metastasis Rev. 33 (2014), 1017–1024.
    • (2014) Cancer Metastasis Rev. , vol.33 , pp. 1017-1024
    • Kaur, E.1
  • 123
    • 33646882068 scopus 로고    scopus 로고
    • Polycomb complexes repress developmental regulators in murine embryonic stem cells
    • Boyer, L.A., et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441 (2006), 349–353.
    • (2006) Nature , vol.441 , pp. 349-353
    • Boyer, L.A.1
  • 124
    • 33646865180 scopus 로고    scopus 로고
    • Control of developmental regulators by Polycomb in human embryonic stem cells
    • Lee, T.I., et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125 (2006), 301–313.
    • (2006) Cell , vol.125 , pp. 301-313
    • Lee, T.I.1
  • 125
    • 62149122634 scopus 로고    scopus 로고
    • Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells
    • Ezhkova, E., et al. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 136 (2009), 1122–1135.
    • (2009) Cell , vol.136 , pp. 1122-1135
    • Ezhkova, E.1
  • 126
    • 84982867233 scopus 로고    scopus 로고
    • Polycomb-mediated repression and Sonic hedgehog signaling interact to regulate Merkel cell specification during skin development
    • Perdigoto, C.N., et al. Polycomb-mediated repression and Sonic hedgehog signaling interact to regulate Merkel cell specification during skin development. PLoS Genet., 12, 2016, e1006151.
    • (2016) PLoS Genet. , vol.12
    • Perdigoto, C.N.1
  • 127
    • 84989966657 scopus 로고    scopus 로고
    • Deletion of Polycomb repressive complex 2 from mouse intestine causes loss of stem cells
    • e12
    • Koppens, M.A., et al. Deletion of Polycomb repressive complex 2 from mouse intestine causes loss of stem cells. Gastroenterology 151 (2016), 684–697 e12.
    • (2016) Gastroenterology , vol.151 , pp. 684-697
    • Koppens, M.A.1
  • 128
    • 84993145020 scopus 로고    scopus 로고
    • PRC2 preserves intestinal progenitors and restricts secretory lineage commitment
    • Chiacchiera, F., et al. PRC2 preserves intestinal progenitors and restricts secretory lineage commitment. EMBO J. 35 (2016), 2301–2314.
    • (2016) EMBO J. , vol.35 , pp. 2301-2314
    • Chiacchiera, F.1
  • 129
    • 55949124844 scopus 로고    scopus 로고
    • EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency
    • Shen, X., et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol. Cell 32 (2008), 491–502.
    • (2008) Mol. Cell , vol.32 , pp. 491-502
    • Shen, X.1
  • 130
    • 34248169728 scopus 로고    scopus 로고
    • The Polycomb group protein Suz12 is required for embryonic stem cell differentiation
    • Pasini, D., et al. The Polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol. Cell. Biol. 27 (2007), 3769–3779.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 3769-3779
    • Pasini, D.1
  • 131
    • 8144230178 scopus 로고    scopus 로고
    • Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity
    • Pasini, D., et al. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 23 (2004), 4061–4071.
    • (2004) EMBO J. , vol.23 , pp. 4061-4071
    • Pasini, D.1
  • 132
    • 84938212774 scopus 로고    scopus 로고
    • SUZ12 promotes gastric cancer cell proliferation and metastasis by regulating KLF2 and E-cadherin
    • Xia, R., et al. SUZ12 promotes gastric cancer cell proliferation and metastasis by regulating KLF2 and E-cadherin. Tumour Biol. 36 (2015), 5341–5351.
    • (2015) Tumour Biol. , vol.36 , pp. 5341-5351
    • Xia, R.1
  • 133
    • 84890819884 scopus 로고    scopus 로고
    • Architecture of epigenetic reprogramming following Twist1-mediated epithelial-mesenchymal transition
    • Malouf, G.G., et al. Architecture of epigenetic reprogramming following Twist1-mediated epithelial-mesenchymal transition. Genome Biol., 14, 2013, R144.
