-
1
-
-
84870401853
-
An enhanced Kurto-gram method for fault diagnosis of rolling element bearings
-
Wang, D., Tse, P.W., Tsui, K.L., An enhanced Kurto-gram method for fault diagnosis of rolling element bearings. Mech. Syst. Signal Process. 35:1–2 (2013), 176–199.
-
(2013)
Mech. Syst. Signal Process.
, vol.35
, Issue.1-2
, pp. 176-199
-
-
Wang, D.1
Tse, P.W.2
Tsui, K.L.3
-
2
-
-
76149141199
-
An enhanced diagnostic scheme for bearing condition monitoring
-
Jie Liu, I.E.E.E., Wang, Wilson, Golnaraghi, Farid, An enhanced diagnostic scheme for bearing condition monitoring. IEEE Trans. Instrum. Meas. 59:2 (2010), 309–321.
-
(2010)
IEEE Trans. Instrum. Meas.
, vol.59
, Issue.2
, pp. 309-321
-
-
Jie Liu, I.E.E.E.1
Wang, W.2
Golnaraghi, F.3
-
3
-
-
84946217827
-
Planetary gearbox vibration signal characteristics analysis and fault diagnosis
-
Miao, Q., Zhou, Q.H., Planetary gearbox vibration signal characteristics analysis and fault diagnosis. Shock. Vib., 2015, 2015, 126489.
-
(2015)
Shock. Vib.
, vol.2015
-
-
Miao, Q.1
Zhou, Q.H.2
-
4
-
-
80054976663
-
Application of local mean decomposition to the surveillance and diagnostics of low-speed helical gearbox
-
Wang, Y., He, Z., Xiang, J., Zi, Y., Application of local mean decomposition to the surveillance and diagnostics of low-speed helical gearbox. Mech. Mach. Theory 47:1 (2012), 62–73.
-
(2012)
Mech. Mach. Theory
, vol.47
, Issue.1
, pp. 62-73
-
-
Wang, Y.1
He, Z.2
Xiang, J.3
Zi, Y.4
-
5
-
-
84859884263
-
Fault detection of planetary gearboxes using new diagnostic parameters
-
Lei, Y., Kong, D., Lin, J., Zuo, M.J., Fault detection of planetary gearboxes using new diagnostic parameters. Meas. Sci. Technol., 23(5), 2012, 055605.
-
(2012)
Meas. Sci. Technol.
, vol.23
, Issue.5
-
-
Lei, Y.1
Kong, D.2
Lin, J.3
Zuo, M.J.4
-
6
-
-
84903977623
-
Vibration signal demodulation and bearing fault detection: a clustering-based segmentation method
-
Hou, S., Liang, M., Zhang, Y., Li, C., Vibration signal demodulation and bearing fault detection: a clustering-based segmentation method. Proc. IME C J. Mech. Eng. Sci. 228:11 (2014), 1888–1899.
-
(2014)
Proc. IME C J. Mech. Eng. Sci.
, vol.228
, Issue.11
, pp. 1888-1899
-
-
Hou, S.1
Liang, M.2
Zhang, Y.3
Li, C.4
-
7
-
-
33646534620
-
A review on machinery diagnostics and prognostics implementing condition-based maintenance
-
Jardine, A.K.S., Lin, D., Banjevic, D., A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20:7 (2006), 1483–1510.
-
(2006)
Mech. Syst. Signal Process.
, vol.20
, Issue.7
, pp. 1483-1510
-
-
Jardine, A.K.S.1
Lin, D.2
Banjevic, D.3
-
8
-
-
69249153422
-
Rolling bearing fault classification based on envelope spectrum and support vector machine
-
Guo, L., Chen, J., Li, X., Rolling bearing fault classification based on envelope spectrum and support vector machine. J. Vib. Control. 15:9 (2009), 1349–1363.
-
(2009)
J. Vib. Control.
, vol.15
, Issue.9
, pp. 1349-1363
-
-
Guo, L.1
Chen, J.2
Li, X.3
-
9
-
-
84872805224
-
Health assessment of cooling fan bearings using wavelet-based filtering
-
Miao, Q., Tang, C., Liang, W., Pecht, M., Health assessment of cooling fan bearings using wavelet-based filtering. Sensors 13:1 (2013), 274–291.
