메뉴 건너뛰기




Volumn 43, Issue , 2017, Pages 248-256

Multi-bearing remaining useful life collaborative prediction: A deep learning approach

Author keywords

Bearing health analysis; Cyber manufacturing; Data analytics; Deep learning; Industrial big data; Remaining useful life prediction

Indexed keywords

BEARINGS (MACHINE PARTS); BIG DATA; DEEP LEARNING; DEEP NEURAL NETWORKS; DISTRIBUTED COMPUTER SYSTEMS; FORECASTING; FREQUENCY DOMAIN ANALYSIS; INDUSTRIAL RESEARCH; LEARNING SYSTEMS; MANUFACTURE; NUMERICAL METHODS; RELIABILITY ANALYSIS; ROLLER BEARINGS;

EID: 85014511127     PISSN: 02786125     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmsy.2017.02.013     Document Type: Article
Times cited : (246)

References (30)
  • 3
    • 84906832119 scopus 로고    scopus 로고
    • Cloud-based design and manufacturing: a new paradigm in digital manufacturing and design innovation
    • [3] Wu, D., Rosen, D.W., Wang, L., Schaefer, D., et al. Cloud-based design and manufacturing: a new paradigm in digital manufacturing and design innovation. Comput Aided Des 59 (2015), 1–14.
    • (2015) Comput Aided Des , vol.59 , pp. 1-14
    • Wu, D.1    Rosen, D.W.2    Wang, L.3    Schaefer, D.4
  • 4
    • 84911432430 scopus 로고    scopus 로고
    • Cloud manufacturing: from concept to practice
    • [4] Ren, L., Zhang, L., Tao, F., Zhao, C., Chai, X., Zhao, X., et al. Cloud manufacturing: from concept to practice. Enterp Inf Syst 9:2 (2014), 186–209.
    • (2014) Enterp Inf Syst , vol.9 , Issue.2 , pp. 186-209
    • Ren, L.1    Zhang, L.2    Tao, F.3    Zhao, C.4    Chai, X.5    Zhao, X.6
  • 6
    • 84953924001 scopus 로고    scopus 로고
    • Cloud-based intelligent user interface for cloud manufacturing: model, technology, and application
    • [6] Ren, L., Cui, J., Li, N., Wu, Q., Ma, C., Teng, D., et al. Cloud-based intelligent user interface for cloud manufacturing: model, technology, and application. J Manuf Sci Eng, 137(4), 2015, 040910.
    • (2015) J Manuf Sci Eng , vol.137 , Issue.4 , pp. 040910
    • Ren, L.1    Cui, J.2    Li, N.3    Wu, Q.4    Ma, C.5    Teng, D.6
  • 7
    • 84868237286 scopus 로고    scopus 로고
    • Bearing fault prognostics based on signal complexity and Gaussian process models
    • [7] Boškoski, P., Gašperin, M., Petelin, D., Bearing fault prognostics based on signal complexity and Gaussian process models. Prognostics and health management, 2012, 1–8.
    • (2012) Prognostics and health management , pp. 1-8
    • Boškoski, P.1    Gašperin, M.2    Petelin, D.3
  • 8
    • 25444448065 scopus 로고    scopus 로고
    • Gaussian processes for machine learning
    • MIT Press
    • [8] Rasmussen, C., Williams, C., Gaussian processes for machine learning. 2004, MIT Press.
    • (2004)
    • Rasmussen, C.1    Williams, C.2
  • 9
    • 84881183566 scopus 로고    scopus 로고
    • Bearing degradation process prediction based on the PCA and optimized LS-SVM model
    • [9] Dong, S., Luo, T., Bearing degradation process prediction based on the PCA and optimized LS-SVM model. Measurement 46:9 (2013), 3143–3152.
    • (2013) Measurement , vol.46 , Issue.9 , pp. 3143-3152
    • Dong, S.1    Luo, T.2
  • 10
    • 84861603437 scopus 로고    scopus 로고
    • Combining relevance vector machines and exponential regression for bearing residual life estimation
    • [10] Maio, F.D., Tsui, K.L., Zio, E., Combining relevance vector machines and exponential regression for bearing residual life estimation. Mech Syst Signal Process 31:8 (2012), 405–427.