    • (2013) Genome Biol. , vol.14 , pp. R144
    • Malouf, G.G.1
  • 134
    • 84870876470 scopus 로고    scopus 로고
    • PRC2/EED-EZH2 complex is up-regulated in breast cancer lymph node metastasis compared to primary tumor and correlates with tumor proliferation in situ
    • Yu, H., et al. PRC2/EED-EZH2 complex is up-regulated in breast cancer lymph node metastasis compared to primary tumor and correlates with tumor proliferation in situ. PLoS One, 7, 2012, e51239.
    • (2012) PLoS One , vol.7
    • Yu, H.1
  • 135
    • 66249121737 scopus 로고    scopus 로고
    • AEBP2 as a potential targeting protein for Polycomb repression complex PRC2
    • Kim, H., et al. AEBP2 as a potential targeting protein for Polycomb repression complex PRC2. Nucleic Acids Res. 37 (2009), 2940–2950.
    • (2009) Nucleic Acids Res. , vol.37 , pp. 2940-2950
    • Kim, H.1
  • 136
    • 34648834735 scopus 로고    scopus 로고
    • Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes
    • Nekrasov, M., et al. Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes. EMBO J. 26 (2007), 4078–4088.
    • (2007) EMBO J. , vol.26 , pp. 4078-4088
    • Nekrasov, M.1
  • 137
    • 77949414371 scopus 로고    scopus 로고
    • JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells
    • Pasini, D., et al. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 464 (2010), 306–310.
    • (2010) Nature , vol.464 , pp. 306-310
    • Pasini, D.1
  • 138
    • 77957946398 scopus 로고    scopus 로고
    • ARID1A mutations in endometriosis-associated ovarian carcinomas
    • Wiegand, K.C., et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med. 363 (2010), 1532–1543.
    • (2010) N. Engl. J. Med. , vol.363 , pp. 1532-1543
    • Wiegand, K.C.1
  • 139
    • 2642647094 scopus 로고    scopus 로고
    • Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer
    • Versteege, I., et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394 (1998), 203–206.
    • (1998) Nature , vol.394 , pp. 203-206
    • Versteege, I.1
  • 140
    • 80052271807 scopus 로고    scopus 로고
    • Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma
    • Li, M., et al. Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat. Genet. 43 (2011), 828–829.
    • (2011) Nat. Genet. , vol.43 , pp. 828-829
    • Li, M.1
  • 141
    • 84872810488 scopus 로고    scopus 로고
    • The spectrum of SWI/SNF mutations, ubiquitous in human cancers
    • Shain, A.H., Pollack, J.R., The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS One, 8, 2013, e55119.
    • (2013) PLoS One , vol.8
    • Shain, A.H.1    Pollack, J.R.2
  • 142
    • 79251635938 scopus 로고    scopus 로고
    • Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma
    • Varela, I., et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469 (2011), 539–542.
    • (2011) Nature , vol.469 , pp. 539-542
    • Varela, I.1
  • 143
    • 84871748359 scopus 로고    scopus 로고
    • Histone demethylase KDM6B promotes epithelial-mesenchymal transition
    • Ramadoss, S., et al. Histone demethylase KDM6B promotes epithelial-mesenchymal transition. J. Biol. Chem. 287 (2012), 44508–44517.
    • (2012) J. Biol. Chem. , vol.287 , pp. 44508-44517
    • Ramadoss, S.1
  • 144
    • 81255147963 scopus 로고    scopus 로고
    • KDM6B/JMJD3 histone demethylase is induced by vitamin D and modulates its effects in colon cancer cells
    • Pereira, F., et al. KDM6B/JMJD3 histone demethylase is induced by vitamin D and modulates its effects in colon cancer cells. Hum. Mol. Genet. 20 (2011), 4655–4665.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 4655-4665
    • Pereira, F.1
  • 145
    • 84879414983 scopus 로고    scopus 로고
    • The histone methyltransferase MMSET/WHSC1 activates TWIST1 to promote an epithelial-mesenchymal transition and invasive properties of prostate cancer
    • Ezponda, T., et al. The histone methyltransferase MMSET/WHSC1 activates TWIST1 to promote an epithelial-mesenchymal transition and invasive properties of prostate cancer. Oncogene 32 (2013), 2882–2890.
