메뉴 건너뛰기




Volumn 75, Issue , 2017, Pages 327-333

Deep neural networks-based rolling bearing fault diagnosis

Author keywords

Deep Belief Networks; Deep Boltzmann Machines; Fault diagnosis; Rolling bearing; Stacked Auto Encoders

Indexed keywords

BEARINGS (MACHINE PARTS); DEEP NEURAL NETWORKS; FAILURE ANALYSIS; FREQUENCY DOMAIN ANALYSIS; LEARNING SYSTEMS; MACHINERY; ROLLER BEARINGS; SIGNAL ENCODING;

EID: 85019734822     PISSN: 00262714     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.microrel.2017.03.006     Document Type: Article
Times cited : (242)

References (36)
  • 1
    • 84870401853 scopus 로고    scopus 로고
    • An enhanced Kurto-gram method for fault diagnosis of rolling element bearings
    • Wang, D., Tse, P.W., Tsui, K.L., An enhanced Kurto-gram method for fault diagnosis of rolling element bearings. Mech. Syst. Signal Process. 35:1–2 (2013), 176–199.
    • (2013) Mech. Syst. Signal Process. , vol.35 , Issue.1-2 , pp. 176-199
    • Wang, D.1    Tse, P.W.2    Tsui, K.L.3
  • 2
    • 76149141199 scopus 로고    scopus 로고
    • An enhanced diagnostic scheme for bearing condition monitoring
    • Jie Liu, I.E.E.E., Wang, Wilson, Golnaraghi, Farid, An enhanced diagnostic scheme for bearing condition monitoring. IEEE Trans. Instrum. Meas. 59:2 (2010), 309–321.
    • (2010) IEEE Trans. Instrum. Meas. , vol.59 , Issue.2 , pp. 309-321
    • Jie Liu, I.E.E.E.1    Wang, W.2    Golnaraghi, F.3
  • 3
    • 84946217827 scopus 로고    scopus 로고
    • Planetary gearbox vibration signal characteristics analysis and fault diagnosis
    • Miao, Q., Zhou, Q.H., Planetary gearbox vibration signal characteristics analysis and fault diagnosis. Shock. Vib., 2015, 2015, 126489.
    • (2015) Shock. Vib. , vol.2015
    • Miao, Q.1    Zhou, Q.H.2
  • 4
    • 80054976663 scopus 로고    scopus 로고
    • Application of local mean decomposition to the surveillance and diagnostics of low-speed helical gearbox
    • Wang, Y., He, Z., Xiang, J., Zi, Y., Application of local mean decomposition to the surveillance and diagnostics of low-speed helical gearbox. Mech. Mach. Theory 47:1 (2012), 62–73.
    • (2012) Mech. Mach. Theory , vol.47 , Issue.1 , pp. 62-73
    • Wang, Y.1    He, Z.2    Xiang, J.3    Zi, Y.4
  • 5
    • 84859884263 scopus 로고    scopus 로고
    • Fault detection of planetary gearboxes using new diagnostic parameters
    • Lei, Y., Kong, D., Lin, J., Zuo, M.J., Fault detection of planetary gearboxes using new diagnostic parameters. Meas. Sci. Technol., 23(5), 2012, 055605.
    • (2012) Meas. Sci. Technol. , vol.23 , Issue.5
    • Lei, Y.1    Kong, D.2    Lin, J.3    Zuo, M.J.4
  • 6
    • 84903977623 scopus 로고    scopus 로고
    • Vibration signal demodulation and bearing fault detection: a clustering-based segmentation method
    • Hou, S., Liang, M., Zhang, Y., Li, C., Vibration signal demodulation and bearing fault detection: a clustering-based segmentation method. Proc. IME C J. Mech. Eng. Sci. 228:11 (2014), 1888–1899.
    • (2014) Proc. IME C J. Mech. Eng. Sci. , vol.228 , Issue.11 , pp. 1888-1899
    • Hou, S.1    Liang, M.2    Zhang, Y.3    Li, C.4
  • 7
    • 33646534620 scopus 로고    scopus 로고
    • A review on machinery diagnostics and prognostics implementing condition-based maintenance
    • Jardine, A.K.S., Lin, D., Banjevic, D., A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20:7 (2006), 1483–1510.
    • (2006) Mech. Syst. Signal Process. , vol.20 , Issue.7 , pp. 1483-1510
    • Jardine, A.K.S.1    Lin, D.2    Banjevic, D.3
  • 8
    • 69249153422 scopus 로고    scopus 로고
