-
1
-
-
84875269406
-
An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis
-
[1] Jiang, H.K., Li, C.L., Li, H.X., An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis. Mech. Syst. Signal Process. 36 (2013), 225–239.
-
(2013)
Mech. Syst. Signal Process.
, vol.36
, pp. 225-239
-
-
Jiang, H.K.1
Li, C.L.2
Li, H.X.3
-
2
-
-
84961055987
-
Wavelet transform based on inner product in fault diagnosis of rotating machinery: a review
-
[2] Chen, J.L., Li, Z.P., Pan, J., Chen, G.G., Zi, Y.Y., Wavelet transform based on inner product in fault diagnosis of rotating machinery: a review. Mech. Syst. Signal Process. 70–71 (2016), 1–35.
-
(2016)
Mech. Syst. Signal Process.
, vol.70-71
, pp. 1-35
-
-
Chen, J.L.1
Li, Z.P.2
Pan, J.3
Chen, G.G.4
Zi, Y.Y.5
-
3
-
-
84870404381
-
A review on empirical mode decomposition in fault diagnosis of rotating machinery
-
[3] Lei, Y.G., Lin, J., He, Z.J., Zuo, M.J., A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 35 (2013), 108–126.
-
(2013)
Mech. Syst. Signal Process.
, vol.35
, pp. 108-126
-
-
Lei, Y.G.1
Lin, J.2
He, Z.J.3
Zuo, M.J.4
-
4
-
-
64049098473
-
Application of an intelligent classification method to mechanical fault diagnosis
-
[4] Lei, Y.G., He, Z.J., Zi, Y.Y., Application of an intelligent classification method to mechanical fault diagnosis. Expert Syst. Appl. 36 (2009), 9941–9948.
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 9941-9948
-
-
Lei, Y.G.1
He, Z.J.2
Zi, Y.Y.3
-
5
-
-
84876248148
-
Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks
-
[5] Prieto, M.D., Cirrincione, G., Espinosa, A.G., Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks. IEEE Trans. Industr. Electron. 60:8 (2013), 3398–3407.
-
(2013)
IEEE Trans. Industr. Electron.
, vol.60
, Issue.8
, pp. 3398-3407
-
-
Prieto, M.D.1
Cirrincione, G.2
Espinosa, A.G.3
-
6
-
-
84887125031
-
Motor bearing fault diagnosis using trace ratio linear discriminant analysis
-
[6] Jin, X., Zhao, M., Chow, T.W.S., Motor bearing fault diagnosis using trace ratio linear discriminant analysis. IEEE Trans. Industr. Electron. 61:5 (2014), 2441–2451.
-
(2014)
IEEE Trans. Industr. Electron.
, vol.61
, Issue.5
, pp. 2441-2451
-
-
Jin, X.1
Zhao, M.2
Chow, T.W.S.3
-
7
-
-
79952630284
-
Intelligent diagnosis method for rolling element bearing faults using possibility theory and neural network
-
[7] Wang, H.Q., Chen, P., Intelligent diagnosis method for rolling element bearing faults using possibility theory and neural network. Comput. Ind. Eng., 2011, 511–518.
-
(2011)
Comput. Ind. Eng.
, pp. 511-518
-
-
Wang, H.Q.1
Chen, P.2
-
8
-
-
82255162656
-
Neural network approach for a combined performance and mechanical health monitoring of a gas turbine engine
-
[8] Barad, S.G., Ramaiah, P.V., Giridhar, R.K., Krishnaiah, G., Neural network approach for a combined performance and mechanical health monitoring of a gas turbine engine. Mech. Syst. Signal Process. 27 (2012), 729–742.
-
(2012)
Mech. Syst. Signal Process.
, vol.27
, pp. 729-742
-
-
Barad, S.G.1
Ramaiah, P.V.2
Giridhar, R.K.3
Krishnaiah, G.4
-
9
-
-
84944355420
-
Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine
-
[9] Zhang, X.L., Wang, B.J., Chen, X.F., Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine. Knowl.-Based Syst. 89 (2015), 56–85.
-
(2015)
Knowl.-Based Syst.
, vol.89
, pp. 56-85
-
-
Zhang, X.L.1
Wang, B.J.2
Chen, X.F.3
-
10
-
-
84925969865
-
Health condition identification of multi-stage planetary gearboxes using a mRVM-based method
-
[10] Lei, Y.G., Liu, Z.Y., Wu, X.H., Health condition identification of multi-stage planetary gearboxes using a mRVM-based method. Mech. Syst. Signal Process. 60–61 (2015), 289–300.
-
(2015)
Mech. Syst. Signal Process.
, vol.60-61
, pp. 289-300
-
-
Lei, Y.G.1
Liu, Z.Y.2
Wu, X.H.3
-
11
-
-
84894548034
-
Diagnostics of bearings in presence of strong operating conditions non-stationarity: a procedure of load-dependent features processing with application to wind turbine bearings
-
[11] Zimroz, R., Bartelmus, W., Barszcz, T., Urbanek, J., Diagnostics of bearings in presence of strong operating conditions non-stationarity: a procedure of load-dependent features processing with application to wind turbine bearings. Mech. Syst. Signal Process. 46 (2014), 16–27.
