메뉴 건너뛰기




Volumn 66-67, Issue , 2016, Pages 533-545

Maximum margin classification based on flexible convex hulls for fault diagnosis of roller bearings

Author keywords

Fault diagnosis; Flexible convex hull; Maximum margin classification; Roller bearings

Indexed keywords

COMPUTATIONAL GEOMETRY; COMPUTER AIDED DIAGNOSIS; FAILURE ANALYSIS; FREQUENCY DOMAIN ANALYSIS; LEARNING SYSTEMS; ROLLER BEARINGS; ROLLERS (MACHINE COMPONENTS); SIGNAL PROCESSING; SUPPORT VECTOR MACHINES; TIME DOMAIN ANALYSIS;

EID: 84955633182     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2015.06.006     Document Type: Article
Times cited : (50)

References (31)
  • 1
    • 84862789712 scopus 로고    scopus 로고
    • Fuzzy lattice classifier and its application to bearing fault diagnosis
    • B. Li, P.Y. Liu, R.X. Hu, S.S. Mi, and J.P. Fu Fuzzy lattice classifier and its application to bearing fault diagnosis Appl. Soft Comput. 12 6 2012 1708 1719
    • (2012) Appl. Soft Comput. , vol.12 , Issue.6 , pp. 1708-1719
    • Li, B.1    Liu, P.Y.2    Hu, R.X.3    Mi, S.S.4    Fu, J.P.5
  • 2
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes, and V. Vapnik Support-vector networks Mach. Learn. 20 3 1995 273 297
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 3
    • 34848858238 scopus 로고    scopus 로고
    • A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM
    • Y. Yang, D. Yu, and J. Cheng A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM Measurement 40 9-10 2007 943 950
    • (2007) Measurement , vol.40 , Issue.9-10 , pp. 943-950
    • Yang, Y.1    Yu, D.2    Cheng, J.3
  • 4
    • 34548035641 scopus 로고    scopus 로고
    • Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine
    • S. Abbasion, A. Rafsanjani, A Farshidianfar, and N. Irani Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine Mech. Syst. Signal Process. 21 7 2007 2933 2945
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.7 , pp. 2933-2945
    • Abbasion, S.1    Rafsanjani, A.2    Farshidianfar, A.3    Irani, N.4
  • 5
    • 84885611750 scopus 로고    scopus 로고
    • Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines
    • X. Zhang, and J. Zhou Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines Mech. Syst. Signal Process. 41 1-2 2013 127 140
    • (2013) Mech. Syst. Signal Process. , vol.41 , Issue.12 , pp. 127-140
    • Zhang, X.1    Zhou, J.2
  • 6
    • 84889100927 scopus 로고    scopus 로고
    • Wavelet leaders multifractal features based fault diagnosis of rotating mechanism
    • W. Du, J. Tao, Y. Li, and C. Liu Wavelet leaders multifractal features based fault diagnosis of rotating mechanism Mech. Syst. Signal Process. 43 1-2 2014 57 75
    • (2014) Mech. Syst. Signal Process. , vol.43 , Issue.12 , pp. 57-75
    • Du, W.1    Tao, J.2    Li, Y.3    Liu, C.4
  • 10
    • 78650309623 scopus 로고    scopus 로고
    • Large margin classifiers based on affine hulls
    • H. Cevikalp, B. Triggs, H.S. Yavuz, and et al. Large margin classifiers based on affine hulls Neurocomputing 73 16 2010 3160 3168
    • (2010) Neurocomputing , vol.73 , Issue.16 , pp. 3160-3168
    • Cevikalp, H.1    Triggs, B.2    Yavuz, H.S.3
  • 11
    • 84873111848 scopus 로고    scopus 로고
    • Hyperdisk based large margin classifier
    • H. Cevikalp, and B. Triggs Hyperdisk based large margin classifier Pattern Recognit. 46 6 2013 1523 1531
    • (2013) Pattern Recognit. , vol.46 , Issue.6 , pp. 1523-1531
    • Cevikalp, H.1    Triggs, B.2
  • 12
    • 0033220728 scopus 로고    scopus 로고
    • Support vector domain description
    • D.M.J. Tax, and R.P.W. Duin Support vector domain description Pattern Recognit. Lett. 20 11 1999 1191 1199
    • (1999) Pattern Recognit. Lett. , vol.20 , Issue.11 , pp. 1191-1199
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 13
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • D.M.J. Tax, and R.P.W. Duin Support vector data description Mach. Learn. 54 1 2004 45 66
    • (2004) Mach. Learn. , vol.54 , Issue.1 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 15
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
    • N.E. Huang, Z. Shen, S.R. Long, and et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis Proc. R. Soc. Lond. 454 1998 903 995
    • (1998) Proc. R. Soc. Lond. , vol.454 , pp. 903-995
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3
  • 16
    • 0033489494 scopus 로고    scopus 로고
    • A new view of nonlinear water waves: The Hilbert spectrum
    • N.E. Huang, Z. Shen, and S.R. Long A new view of nonlinear water waves: the Hilbert spectrum Ann. Rev. Fluid Mech. 31 1999 417 457
    • (1999) Ann. Rev. Fluid Mech. , vol.31 , pp. 417-457
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3
  • 17
    • 0942289508 scopus 로고    scopus 로고
    • ART-KOHONEN neural network for fault diagnosis of rotating machinery
    • B.S. Yang, T. Han, and J.L. An ART-KOHONEN neural network for fault diagnosis of rotating machinery Mech. Syst. Signal Process. 18 3 2004 645 657
