메뉴 건너뛰기




Volumn 95, Issue , 2017, Pages 187-204

A novel deep autoencoder feature learning method for rotating machinery fault diagnosis

Author keywords

Artificial fish swarm algorithm; Deep autoencoder; Fault diagnosis; Feature learning; Maximum correntropy

Indexed keywords

FAILURE ANALYSIS; LEARNING SYSTEMS; MACHINERY; ROLLER BEARINGS; ROTATING MACHINERY;

EID: 85018771228     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2017.03.034     Document Type: Article
Times cited : (616)

References (34)
  • 1
    • 84875269406 scopus 로고    scopus 로고
    • An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis
    • [1] Jiang, H.K., Li, C.L., Li, H.X., An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis. Mech. Syst. Signal Process. 36 (2013), 225–239.
    • (2013) Mech. Syst. Signal Process. , vol.36 , pp. 225-239
    • Jiang, H.K.1    Li, C.L.2    Li, H.X.3
  • 2
    • 84961055987 scopus 로고    scopus 로고
    • Wavelet transform based on inner product in fault diagnosis of rotating machinery: a review
    • [2] Chen, J.L., Li, Z.P., Pan, J., Chen, G.G., Zi, Y.Y., Wavelet transform based on inner product in fault diagnosis of rotating machinery: a review. Mech. Syst. Signal Process. 70–71 (2016), 1–35.
    • (2016) Mech. Syst. Signal Process. , vol.70-71 , pp. 1-35
    • Chen, J.L.1    Li, Z.P.2    Pan, J.3    Chen, G.G.4    Zi, Y.Y.5
  • 3
    • 84870404381 scopus 로고    scopus 로고
    • A review on empirical mode decomposition in fault diagnosis of rotating machinery
    • [3] Lei, Y.G., Lin, J., He, Z.J., Zuo, M.J., A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 35 (2013), 108–126.
    • (2013) Mech. Syst. Signal Process. , vol.35 , pp. 108-126
    • Lei, Y.G.1    Lin, J.2    He, Z.J.3    Zuo, M.J.4
  • 4
    • 64049098473 scopus 로고    scopus 로고
    • Application of an intelligent classification method to mechanical fault diagnosis
    • [4] Lei, Y.G., He, Z.J., Zi, Y.Y., Application of an intelligent classification method to mechanical fault diagnosis. Expert Syst. Appl. 36 (2009), 9941–9948.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 9941-9948
    • Lei, Y.G.1    He, Z.J.2    Zi, Y.Y.3
  • 5
    • 84876248148 scopus 로고    scopus 로고
    • Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks
    • [5] Prieto, M.D., Cirrincione, G., Espinosa, A.G., Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks. IEEE Trans. Industr. Electron. 60:8 (2013), 3398–3407.
    • (2013) IEEE Trans. Industr. Electron. , vol.60 , Issue.8 , pp. 3398-3407
    • Prieto, M.D.1    Cirrincione, G.2    Espinosa, A.G.3
  • 6
    • 84887125031 scopus 로고    scopus 로고
    • Motor bearing fault diagnosis using trace ratio linear discriminant analysis
    • [6] Jin, X., Zhao, M., Chow, T.W.S., Motor bearing fault diagnosis using trace ratio linear discriminant analysis. IEEE Trans. Industr. Electron. 61:5 (2014), 2441–2451.
    • (2014) IEEE Trans. Industr. Electron. , vol.61 , Issue.5 , pp. 2441-2451
    • Jin, X.1    Zhao, M.2    Chow, T.W.S.3
  • 7
    • 79952630284 scopus 로고    scopus 로고
    • Intelligent diagnosis method for rolling element bearing faults using possibility theory and neural network
    • [7] Wang, H.Q., Chen, P., Intelligent diagnosis method for rolling element bearing faults using possibility theory and neural network. Comput. Ind. Eng., 2011, 511–518.
    • (2011) Comput. Ind. Eng. , pp. 511-518
    • Wang, H.Q.1    Chen, P.2
  • 8
    • 82255162656 scopus 로고    scopus 로고
    • Neural network approach for a combined performance and mechanical health monitoring of a gas turbine engine
    • [8] Barad, S.G., Ramaiah, P.V., Giridhar, R.K., Krishnaiah, G., Neural network approach for a combined performance and mechanical health monitoring of a gas turbine engine. Mech. Syst. Signal Process. 27 (2012), 729–742.
    • (2012) Mech. Syst. Signal Process. , vol.27 , pp. 729-742
    • Barad, S.G.1    Ramaiah, P.V.2    Giridhar, R.K.3    Krishnaiah, G.4
  • 9
    • 84944355420 scopus 로고    scopus 로고
    • Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine
    • [9] Zhang, X.L., Wang, B.J., Chen, X.F., Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine. Knowl.-Based Syst. 89 (2015), 56–85.
    • (2015) Knowl.-Based Syst. , vol.89 , pp. 56-85
    • Zhang, X.L.1    Wang, B.J.2    Chen, X.F.3
  • 10
    • 84925969865 scopus 로고    scopus 로고
    • Health condition identification of multi-stage planetary gearboxes using a mRVM-based method