-
(2014)
Mech. Syst. Signal Process.
, vol.46
, pp. 16-27
-
-
Zimroz, R.1
Bartelmus, W.2
Barszcz, T.3
Urbanek, J.4
-
12
-
-
84955693855
-
Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
-
[12] Jia, F., Lei, Y.G., Lin, J., Zhou, X., Lu, N., Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 72–73 (2016), 303–315.
-
(2016)
Mech. Syst. Signal Process.
, vol.72-73
, pp. 303-315
-
-
Jia, F.1
Lei, Y.G.2
Lin, J.3
Zhou, X.4
Lu, N.5
-
13
-
-
84910651844
-
Deep learning in neural networks: an overview
-
[13] Schmidhuber, J., Deep learning in neural networks: an overview. Neural Netw. 61 (2015), 85–117.
-
(2015)
Neural Netw.
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
14
-
-
84963934455
-
An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data
-
[14] Lei, Y.G., Jia, F., Lin, J., An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data. IEEE Trans. Industr. Electron. 63 (2016), 3137–3147.
-
(2016)
IEEE Trans. Industr. Electron.
, vol.63
, pp. 3137-3147
-
-
Lei, Y.G.1
Jia, F.2
Lin, J.3
-
15
-
-
84879854889
-
Representation learning: a review and new perspectives
-
[15] Bengio, Y., Courville, A., Representation learning: a review and new perspectives. IEEE Trans. Softw. Eng. 35 (2013), 1798–1828.
-
(2013)
IEEE Trans. Softw. Eng.
, vol.35
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
-
16
-
-
84894261826
-
Data-driven soft sensor development based on deep learning technique
-
[16] Shang, C., Yang, F., Huang, D.X., Lyu, W.X., Data-driven soft sensor development based on deep learning technique. J. Process Control 24 (2014), 223–233.
-
(2014)
J. Process Control
, vol.24
, pp. 223-233
-
-
Shang, C.1
Yang, F.2
Huang, D.X.3
Lyu, W.X.4
-
17
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
[17] Hinton, G.E., Salakhutdinov, R.R., Reducing the dimensionality of data with neural networks. Science 313:5786 (2006), 504–507.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
18
-
-
84930630277
-
Review: deep learning
-
[18] LeCun, Y., Bengio, Y., Hinton, G.E., Review: deep learning. Nature 521 (2015), 436–444.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.E.3
-
19
-
-
84875848937
-
Failure diagnosis using deep belief learning based health state classification
-
[19] Tamilselvan, P., Wang, P.F., Failure diagnosis using deep belief learning based health state classification. Reliab. Eng. Syst. Saf. 115 (2013), 124–135.
-
(2013)
Reliab. Eng. Syst. Saf.
, vol.115
, pp. 124-135
-
-
Tamilselvan, P.1
Wang, P.F.2
-
20
-
-
84893464266
-
An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks
-
[20] Tran, V.T., AlThobiani, F., Ball, A., An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks. Expert Syst. Appl. 41 (2014), 4113–4122.
-
(2014)
Expert Syst. Appl.
, vol.41
, pp. 4113-4122
-
-
Tran, V.T.1
AlThobiani, F.2
Ball, A.3
-
21
-
-
84946064662
-
Rolling bearing fault diagnosis using an optimization deep belief network
-
[21] Shao, H.D., Jiang, H.K., Zhang, X., Niu, M.G., Rolling bearing fault diagnosis using an optimization deep belief network. Meas. Sci. Technol., 26, 2015, 115002.
-
(2015)
Meas. Sci. Technol.
, vol.26
, pp. 115002
-
-
Shao, H.D.1
Jiang, H.K.2
Zhang, X.3
Niu, M.G.4
-
22
-
-
84923546888
-
Sparse auto-encoder based feature learning for human body detection in depth image
-
[22] Su, S.Z., Liu, Z.H., Xu, S.P., Li, S.Z., Sparse auto-encoder based feature learning for human body detection in depth image. Signal Process. 112 (2015), 43–52.
-
(2015)
Signal Process.
, vol.112
, pp. 43-52
-
-
Su, S.Z.1
Liu, Z.H.2
Xu, S.P.3
Li, S.Z.4
-
23
-
-
84894115810
-
Using different cost functions to train stacked auto-encoders
-
[23] Amaral, T., Silva, L.M., Alexandre, L.A., Using different cost functions to train stacked auto-encoders. Artificial Intelligence 2013 12th Mexican International Conference on IEEE, 2013, 114–120.