    • Rolling bearing fault classification based on envelope spectrum and support vector machine
    • Guo, L., Chen, J., Li, X., Rolling bearing fault classification based on envelope spectrum and support vector machine. J. Vib. Control. 15:9 (2009), 1349–1363.
    • (2009) J. Vib. Control. , vol.15 , Issue.9 , pp. 1349-1363
    • Guo, L.1    Chen, J.2    Li, X.3
  • 9
    • 84872805224 scopus 로고    scopus 로고
    • Health assessment of cooling fan bearings using wavelet-based filtering
    • Miao, Q., Tang, C., Liang, W., Pecht, M., Health assessment of cooling fan bearings using wavelet-based filtering. Sensors 13:1 (2013), 274–291.
    • (2013) Sensors , vol.13 , Issue.1 , pp. 274-291
    • Miao, Q.1    Tang, C.2    Liang, W.3    Pecht, M.4
  • 10
    • 0003922190 scopus 로고    scopus 로고
    • Pattern Classification
    • Wiley Hoboken, NJ
    • Duda, R., Hart, P., Stork, D., Pattern Classification. 2001, Wiley, Hoboken, NJ.
    • (2001)
    • Duda, R.1    Hart, P.2    Stork, D.3
  • 11
    • 0033899269 scopus 로고    scopus 로고
    • Diagnosis of rolling element bearing faults using radial basis function networks
    • Jack, L.B., Nandi, A.K., McCormick, A.C., Diagnosis of rolling element bearing faults using radial basis function networks. Appl. Signal Process. 6 (1999), 25–32.
    • (1999) Appl. Signal Process. , vol.6 , pp. 25-32
    • Jack, L.B.1    Nandi, A.K.2    McCormick, A.C.3
  • 12
    • 0037345899 scopus 로고    scopus 로고
    • Artificial neural-network-based fault diagnostics of rolling-element bearings using time-domain features
    • Samanta, B., Al-Balushi, K.R., Artificial neural-network-based fault diagnostics of rolling-element bearings using time-domain features. Mech. Syst. Signal Process. 17:2 (Mar. 2003), 317–328.
    • (2003) Mech. Syst. Signal Process. , vol.17 , Issue.2 , pp. 317-328
    • Samanta, B.1    Al-Balushi, K.R.2
  • 13
    • 0032021416 scopus 로고    scopus 로고
    • On fuzzy logic applications for automatic control, supervision, and fault diagnosis
    • Isermann, R., On fuzzy logic applications for automatic control, supervision, and fault diagnosis. IEEE Trans. Syst. Man Cybern. Syst. Humans 28:2 (Mar. 1998), 221–235.
    • (1998) IEEE Trans. Syst. Man Cybern. Syst. Humans , vol.28 , Issue.2 , pp. 221-235
    • Isermann, R.1
  • 14
    • 0742324888 scopus 로고    scopus 로고
    • An empirical risk functional to improve learning in a neuro fuzzy classifier
    • Castellano, G., Fanelli, A., Mencar, C., An empirical risk functional to improve learning in a neuro fuzzy classifier. IEEE Trans. Syst. Man Cybern. B Cybern. 34:1 (Feb. 2004), 725–731.
    • (2004) IEEE Trans. Syst. Man Cybern. B Cybern. , vol.34 , Issue.1 , pp. 725-731
    • Castellano, G.1    Fanelli, A.2    Mencar, C.3
  • 15
    • 85008016637 scopus 로고    scopus 로고
    • Synergistic use of soft computing technologies for fault detection in gas turbine engines
    • Uluyol, O., Kim, K., Nwadiogbu, E., Synergistic use of soft computing technologies for fault detection in gas turbine engines. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 36:6 (Jul. 2006), 476–484.
    • (2006) IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. , vol.36 , Issue.6 , pp. 476-484
    • Uluyol, O.1    Kim, K.2    Nwadiogbu, E.3
  • 16
    • 40549089590 scopus 로고    scopus 로고
    • An intelligent system for machinery condition monitoring
    • Wang, W., An intelligent system for machinery condition monitoring. IEEE Trans. Fuzzy Syst. 16:1 (Feb. 2008), 110–122.