    • (2004) Mech. Syst. Signal Process. , vol.18 , Issue.3 , pp. 645-657
    • Yang, B.S.1    Han, T.2    An, J.L.3
  • 18
    • 28744446722 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on multi-class support vector machines
    • B.S. Yang, T. Han, and W.W. Huang Fault diagnosis of rotating machinery based on multi-class support vector machines J. Mech. Sci. Technol. 19 3 2005 846 859
    • (2005) J. Mech. Sci. Technol. , vol.19 , Issue.3 , pp. 846-859
    • Yang, B.S.1    Han, T.2    Huang, W.W.3
  • 19
    • 33646516358 scopus 로고    scopus 로고
    • A geometric approach to support vector machine (SVM) classification
    • M.E. Mavroforakis, and S. Theodoridis A geometric approach to support vector machine (SVM) classification IEEE Trans. Neural Netw. 17 3 2006 671 682
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.3 , pp. 671-682
    • Mavroforakis, M.E.1    Theodoridis, S.2
  • 20
    • 35448932022 scopus 로고    scopus 로고
    • A general soft method for learning SVM classifiers with L1-norm penalty
    • Q. Tao, G. Wu, and J. Wang A general soft method for learning SVM classifiers with L1-norm penalty Pattern Recognit. 41 3 2008 939 948
    • (2008) Pattern Recognit. , vol.41 , Issue.3 , pp. 939-948
    • Tao, Q.1    Wu, G.2    Wang, J.3
  • 21
    • 0003250435 scopus 로고
    • Single-layer learning revisited: A stepwise procedure for building and training a neural network
    • F. Fogelman Soulié, J. Hérault, Springer-Verlag Berlin Heidelberg
    • S. Knerr, L. Personnaz, and G. Dreyfus Single-layer learning revisited: a stepwise procedure for building and training a neural network F. Fogelman Soulié, J. Hérault, Neurocomputing: Algorithms, Architectures and Applications 1990 Springer-Verlag Berlin Heidelberg 41 50
    • (1990) Neurocomputing: Algorithms, Architectures and Applications , pp. 41-50
    • Knerr, S.1    Personnaz, L.2    Dreyfus, G.3
  • 23
    • 33646495490 scopus 로고    scopus 로고
    • Binary tree of SVM: A new fast multiclass training and classification algorithm
    • B. Fei, and J. Liu Binary tree of SVM: a new fast multiclass training and classification algorithm IEEE Trans. Neural Netw. 17 3 2006 696 704
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.3 , pp. 696-704
    • Fei, B.1    Liu, J.2
  • 25
    • 34047251505 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs
    • Y. Lei, Z. He, Y. Zi, and Q. Hu Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs Mech. Syst. Signal Process. 21 5 2007 2280 2294
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.5 , pp. 2280-2294
    • Lei, Y.1    He, Z.2    Zi, Y.3    Hu, Q.4
  • 26
    • 3943082051 scopus 로고    scopus 로고
    • Pattern recognition for automatic machinery fault diagnosis
    • Q. Sun, P. Chen, D. Zhang, and F. Xi Pattern recognition for automatic machinery fault diagnosis J. Vibration Acoust. 126 2 2004 307 316
    • (2004) J. Vibration Acoust. , vol.126 , Issue.2 , pp. 307-316
    • Sun, Q.1    Chen, P.2    Zhang, D.3    Xi, F.4
  • 27
    • 84862789712 scopus 로고    scopus 로고
    • Fuzzy lattice classifier and its application to bearing fault diagnosis
    • B. Li, P. Liu, R. Hu, S. Mi, and J. Fu Fuzzy lattice classifier and its application to bearing fault diagnosis Appl. Soft Comput. 12 6 2012 1708 1719
    • (2012) Appl. Soft Comput. , vol.12 , Issue.6 , pp. 1708-1719
    • Li, B.1    Liu, P.2    Hu, R.3    Mi, S.4    Fu, J.5
  • 28
    • 27744580640 scopus 로고    scopus 로고
    • A fault diagnosis approach for roller bearings based on EMD method and AR model
    • J. Cheng, D. Yu, and Y. Yang A fault diagnosis approach for roller bearings based on EMD method and AR model Mech. Syst. Signal Process. 20 2 2006 350 362
    • (2006) Mech. Syst. Signal Process. , vol.20 , Issue.2 , pp. 350-362
    • Cheng, J.1    Yu, D.2    Yang, Y.3
  • 29
    • 84885579397 scopus 로고    scopus 로고
    • Bearing fault detection based on hybrid ensemble detector and empirical mode decomposition
    • G. Georgoulas, T. Loutas, C.D. Stylios, and V. Kostopoulos Bearing fault detection based on hybrid ensemble detector and empirical mode decomposition Mech. Syst. Signal Process. 41 1 2013 510 525
    • (2013) Mech. Syst. Signal Process. , vol.41 , Issue.1 , pp. 510-525
    • Georgoulas, G.1    Loutas, T.2    Stylios, C.D.3    Kostopoulos, V.4
  • 30
    • 37349079091 scopus 로고    scopus 로고
    • Case Western Reserve University
    • K.A. Loparo, Bearings vibration data, Case Western Reserve University, (http://csegroups.case.edu/bearingdatacenter/pages/download-data-file).
    • Bearings Vibration Data
    • Loparo, K.A.1
  • 31
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: Pitfalls to avoid and a recommended approach
    • S.L. Salzberg On comparing classifiers: Pitfalls to avoid and a recommended approach Data Min. Knowl. Discov. 1 3 1997 317 328
    • (1997) Data Min. Knowl. Discov. , vol.1 , Issue.3 , pp. 317-328
    • Salzberg, S.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.