    • (2013) Oncogene , vol.32 , pp. 2882-2890
    • Ezponda, T.1
  • 146
    • 84937837746 scopus 로고    scopus 로고
    • DOT1L cooperates with the c-Myc-p300 complex to epigenetically derepress CDH1 transcription factors in breast cancer progression
    • Cho, M.H., et al. DOT1L cooperates with the c-Myc-p300 complex to epigenetically derepress CDH1 transcription factors in breast cancer progression. Nat. Commun., 6, 2015, 7821.
    • (2015) Nat. Commun. , vol.6 , pp. 7821
    • Cho, M.H.1
  • 147
    • 85007418254 scopus 로고    scopus 로고
    • EZH2 inhibition promotes epithelial-to-mesenchymal transition in ovarian cancer cells
    • Cardenas, H., et al. EZH2 inhibition promotes epithelial-to-mesenchymal transition in ovarian cancer cells. Oncotarget 7 (2016), 84453–84467.
    • (2016) Oncotarget , vol.7 , pp. 84453-84467
    • Cardenas, H.1
  • 148
    • 84976614864 scopus 로고    scopus 로고
    • RBP2 induces stem-like cancer cells by promoting EMT and is a prognostic marker for renal cell carcinoma
    • Zhou, D., et al. RBP2 induces stem-like cancer cells by promoting EMT and is a prognostic marker for renal cell carcinoma. Exp. Mol. Med., 48, 2016, e238.
    • (2016) Exp. Mol. Med. , vol.48 , pp. e238
    • Zhou, D.1
  • 149
    • 84893172887 scopus 로고    scopus 로고
    • RBP2 induces epithelial-mesenchymal transition in non-small cell lung cancer
    • Wang, S., et al. RBP2 induces epithelial-mesenchymal transition in non-small cell lung cancer. PLoS One, 8, 2013, e84735.
    • (2013) PLoS One , vol.8 , pp. e84735
    • Wang, S.1
  • 150
    • 84879738584 scopus 로고    scopus 로고
    • KDM5B histone demethylase controls epithelial-mesenchymal transition of cancer cells by regulating the expression of the microRNA-200 family
    • Enkhbaatar, Z., et al. KDM5B histone demethylase controls epithelial-mesenchymal transition of cancer cells by regulating the expression of the microRNA-200 family. Cell Cycle 12 (2013), 2100–2112.
    • (2013) Cell Cycle , vol.12 , pp. 2100-2112
    • Enkhbaatar, Z.1
  • 151
    • 85027544634 scopus 로고    scopus 로고
    • Histone demethylase PHF8 promotes epithelial to mesenchymal transition and breast tumorigenesis
    • Shao, P., et al. Histone demethylase PHF8 promotes epithelial to mesenchymal transition and breast tumorigenesis. Nucleic Acids Res. 45 (2017), 1687–1702.
    • (2017) Nucleic Acids Res. , vol.45 , pp. 1687-1702
    • Shao, P.1
  • 152
    • 84951078433 scopus 로고    scopus 로고
    • KDM4B promotes epithelial-mesenchymal transition through up-regulation of ZEB1 in pancreatic cancer
    • Li, S., et al. KDM4B promotes epithelial-mesenchymal transition through up-regulation of ZEB1 in pancreatic cancer. Acta Biochim. Biophys. Sin. (Shanghai) 47 (2015), 997–1004.
    • (2015) Acta Biochim. Biophys. Sin. (Shanghai) , vol.47 , pp. 997-1004
    • Li, S.1
  • 153
    • 84896536423 scopus 로고    scopus 로고
    • UTX and MLL4 coordinately regulate transcriptional programs for cell proliferation and invasiveness in breast cancer cells
    • Kim, J.H., et al. UTX and MLL4 coordinately regulate transcriptional programs for cell proliferation and invasiveness in breast cancer cells. Cancer Res. 74 (2014), 1705–1717.
    • (2014) Cancer Res. , vol.74 , pp. 1705-1717
    • Kim, J.H.1
  • 154
    • 84942817510 scopus 로고    scopus 로고
    • UTX inhibits EMT-induced breast CSC properties by epigenetic repression of EMT genes in cooperation with LSD1 and HDAC1
    • Choi, H.J., et al. UTX inhibits EMT-induced breast CSC properties by epigenetic repression of EMT genes in cooperation with LSD1 and HDAC1. EMBO Rep. 16 (2015), 1288–1298.