-
(2013)
Sensors
, vol.13
, Issue.1
, pp. 274-291
-
-
Miao, Q.1
Tang, C.2
Liang, W.3
Pecht, M.4
-
10
-
-
0003922190
-
Pattern Classification
-
Wiley Hoboken, NJ
-
Duda, R., Hart, P., Stork, D., Pattern Classification. 2001, Wiley, Hoboken, NJ.
-
(2001)
-
-
Duda, R.1
Hart, P.2
Stork, D.3
-
11
-
-
0033899269
-
Diagnosis of rolling element bearing faults using radial basis function networks
-
Jack, L.B., Nandi, A.K., McCormick, A.C., Diagnosis of rolling element bearing faults using radial basis function networks. Appl. Signal Process. 6 (1999), 25–32.
-
(1999)
Appl. Signal Process.
, vol.6
, pp. 25-32
-
-
Jack, L.B.1
Nandi, A.K.2
McCormick, A.C.3
-
12
-
-
0037345899
-
Artificial neural-network-based fault diagnostics of rolling-element bearings using time-domain features
-
Samanta, B., Al-Balushi, K.R., Artificial neural-network-based fault diagnostics of rolling-element bearings using time-domain features. Mech. Syst. Signal Process. 17:2 (Mar. 2003), 317–328.
-
(2003)
Mech. Syst. Signal Process.
, vol.17
, Issue.2
, pp. 317-328
-
-
Samanta, B.1
Al-Balushi, K.R.2
-
13
-
-
0032021416
-
On fuzzy logic applications for automatic control, supervision, and fault diagnosis
-
Isermann, R., On fuzzy logic applications for automatic control, supervision, and fault diagnosis. IEEE Trans. Syst. Man Cybern. Syst. Humans 28:2 (Mar. 1998), 221–235.
-
(1998)
IEEE Trans. Syst. Man Cybern. Syst. Humans
, vol.28
, Issue.2
, pp. 221-235
-
-
Isermann, R.1
-
14
-
-
0742324888
-
An empirical risk functional to improve learning in a neuro fuzzy classifier
-
Castellano, G., Fanelli, A., Mencar, C., An empirical risk functional to improve learning in a neuro fuzzy classifier. IEEE Trans. Syst. Man Cybern. B Cybern. 34:1 (Feb. 2004), 725–731.
-
(2004)
IEEE Trans. Syst. Man Cybern. B Cybern.
, vol.34
, Issue.1
, pp. 725-731
-
-
Castellano, G.1
Fanelli, A.2
Mencar, C.3
-
15
-
-
85008016637
-
Synergistic use of soft computing technologies for fault detection in gas turbine engines
-
Uluyol, O., Kim, K., Nwadiogbu, E., Synergistic use of soft computing technologies for fault detection in gas turbine engines. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 36:6 (Jul. 2006), 476–484.
-
(2006)
IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
, vol.36
, Issue.6
, pp. 476-484
-
-
Uluyol, O.1
Kim, K.2
Nwadiogbu, E.3
-
16
-
-
40549089590
-
An intelligent system for machinery condition monitoring
-
Wang, W., An intelligent system for machinery condition monitoring. IEEE Trans. Fuzzy Syst. 16:1 (Feb. 2008), 110–122.
-
(2008)
IEEE Trans. Fuzzy Syst.
, vol.16
, Issue.1
, pp. 110-122
-
-
Wang, W.1
-
17
-
-
39649103200
-
An enhanced diagnostic system for gear system monitoring
-
Wang, W., An enhanced diagnostic system for gear system monitoring. IEEE Trans. Syst. Man Cybern. B Cybern. 38:1 (Feb. 2008), 102–112.
-
(2008)
IEEE Trans. Syst. Man Cybern. B Cybern.