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , Issue.1 , pp. 110-122
    • Wang, W.1
  • 17
    • 39649103200 scopus 로고    scopus 로고
    • An enhanced diagnostic system for gear system monitoring
    • Wang, W., An enhanced diagnostic system for gear system monitoring. IEEE Trans. Syst. Man Cybern. B Cybern. 38:1 (Feb. 2008), 102–112.
    • (2008) IEEE Trans. Syst. Man Cybern. B Cybern. , vol.38 , Issue.1 , pp. 102-112
    • Wang, W.1
  • 18
    • 84924501540 scopus 로고    scopus 로고
    • Smoothness index-guided Bayesian inference for determining joint posterior probability distributions of anti-symmetric real Laplace wavelet parameters for identification of different bearing faults
    • Wang, D., Miao, Q., Smoothness index-guided Bayesian inference for determining joint posterior probability distributions of anti-symmetric real Laplace wavelet parameters for identification of different bearing faults. J. Sound Vib. 345:9 (2015), 250–266.
    • (2015) J. Sound Vib. , vol.345 , Issue.9 , pp. 250-266
    • Wang, D.1    Miao, Q.2
  • 19
    • 67349227757 scopus 로고    scopus 로고
    • Robust health evaluation of gearbox subject to tooth failure with wavelet decomposition
    • Wang, D., Miao, Q., Kang, R., Robust health evaluation of gearbox subject to tooth failure with wavelet decomposition. J. Sound Vib. 324:3–5 (2009), 1141–1157.
    • (2009) J. Sound Vib. , vol.324 , Issue.3-5 , pp. 1141-1157
    • Wang, D.1    Miao, Q.2    Kang, R.3
  • 20
    • 33750498275 scopus 로고    scopus 로고
    • Condition monitoring and classification of rotating machinery using wavelets and hidden Markov models
    • Miao, Q., Makis, V., Condition monitoring and classification of rotating machinery using wavelets and hidden Markov models. Mech. Syst. Signal Process. 21:2 (2007), 840–855.
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.2 , pp. 840-855
    • Miao, Q.1    Makis, V.2
  • 21
    • 84907486966 scopus 로고    scopus 로고
    • Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals
    • Ali, J.B., Fnaiech, N., Saidi, L., Chebel-Morello, B., Fnaiech, F., Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals. Appl. Acoust. 89 (2015), 16–27.
    • (2015) Appl. Acoust. , vol.89 , pp. 16-27
    • Ali, J.B.1    Fnaiech, N.2    Saidi, L.3    Chebel-Morello, B.4    Fnaiech, F.5
  • 22
    • 84946556180 scopus 로고    scopus 로고
    • Bearing fault diagnosis based on adaptive multiscale fuzzy entropy and support vector machine
    • Li, Y., Xu, M., Wei, Y., Huang, W., Bearing fault diagnosis based on adaptive multiscale fuzzy entropy and support vector machine. J. Vibroeng. 17:3 (2015), 1188–1202.
    • (2015) J. Vibroeng. , vol.17 , Issue.3 , pp. 1188-1202
    • Li, Y.1    Xu, M.2    Wei, Y.3    Huang, W.4
  • 23
    • 84944323063 scopus 로고    scopus 로고
    • Fault detection and diagnosis using support vector machines - a SVC and SVR comparison
    • Souzal, D.L., Granzotto, M.H., Almeida, G.M., Oliveira-Lopes, L.C., Fault detection and diagnosis using support vector machines - a SVC and SVR comparison. J. Saf. Eng. 3:1 (2014), 18–29.
    • (2014) J. Saf. Eng. , vol.3 , Issue.1 , pp. 18-29
    • Souzal, D.L.1    Granzotto, M.H.2    Almeida, G.M.3    Oliveira-Lopes, L.C.4
  • 24
    • 84879839833 scopus 로고    scopus 로고
    • Remaining useful life prediction of Lithium-ion battery with unscented particle filter technique
    • Miao, Q., Xie, L., Cui, H., Liang, W., Pecht, M., Remaining useful life prediction of Lithium-ion battery with unscented particle filter technique. Microelectron. Reliab. 53:6 (2013), 805–810.