    • [10] Lei, Y.G., Liu, Z.Y., Wu, X.H., Health condition identification of multi-stage planetary gearboxes using a mRVM-based method. Mech. Syst. Signal Process. 60–61 (2015), 289–300.
    • (2015) Mech. Syst. Signal Process. , vol.60-61 , pp. 289-300
    • Lei, Y.G.1    Liu, Z.Y.2    Wu, X.H.3
  • 11
    • 84894548034 scopus 로고    scopus 로고
    • Diagnostics of bearings in presence of strong operating conditions non-stationarity: a procedure of load-dependent features processing with application to wind turbine bearings
    • [11] Zimroz, R., Bartelmus, W., Barszcz, T., Urbanek, J., Diagnostics of bearings in presence of strong operating conditions non-stationarity: a procedure of load-dependent features processing with application to wind turbine bearings. Mech. Syst. Signal Process. 46 (2014), 16–27.
    • (2014) Mech. Syst. Signal Process. , vol.46 , pp. 16-27
    • Zimroz, R.1    Bartelmus, W.2    Barszcz, T.3    Urbanek, J.4
  • 12
    • 84955693855 scopus 로고    scopus 로고
    • Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
    • [12] Jia, F., Lei, Y.G., Lin, J., Zhou, X., Lu, N., Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 72–73 (2016), 303–315.
    • (2016) Mech. Syst. Signal Process. , vol.72-73 , pp. 303-315
    • Jia, F.1    Lei, Y.G.2    Lin, J.3    Zhou, X.4    Lu, N.5
  • 13
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: an overview
    • [13] Schmidhuber, J., Deep learning in neural networks: an overview. Neural Netw. 61 (2015), 85–117.
    • (2015) Neural Netw. , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 14
    • 84963934455 scopus 로고    scopus 로고
    • An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data
    • [14] Lei, Y.G., Jia, F., Lin, J., An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data. IEEE Trans. Industr. Electron. 63 (2016), 3137–3147.
    • (2016) IEEE Trans. Industr. Electron. , vol.63 , pp. 3137-3147
    • Lei, Y.G.1    Jia, F.2    Lin, J.3
  • 15
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: a review and new perspectives
    • [15] Bengio, Y., Courville, A., Representation learning: a review and new perspectives. IEEE Trans. Softw. Eng. 35 (2013), 1798–1828.
    • (2013) IEEE Trans. Softw. Eng. , vol.35 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2
  • 16
    • 84894261826 scopus 로고    scopus 로고
    • Data-driven soft sensor development based on deep learning technique
    • [16] Shang, C., Yang, F., Huang, D.X., Lyu, W.X., Data-driven soft sensor development based on deep learning technique. J. Process Control 24 (2014), 223–233.
    • (2014) J. Process Control , vol.24 , pp. 223-233
    • Shang, C.1    Yang, F.2    Huang, D.X.3    Lyu, W.X.4
  • 17
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • [17] Hinton, G.E., Salakhutdinov, R.R., Reducing the dimensionality of data with neural networks. Science 313:5786 (2006), 504–507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 18
    • 84930630277 scopus 로고    scopus 로고
    • Review: deep learning
    • [18] LeCun, Y., Bengio, Y., Hinton, G.E., Review: deep learning. Nature 521 (2015), 436–444.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.E.3
  • 19
    • 84875848937 scopus 로고    scopus 로고
    • Failure diagnosis using deep belief learning based health state classification
    • [19] Tamilselvan, P., Wang, P.F., Failure diagnosis using deep belief learning based health state classification. Reliab. Eng. Syst. Saf. 115 (2013), 124–135.
    • (2013) Reliab. Eng. Syst. Saf. , vol.115 , pp. 124-135
    • Tamilselvan, P.1    Wang, P.F.2
  • 20
    • 84893464266 scopus 로고    scopus 로고
    • An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks
    • [20] Tran, V.T., AlThobiani, F., Ball, A., An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks. Expert Syst. Appl. 41 (2014), 4113–4122.
    • (2014) Expert Syst. Appl. , vol.41 , pp. 4113-4122
    • Tran, V.T.1    AlThobiani, F.2    Ball, A.3
  • 21
    • 84946064662 scopus 로고    scopus 로고
    • Rolling bearing fault diagnosis using an optimization deep belief network
    • [21] Shao, H.D., Jiang, H.K., Zhang, X., Niu, M.G., Rolling bearing fault diagnosis using an optimization deep belief network. Meas. Sci. Technol., 26, 2015, 115002.
    • (2015) Meas. Sci. Technol. , vol.26 , pp. 115002
    • Shao, H.D.1    Jiang, H.K.2    Zhang, X.3    Niu, M.G.4
  • 22
    • 84923546888 scopus 로고    scopus 로고
    • Sparse auto-encoder based feature learning for human body detection in depth image