, vol.38
, Issue.1
, pp. 102-112
-
-
Wang, W.1
-
18
-
-
84924501540
-
Smoothness index-guided Bayesian inference for determining joint posterior probability distributions of anti-symmetric real Laplace wavelet parameters for identification of different bearing faults
-
Wang, D., Miao, Q., Smoothness index-guided Bayesian inference for determining joint posterior probability distributions of anti-symmetric real Laplace wavelet parameters for identification of different bearing faults. J. Sound Vib. 345:9 (2015), 250–266.
-
(2015)
J. Sound Vib.
, vol.345
, Issue.9
, pp. 250-266
-
-
Wang, D.1
Miao, Q.2
-
19
-
-
67349227757
-
Robust health evaluation of gearbox subject to tooth failure with wavelet decomposition
-
Wang, D., Miao, Q., Kang, R., Robust health evaluation of gearbox subject to tooth failure with wavelet decomposition. J. Sound Vib. 324:3–5 (2009), 1141–1157.
-
(2009)
J. Sound Vib.
, vol.324
, Issue.3-5
, pp. 1141-1157
-
-
Wang, D.1
Miao, Q.2
Kang, R.3
-
20
-
-
33750498275
-
Condition monitoring and classification of rotating machinery using wavelets and hidden Markov models
-
Miao, Q., Makis, V., Condition monitoring and classification of rotating machinery using wavelets and hidden Markov models. Mech. Syst. Signal Process. 21:2 (2007), 840–855.
-
(2007)
Mech. Syst. Signal Process.
, vol.21
, Issue.2
, pp. 840-855
-
-
Miao, Q.1
Makis, V.2
-
21
-
-
84907486966
-
Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals
-
Ali, J.B., Fnaiech, N., Saidi, L., Chebel-Morello, B., Fnaiech, F., Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals. Appl. Acoust. 89 (2015), 16–27.
-
(2015)
Appl. Acoust.
, vol.89
, pp. 16-27
-
-
Ali, J.B.1
Fnaiech, N.2
Saidi, L.3
Chebel-Morello, B.4
Fnaiech, F.5
-
22
-
-
84946556180
-
Bearing fault diagnosis based on adaptive multiscale fuzzy entropy and support vector machine
-
Li, Y., Xu, M., Wei, Y., Huang, W., Bearing fault diagnosis based on adaptive multiscale fuzzy entropy and support vector machine. J. Vibroeng. 17:3 (2015), 1188–1202.
-
(2015)
J. Vibroeng.
, vol.17
, Issue.3
, pp. 1188-1202
-
-
Li, Y.1
Xu, M.2
Wei, Y.3
Huang, W.4
-
23
-
-
84944323063
-
Fault detection and diagnosis using support vector machines - a SVC and SVR comparison
-
Souzal, D.L., Granzotto, M.H., Almeida, G.M., Oliveira-Lopes, L.C., Fault detection and diagnosis using support vector machines - a SVC and SVR comparison. J. Saf. Eng. 3:1 (2014), 18–29.
-
(2014)
J. Saf. Eng.
, vol.3
, Issue.1
, pp. 18-29
-
-
Souzal, D.L.1
Granzotto, M.H.2
Almeida, G.M.3
Oliveira-Lopes, L.C.4
-
24
-
-
84879839833
-
Remaining useful life prediction of Lithium-ion battery with unscented particle filter technique
-
Miao, Q., Xie, L., Cui, H., Liang, W., Pecht, M., Remaining useful life prediction of Lithium-ion battery with unscented particle filter technique. Microelectron. Reliab. 53:6 (2013), 805–810.
-
(2013)
Microelectron. Reliab.
, vol.53
, Issue.6
, pp. 805-810
-
-
Miao, Q.1
Xie, L.2
Cui, H.3
Liang, W.4
Pecht, M.5
-
25
-
-
84955693855
-
Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
-
Jia, Feng, Lei, Yaguo, Lin, Jing, Zhou, Xin, Lu, Na, Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 72-73 (2016), 303–315.
-
(2016)
Mech. Syst. Signal Process.