    • (2012) Mech Syst Signal Process , vol.31 , Issue.8 , pp. 405-427
    • Maio, F.D.1    Tsui, K.L.2    Zio, E.3
  • 11
    • 84896719372 scopus 로고    scopus 로고
    • Vibration analysis for bearing fault detection and classification using an intelligent filter
    • [11] Zarei, J., Tajeddini, M.A., Karimi, H.R., Vibration analysis for bearing fault detection and classification using an intelligent filter. Mechatronics 24:2 (2014), 151–157.
    • (2014) Mechatronics , vol.24 , Issue.2 , pp. 151-157
    • Zarei, J.1    Tajeddini, M.A.2    Karimi, H.R.3
  • 12
    • 84891602223 scopus 로고    scopus 로고
    • Fault diagnosis of rolling element bearings via discriminative subspace learning: visualization and classification
    • [12] Zhao, M., Jin, X., Zhang, Z., Li, B., et al. Fault diagnosis of rolling element bearings via discriminative subspace learning: visualization and classification. Expert Syst Appl 41:7 (2013), 3391–3401.
    • (2013) Expert Syst Appl , vol.41 , Issue.7 , pp. 3391-3401
    • Zhao, M.1    Jin, X.2    Zhang, Z.3    Li, B.4
  • 13
    • 57749196360 scopus 로고    scopus 로고
    • Advances in diagnostic techniques for induction machines
    • [13] Bellini, A., Filippetti, F., Tassoni, C., Capolino, G.A., et al. Advances in diagnostic techniques for induction machines. IEEE Trans Ind Electron 55:12 (2008), 4109–4126.
    • (2008) IEEE Trans Ind Electron , vol.55 , Issue.12 , pp. 4109-4126
    • Bellini, A.1    Filippetti, F.2    Tassoni, C.3    Capolino, G.A.4
  • 14
    • 85013723268 scopus 로고    scopus 로고
    • Wavelet zoom − a wavelet tour of signal processing
    • Second Edition – VI Academic Press
    • [14] Mallat, S., Wavelet zoom − a wavelet tour of signal processing. Second Edition – VI, 1998, Academic Press.
    • (1998)
    • Mallat, S.1
  • 15
    • 78650740088 scopus 로고    scopus 로고
    • A new method for early fault detection and diagnosis of broken rotor bars
    • [15] Aydin, I., Karakose, M., Akin, E., A new method for early fault detection and diagnosis of broken rotor bars. Energy Convers Manage 52:4 (2011), 1790–1799.
    • (2011) Energy Convers Manage , vol.52 , Issue.4 , pp. 1790-1799
    • Aydin, I.1    Karakose, M.2    Akin, E.3
  • 16
    • 84910651844 scopus 로고    scopus 로고
    • Deep Learning in neural networks: an overview
    • [16] Schmidhuber, J., Deep Learning in neural networks: an overview. Neural Netw 61 (2014), 85–117.
    • (2014) Neural Netw , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 18
    • 84903724014 scopus 로고    scopus 로고
    • Deep learning: methods and applications
    • [18] Deng, L., Yu, D., Deep learning: methods and applications. Found Trends Signal Process 7:3 (2013), 197–387.
    • (2013) Found Trends Signal Process , vol.7 , Issue.3 , pp. 197-387
    • Deng, L.1    Yu, D.2
  • 19
    • 0032119268 scopus 로고    scopus 로고
    • feature-based approach to the interface between phonology and phonetics for speech modeling and recognition
    • [19] Deng, L., dynamic, A., feature-based approach to the interface between phonology and phonetics for speech modeling and recognition. Speech Commun 24:4 (1998), 299–323.
    • (1998) Speech Commun , vol.24 , Issue.4 , pp. 299-323
    • Deng, L.1    dynamic, A.2
  • 20
    • 79955750805 scopus 로고
    • An Introduction to the Kalman Filter