-
(2013)
Artificial Intelligence 2013 12th Mexican International Conference on IEEE
, pp. 114-120
-
-
Amaral, T.1
Silva, L.M.2
Alexandre, L.A.3
-
24
-
-
36249029853
-
Correntropy: properties and applications in non-Gaussian signal processing
-
[24] Liu, W., Pokharel, P.P., Príncipe, J.C., Correntropy: properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process. 55:11 (2007), 5286–5298.
-
(2007)
IEEE Trans. Signal Process.
, vol.55
, Issue.11
, pp. 5286-5298
-
-
Liu, W.1
Pokharel, P.P.2
Príncipe, J.C.3
-
25
-
-
58249092004
-
The correntropy MACE filter
-
[25] Jeong, K.H., Liu, W., Han, S., The correntropy MACE filter. Pattern Recogn. 42:5 (2009), 871–885.
-
(2009)
Pattern Recogn.
, vol.42
, Issue.5
, pp. 871-885
-
-
Jeong, K.H.1
Liu, W.2
Han, S.3
-
26
-
-
84961344134
-
Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging
-
[26] Zabalza, J., Ren, J.C., Zheng, J.B., Zhao, H.M., Qing, C.M., Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 185 (2016), 1–10.
-
(2016)
Neurocomputing
, vol.185
, pp. 1-10
-
-
Zabalza, J.1
Ren, J.C.2
Zheng, J.B.3
Zhao, H.M.4
Qing, C.M.5
-
27
-
-
79957452467
-
Robust principal component analysis based on maximum correntropy criterion
-
[27] He, R., Hu, B.G., Zheng, W.S., Robust principal component analysis based on maximum correntropy criterion. IEEE Trans. Image Process. 20:6 (2011), 1485–1494.
-
(2011)
IEEE Trans. Image Process.
, vol.20
, Issue.6
, pp. 1485-1494
-
-
He, R.1
Hu, B.G.2
Zheng, W.S.3
-
28
-
-
84937966646
-
Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments
-
[28] Ma, W.T., Qu, H., Gui, G., Xu, L., Zhao, J.H., Chen, B.D., Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments. J. Franklin Inst. 352 (2015), 2708–2727.
-
(2015)
J. Franklin Inst.
, vol.352
, pp. 2708-2727
-
-
Ma, W.T.1
Qu, H.2
Gui, G.3
Xu, L.4
Zhao, J.H.5
Chen, B.D.6
-
29
-
-
84949266924
-
HSAE: a Hessian regularized sparse auto-encoders
-
[29] Liu, W.F., Ma, T.Z., Tao, D.P., You, J.N., HSAE: a Hessian regularized sparse auto-encoders. Neurocomputing 187 (2016), 59–65.
-
(2016)
Neurocomputing
, vol.187
, pp. 59-65
-
-
Liu, W.F.1
Ma, T.Z.2
Tao, D.P.3
You, J.N.4
-
30
-
-
84929944640
-
Deep learning with support vector data description
-
[30] Kim, S., Choi, Y., Lee, M., Deep learning with support vector data description. Neurocomputing 165 (2015), 111–117.
-
(2015)
Neurocomputing
, vol.165
, pp. 111-117
-
-
Kim, S.1
Choi, Y.2
Lee, M.3
-
31
-
-
84947559851
-
A novel artificial fish swarm algorithm for solving large-scale reliability-redundancy application problem
-
[31] He, Q., Ren, X.T., Zhang, H.Q., A novel artificial fish swarm algorithm for solving large-scale reliability-redundancy application problem. ISA Trans. 59 (2015), 105–113.
-
(2015)
ISA Trans.
, vol.59
, pp. 105-113
-
-
He, Q.1
Ren, X.T.2
Zhang, H.Q.3
-
32
-
-
84983314971
-
Randomized algorithms for nonlinear system identification with deep learning modification
-
[32] Rosa, E.D.L., Yu, W., Randomized algorithms for nonlinear system identification with deep learning modification. Inf. Sci. 364–365 (2016), 197–212.
-
(2016)
Inf. Sci.
, vol.364-365
, pp. 197-212
-
-
Rosa, E.D.L.1
Yu, W.2
-
33
-
-
79960043301
-
Bearing performance degradation assessment using locality preserving projections and Gaussian mixture models
-
[33] Yu, J.B., Bearing performance degradation assessment using locality preserving projections and Gaussian mixture models. Mech. Syst. Signal Process. 25 (2011), 2573–2588.
-
(2011)
Mech. Syst. Signal Process.
, vol.25
, pp. 2573-2588
-
-
Yu, J.B.1
-
34
-
-
79951581707
-
EEMD method and WNN for fault diagnosis of locomotive roller bearings
-
[34] Lei, Y.G., He, Z.J., Zi, Y.Y., EEMD method and WNN for fault diagnosis of locomotive roller bearings. Expert Syst. Appl. 38 (2011), 7334–7341.
-
(2011)
Expert Syst. Appl.
, vol.38
, pp. 7334-7341
-
-
Lei, Y.G.1
He, Z.J.2
Zi, Y.Y.3
|