    • (2015) EMBO Rep. , vol.16 , pp. 1288-1298
    • Choi, H.J.1
  • 155
    • 84955468768 scopus 로고    scopus 로고
    • The dual function of PRMT1 in modulating epithelial-mesenchymal transition and cellular senescence in breast cancer cells through regulation of ZEB1
    • Gao, Y., et al. The dual function of PRMT1 in modulating epithelial-mesenchymal transition and cellular senescence in breast cancer cells through regulation of ZEB1. Sci. Rep., 6, 2016, 19874.
    • (2016) Sci. Rep. , vol.6 , pp. 19874
    • Gao, Y.1
  • 156
    • 77956571712 scopus 로고    scopus 로고
    • Histone demethylase JmjD2A regulates neural crest specification
    • Strobl-Mazzulla, P.H., et al. Histone demethylase JmjD2A regulates neural crest specification. Dev. Cell 19 (2010), 460–468.
    • (2010) Dev. Cell , vol.19 , pp. 460-468
    • Strobl-Mazzulla, P.H.1
  • 157
    • 84867901275 scopus 로고    scopus 로고
    • SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis
    • Byles, V., et al. SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis. Oncogene 31 (2012), 4619–4629.
    • (2012) Oncogene , vol.31 , pp. 4619-4629
    • Byles, V.1
  • 158
    • 84942847340 scopus 로고    scopus 로고
    • Epigenetic Activation of TWIST1 by MTDH Promotes Cancer Stem-like Cell Traits in Breast Cancer
    • Liang, Y., et al. Epigenetic Activation of TWIST1 by MTDH Promotes Cancer Stem-like Cell Traits in Breast Cancer. Cancer Res. 75 (2015), 3672–3680.
    • (2015) Cancer Res. , vol.75 , pp. 3672-3680
    • Liang, Y.1
  • 159
    • 77956629545 scopus 로고    scopus 로고
    • Histone deacetylase inhibition suppresses the transforming growth factor beta1-induced epithelial-to-mesenchymal transition in hepatocytes
    • Kaimori, A., et al. Histone deacetylase inhibition suppresses the transforming growth factor beta1-induced epithelial-to-mesenchymal transition in hepatocytes. Hepatology 52 (2010), 1033–1045.
    • (2010) Hepatology , vol.52 , pp. 1033-1045
    • Kaimori, A.1
  • 160
    • 84991251060 scopus 로고    scopus 로고
    • Trichostatin A Inhibits Epithelial Mesenchymal Transition Induced by TGF-beta1 in Airway Epithelium
    • Park, I.H., et al. Trichostatin A Inhibits Epithelial Mesenchymal Transition Induced by TGF-beta1 in Airway Epithelium. PLoS One, 11, 2016, e0162058.
    • (2016) PLoS One , vol.11 , pp. e0162058
    • Park, I.H.1
  • 161
    • 77956338683 scopus 로고    scopus 로고
    • Requirement of the histone demethylase LSD1 in Snai1-mediated transcriptional repression during epithelial-mesenchymal transition
    • Lin, T., et al. Requirement of the histone demethylase LSD1 in Snai1-mediated transcriptional repression during epithelial-mesenchymal transition. Oncogene 29 (2010), 4896–4904.
    • (2010) Oncogene , vol.29 , pp. 4896-4904
    • Lin, T.1
  • 162
    • 84859731270 scopus 로고    scopus 로고
    • G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer
    • Dong, C., et al. G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer. J. Clin. Invest 122 (2012), 1469–1486.
    • (2012) J. Clin. Invest , vol.122 , pp. 1469-1486
    • Dong, C.1
  • 163
    • 84855340668 scopus 로고    scopus 로고
    • SET8 promotes epithelial-mesenchymal transition and confers TWIST dual transcriptional activities
    • Yang, F., et al. SET8 promotes epithelial-mesenchymal transition and confers TWIST dual transcriptional activities. EMBO J. 31 (2012), 110–123.
    • (2012) EMBO J. , vol.31 , pp. 110-123
    • Yang, F.1
  • 164
    • 84956875874 scopus 로고    scopus 로고
    • SET8 induces epithelialmesenchymal transition and enhances prostate cancer cell metastasis by cooperating with ZEB1
    • Hou, L., et al. SET8 induces epithelialmesenchymal transition and enhances prostate cancer cell metastasis by cooperating with ZEB1. Mol. Med. Rep. 13 (2016), 1681–1688.