    • (2013) Microelectron. Reliab. , vol.53 , Issue.6 , pp. 805-810
    • Miao, Q.1    Xie, L.2    Cui, H.3    Liang, W.4    Pecht, M.5
  • 25
    • 84955693855 scopus 로고    scopus 로고
    • Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
    • Jia, Feng, Lei, Yaguo, Lin, Jing, Zhou, Xin, Lu, Na, Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 72-73 (2016), 303–315.
    • (2016) Mech. Syst. Signal Process. , vol.72-73 , pp. 303-315
    • Jia, F.1    Lei, Y.2    Lin, J.3    Zhou, X.4    Lu, N.5
  • 26
    • 84946042100 scopus 로고    scopus 로고
    • Gearbox fault identification and classification with convolutional neural networks
    • Chen, Z.Q., Li, C., Sanchez, R.V., Gearbox fault identification and classification with convolutional neural networks. Shock. Vib. 2015:2 (2015), 1–10.
    • (2015) Shock. Vib. , vol.2015 , Issue.2 , pp. 1-10
    • Chen, Z.Q.1    Li, C.2    Sanchez, R.V.3
  • 27
    • 84893464266 scopus 로고    scopus 로고
    • An approach to fault diagnosis of reciprocating compressor valves using Teager–Kaiser energy operator and deep belief networks
    • Tran, V.T., Thobiani, F.A., Ball, A., An approach to fault diagnosis of reciprocating compressor valves using Teager–Kaiser energy operator and deep belief networks. Expert Syst. Appl. 41:9 (2014), 4113–4122.
    • (2014) Expert Syst. Appl. , vol.41 , Issue.9 , pp. 4113-4122
    • Tran, V.T.1    Thobiani, F.A.2    Ball, A.3
  • 28
    • 84937818415 scopus 로고    scopus 로고
    • Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis
    • Li, C., Sanchez, R., Zurita, G., Cerrada, M., Cabrera, D., Vásquez, R., Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis. Neurocomputing 168 (2015), 119–127.
    • (2015) Neurocomputing , vol.168 , pp. 119-127
    • Li, C.1    Sanchez, R.2    Zurita, G.3    Cerrada, M.4    Cabrera, D.5    Vásquez, R.6
  • 29
    • 84944323318 scopus 로고    scopus 로고
    • Multi-layer neural network with deep belief network for gearbox fault diagnosis
    • Chen, Z., Li, C., Sánchez, R.V., Multi-layer neural network with deep belief network for gearbox fault diagnosis. J. Vibroeng. 17:5 (2015), 2379–2392.
    • (2015) J. Vibroeng. , vol.17 , Issue.5 , pp. 2379-2392
    • Chen, Z.1    Li, C.2    Sánchez, R.V.3
  • 31
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S., Teh, Y., A fast learning algorithm for deep belief nets. Neural Comput. 18 (2006), 1527–1554.
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 32
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11 (2010), 3371–3408.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.A.5
  • 33
    • 56449085852 scopus 로고
    • Unsupervised learning of distributions on binary vectors using two layer networks
    • University of California Santa Cruz
    • Freund, Y., Haussler, D., Unsupervised learning of distributions on binary vectors using two layer networks. Technical Report UCSC-CRL-94-25, 1994, University of California, Santa Cruz.
    • (1994) Technical Report UCSC-CRL-94-25
    • Freund, Y.1    Haussler, D.2
  • 34
    • 84874125782 scopus 로고    scopus 로고
    • An efficient learning procedure for deep machines
    • Salakhutdinov, R., Hinton, G., An efficient learning procedure for deep machines. Neural Comput. 24:8 (2012), 1967–2006.
    • (2012) Neural Comput. , vol.24 , Issue.8 , pp. 1967-2006
    • Salakhutdinov, R.1    Hinton, G.2
  • 36
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio, Y., Learning deep architectures for AI. Found. Trends Mach. Learn. 2:1 (2009), 1–127.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.