    • University of North Carolina at Chapel Hill
    • [20] Welch, G., Bishop, G., An Introduction to the Kalman Filter. 1995, University of North Carolina at Chapel Hill.
    • (1995)
    • Welch, G.1    Bishop, G.2
  • 21
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    • [21] Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T., et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50:2 (2002), 174–188.
    • (2002) IEEE Trans Signal Process , vol.50 , Issue.2 , pp. 174-188
    • Arulampalam, M.S.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 22
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures andtheir application to expert systems
    • [22] Lauritzen, S.L., Spiegelhalter, D.J., Local computations with probabilities on graphical structures andtheir application to expert systems. J R Stat Soc 50:157 (1988), 157–224.
    • (1988) J R Stat Soc , vol.50 , Issue.157 , pp. 157-224
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 23
    • 35748966585 scopus 로고    scopus 로고
    • Process monitoring, diagnostics and prognostics using support vector machines and hidden Markov models
    • Graduate School of Wanye State University Detroit
    • [23] Camci, F., Process monitoring, diagnostics and prognostics using support vector machines and hidden Markov models. 2005, Graduate School of Wanye State University, Detroit.
    • (2005)
    • Camci, F.1
  • 24
    • 84946569802 scopus 로고    scopus 로고
    • Bearing remaining life prediction using Gaussian process regression with composite kernel functions
    • [24] Hong, S., Zhou, Z., Lu, C., Wang, B., Zhao, T., et al. Bearing remaining life prediction using Gaussian process regression with composite kernel functions. J Vibroeng 17:2 (2015), 695–704.
    • (2015) J Vibroeng , vol.17 , Issue.2 , pp. 695-704
    • Hong, S.1    Zhou, Z.2    Lu, C.3    Wang, B.4    Zhao, T.5
  • 25
    • 2942659638 scopus 로고    scopus 로고
    • Residual life predictions from vibration-based degradation signals: a neural network approach
    • [25] Gebraeel, N., Lawley, M., Liu, R., et al. Residual life predictions from vibration-based degradation signals: a neural network approach. IEEE Trans Ind Electron 51:3 (2004), 694–700.
    • (2004) IEEE Trans Ind Electron , vol.51 , Issue.3 , pp. 694-700
    • Gebraeel, N.1    Lawley, M.2    Liu, R.3
  • 26
    • 84963780490 scopus 로고    scopus 로고
    • Fault diagnosis and fault tolerant control for non-Gaussian time-delayed singular stochastic distribution systems
    • [26] Yao, L., Feng, L., Fault diagnosis and fault tolerant control for non-Gaussian time-delayed singular stochastic distribution systems. Int J Control Autom Syst 14:2 (2016), 435–442.
    • (2016) Int J Control Autom Syst , vol.14 , Issue.2 , pp. 435-442
    • Yao, L.1    Feng, L.2
  • 28
    • 84914141986 scopus 로고    scopus 로고
    • Subjective duration as a signature of coding efficiency: emerging links among stimulus repetition, predictive coding, and cortical GABA levels
    • [28] Matthews, W.J., Terhune, D.B., van Rijn, H., Meck, W., et al. Subjective duration as a signature of coding efficiency: emerging links among stimulus repetition, predictive coding, and cortical GABA levels. Timing Time Percepti Rev 1:1 (2014), 1–11.
    • (2014) Timing Time Percepti Rev , vol.1 , Issue.1 , pp. 1-11
    • Matthews, W.J.1    Terhune, D.B.2    van Rijn, H.3    Meck, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.