    • (2016) Mol. Med. Rep. , vol.13 , pp. 1681-1688
    • Hou, L.1
  • 165
    • 84861309032 scopus 로고    scopus 로고
    • Twist-1 induces Ezh2 recruitment regulating histone methylation along the Ink4A/Arf locus in mesenchymal stem cells
    • Cakouros, D., et al. Twist-1 induces Ezh2 recruitment regulating histone methylation along the Ink4A/Arf locus in mesenchymal stem cells. Mol. Cell. Biol. 32 (2012), 1433–1441.
    • (2012) Mol. Cell. Biol. , vol.32 , pp. 1433-1441
    • Cakouros, D.1
  • 166
    • 84927133961 scopus 로고    scopus 로고
    • G9a is essential for EMT-mediated metastasis and maintenance of cancer stem cell-like characters in head and neck squamous cell carcinoma
    • Liu, S., et al. G9a is essential for EMT-mediated metastasis and maintenance of cancer stem cell-like characters in head and neck squamous cell carcinoma. Oncotarget 6 (2015), 6887–6901.
    • (2015) Oncotarget , vol.6 , pp. 6887-6901
    • Liu, S.1
  • 167
    • 84875220237 scopus 로고    scopus 로고
    • Interaction with Suv39H1 is critical for Snail-mediated E-cadherin repression in breast cancer
    • Dong, C., et al. Interaction with Suv39H1 is critical for Snail-mediated E-cadherin repression in breast cancer. Oncogene 32 (2013), 1351–1362.
    • (2013) Oncogene , vol.32 , pp. 1351-1362
    • Dong, C.1
  • 168
    • 0242669199 scopus 로고    scopus 로고
    • Coordinated histone modifications mediated by a CtBP co-repressor complex
    • Shi, Y., et al. Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422 (2003), 735–738.
    • (2003) Nature , vol.422 , pp. 735-738
    • Shi, Y.1
  • 169
    • 43249086048 scopus 로고    scopus 로고
    • The LIM protein AJUBA recruits protein arginine methyltransferase 5 to mediate SNAIL-dependent transcriptional repression
    • Hou, Z., et al. The LIM protein AJUBA recruits protein arginine methyltransferase 5 to mediate SNAIL-dependent transcriptional repression. Mol. Cell. Biol. 28 (2008), 3198–3207.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 3198-3207
    • Hou, Z.1
  • 170
    • 84930376615 scopus 로고    scopus 로고
    • MPP8 and SIRT1 crosstalk in E-cadherin gene silencing and epithelial-mesenchymal transition
    • Sun, L., et al. MPP8 and SIRT1 crosstalk in E-cadherin gene silencing and epithelial-mesenchymal transition. EMBO Rep. 16 (2015), 689–699.
    • (2015) EMBO Rep. , vol.16 , pp. 689-699
    • Sun, L.1
  • 171
    • 84867398690 scopus 로고    scopus 로고
    • A PHD12-Snail2 repressive complex epigenetically mediates neural crest epithelial-to-mesenchymal transition
    • Strobl-Mazzulla, P.H., Bronner, M.E., A PHD12-Snail2 repressive complex epigenetically mediates neural crest epithelial-to-mesenchymal transition. J. Cell Biol. 198 (2012), 999–1010.
    • (2012) J. Cell Biol. , vol.198 , pp. 999-1010
    • Strobl-Mazzulla, P.H.1    Bronner, M.E.2
  • 172
    • 20444469625 scopus 로고    scopus 로고
    • Regulation of BRCA2 gene expression by the SLUG repressor protein in human breast cells
    • Tripathi, M.K., et al. Regulation of BRCA2 gene expression by the SLUG repressor protein in human breast cells. J. Biol. Chem. 280 (2005), 17163–17171.
    • (2005) J. Biol. Chem. , vol.280 , pp. 17163-17171
    • Tripathi, M.K.1
  • 173
    • 84857055686 scopus 로고    scopus 로고
    • Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer
    • Aghdassi, A., et al. Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer. Gut 61 (2012), 439–448.
    • (2012) Gut , vol.61 , pp. 439-448
    • Aghdassi, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.