, vol.72-73
, pp. 303-315
-
-
Jia, F.1
Lei, Y.2
Lin, J.3
Zhou, X.4
Lu, N.5
-
26
-
-
84946042100
-
Gearbox fault identification and classification with convolutional neural networks
-
Chen, Z.Q., Li, C., Sanchez, R.V., Gearbox fault identification and classification with convolutional neural networks. Shock. Vib. 2015:2 (2015), 1–10.
-
(2015)
Shock. Vib.
, vol.2015
, Issue.2
, pp. 1-10
-
-
Chen, Z.Q.1
Li, C.2
Sanchez, R.V.3
-
27
-
-
84893464266
-
An approach to fault diagnosis of reciprocating compressor valves using Teager–Kaiser energy operator and deep belief networks
-
Tran, V.T., Thobiani, F.A., Ball, A., An approach to fault diagnosis of reciprocating compressor valves using Teager–Kaiser energy operator and deep belief networks. Expert Syst. Appl. 41:9 (2014), 4113–4122.
-
(2014)
Expert Syst. Appl.
, vol.41
, Issue.9
, pp. 4113-4122
-
-
Tran, V.T.1
Thobiani, F.A.2
Ball, A.3
-
28
-
-
84937818415
-
Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis
-
Li, C., Sanchez, R., Zurita, G., Cerrada, M., Cabrera, D., Vásquez, R., Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis. Neurocomputing 168 (2015), 119–127.
-
(2015)
Neurocomputing
, vol.168
, pp. 119-127
-
-
Li, C.1
Sanchez, R.2
Zurita, G.3
Cerrada, M.4
Cabrera, D.5
Vásquez, R.6
-
29
-
-
84944323318
-
Multi-layer neural network with deep belief network for gearbox fault diagnosis
-
Chen, Z., Li, C., Sánchez, R.V., Multi-layer neural network with deep belief network for gearbox fault diagnosis. J. Vibroeng. 17:5 (2015), 2379–2392.
-
(2015)
J. Vibroeng.
, vol.17
, Issue.5
, pp. 2379-2392
-
-
Chen, Z.1
Li, C.2
Sánchez, R.V.3
-
30
-
-
84862286946
-
Deep Boltzmann machines
-
Salakhutdinov, R., Hinton, G., Deep Boltzmann machines. J. Mach. Learn. Res. 5:2 (2009), 448–455.
-
(2009)
J. Mach. Learn. Res.
, vol.5
, Issue.2
, pp. 448-455
-
-
Salakhutdinov, R.1
Hinton, G.2
-
31
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G.E., Osindero, S., Teh, Y., A fast learning algorithm for deep belief nets. Neural Comput. 18 (2006), 1527–1554.
-
(2006)
Neural Comput.
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.3
-
32
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11 (2010), 3371–3408.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.A.5
-
33
-
-
56449085852
-
Unsupervised learning of distributions on binary vectors using two layer networks
-
University of California Santa Cruz
-
Freund, Y., Haussler, D., Unsupervised learning of distributions on binary vectors using two layer networks. Technical Report UCSC-CRL-94-25, 1994, University of California, Santa Cruz.
-
(1994)
Technical Report UCSC-CRL-94-25
-
-
Freund, Y.1
Haussler, D.2
-
34
-
-
84874125782
-
An efficient learning procedure for deep machines
-
Salakhutdinov, R., Hinton, G., An efficient learning procedure for deep machines. Neural Comput. 24:8 (2012), 1967–2006.
-
(2012)
Neural Comput.
, vol.24
, Issue.8
, pp. 1967-2006
-
-
Salakhutdinov, R.1
Hinton, G.2
-
35
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
B. Schölkopf J. Platt T. Hoffman MIT Press
-
Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., Greedy layer-wise training of deep networks. Schölkopf, B., Platt, J., Hoffman, T., (eds.) Advances in Neural Information Processing Systems 19 (NIPS’06), 2007, MIT Press, 153–160.
-
(2007)
Advances in Neural Information Processing Systems 19 (NIPS’06)
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
36
-
-
69349090197
-
Learning deep architectures for AI
-
Bengio, Y., Learning deep architectures for AI. Found. Trends Mach. Learn. 2:1 (2009), 1–127.
-
(2009)
Found. Trends Mach. Learn.
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
|