    • [22] Su, S.Z., Liu, Z.H., Xu, S.P., Li, S.Z., Sparse auto-encoder based feature learning for human body detection in depth image. Signal Process. 112 (2015), 43–52.
    • (2015) Signal Process. , vol.112 , pp. 43-52
    • Su, S.Z.1    Liu, Z.H.2    Xu, S.P.3    Li, S.Z.4
  • 24
    • 36249029853 scopus 로고    scopus 로고
    • Correntropy: properties and applications in non-Gaussian signal processing
    • [24] Liu, W., Pokharel, P.P., Príncipe, J.C., Correntropy: properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process. 55:11 (2007), 5286–5298.
    • (2007) IEEE Trans. Signal Process. , vol.55 , Issue.11 , pp. 5286-5298
    • Liu, W.1    Pokharel, P.P.2    Príncipe, J.C.3
  • 25
    • 58249092004 scopus 로고    scopus 로고
    • The correntropy MACE filter
    • [25] Jeong, K.H., Liu, W., Han, S., The correntropy MACE filter. Pattern Recogn. 42:5 (2009), 871–885.
    • (2009) Pattern Recogn. , vol.42 , Issue.5 , pp. 871-885
    • Jeong, K.H.1    Liu, W.2    Han, S.3
  • 26
    • 84961344134 scopus 로고    scopus 로고
    • Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging
    • [26] Zabalza, J., Ren, J.C., Zheng, J.B., Zhao, H.M., Qing, C.M., Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 185 (2016), 1–10.
    • (2016) Neurocomputing , vol.185 , pp. 1-10
    • Zabalza, J.1    Ren, J.C.2    Zheng, J.B.3    Zhao, H.M.4    Qing, C.M.5
  • 27
    • 79957452467 scopus 로고    scopus 로고
    • Robust principal component analysis based on maximum correntropy criterion
    • [27] He, R., Hu, B.G., Zheng, W.S., Robust principal component analysis based on maximum correntropy criterion. IEEE Trans. Image Process. 20:6 (2011), 1485–1494.
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.6 , pp. 1485-1494
    • He, R.1    Hu, B.G.2    Zheng, W.S.3
  • 28
    • 84937966646 scopus 로고    scopus 로고
    • Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments
    • [28] Ma, W.T., Qu, H., Gui, G., Xu, L., Zhao, J.H., Chen, B.D., Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments. J. Franklin Inst. 352 (2015), 2708–2727.
    • (2015) J. Franklin Inst. , vol.352 , pp. 2708-2727
    • Ma, W.T.1    Qu, H.2    Gui, G.3    Xu, L.4    Zhao, J.H.5    Chen, B.D.6
  • 29
    • 84949266924 scopus 로고    scopus 로고
    • HSAE: a Hessian regularized sparse auto-encoders
    • [29] Liu, W.F., Ma, T.Z., Tao, D.P., You, J.N., HSAE: a Hessian regularized sparse auto-encoders. Neurocomputing 187 (2016), 59–65.
    • (2016) Neurocomputing , vol.187 , pp. 59-65
    • Liu, W.F.1    Ma, T.Z.2    Tao, D.P.3    You, J.N.4
  • 30
    • 84929944640 scopus 로고    scopus 로고
    • Deep learning with support vector data description
    • [30] Kim, S., Choi, Y., Lee, M., Deep learning with support vector data description. Neurocomputing 165 (2015), 111–117.
    • (2015) Neurocomputing , vol.165 , pp. 111-117
    • Kim, S.1    Choi, Y.2    Lee, M.3
  • 31
    • 84947559851 scopus 로고    scopus 로고
    • A novel artificial fish swarm algorithm for solving large-scale reliability-redundancy application problem
    • [31] He, Q., Ren, X.T., Zhang, H.Q., A novel artificial fish swarm algorithm for solving large-scale reliability-redundancy application problem. ISA Trans. 59 (2015), 105–113.
    • (2015) ISA Trans. , vol.59 , pp. 105-113
    • He, Q.1    Ren, X.T.2    Zhang, H.Q.3
  • 32
    • 84983314971 scopus 로고    scopus 로고
    • Randomized algorithms for nonlinear system identification with deep learning modification
    • [32] Rosa, E.D.L., Yu, W., Randomized algorithms for nonlinear system identification with deep learning modification. Inf. Sci. 364–365 (2016), 197–212.
    • (2016) Inf. Sci. , vol.364-365 , pp. 197-212
    • Rosa, E.D.L.1    Yu, W.2
  • 33
    • 79960043301 scopus 로고    scopus 로고
    • Bearing performance degradation assessment using locality preserving projections and Gaussian mixture models
    • [33] Yu, J.B., Bearing performance degradation assessment using locality preserving projections and Gaussian mixture models. Mech. Syst. Signal Process. 25 (2011), 2573–2588.
    • (2011) Mech. Syst. Signal Process. , vol.25 , pp. 2573-2588
    • Yu, J.B.1
  • 34
    • 79951581707 scopus 로고    scopus 로고
    • EEMD method and WNN for fault diagnosis of locomotive roller bearings
    • [34] Lei, Y.G., He, Z.J., Zi, Y.Y., EEMD method and WNN for fault diagnosis of locomotive roller bearings. Expert Syst. Appl. 38 (2011), 7334–7341.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 7334-7341
    • Lei, Y.G.1    He, Z.J.2    Zi, Y.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.