메뉴 건너뛰기




Volumn 85, Issue , 2017, Pages 512-529

Independence-oriented VMD to identify fault feature for wheel set bearing fault diagnosis of high speed locomotive

Author keywords

Fault diagnosis; Variational Mode Decomposition; Vibration signal analysis; Wheel set bearing

Indexed keywords

FAILURE ANALYSIS; LOCOMOTIVES; RAILROAD ROLLING STOCK; SIGNAL ANALYSIS; SIGNAL PROCESSING; VIBRATION ANALYSIS; VIBRATIONS (MECHANICAL); WHEELS;

EID: 84995427068     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2016.08.042     Document Type: Article
Times cited : (316)

References (30)
  • 1
    • 84883783507 scopus 로고    scopus 로고
    • Experimental evidences in bearing diagnostics for traction system of high speed trains, in; Proceedings of the Prognostics and Health Management Conference. Vol.33 (2013) pp.739–744.
    • [1] P. Pennacchi, S. Chatterton, A. Vania, R. Ricci, P. Borghesani, Experimental evidences in bearing diagnostics for traction system of high speed trains, in; Proceedings of the Prognostics and Health Management Conference. Vol.33 (2013) pp.739–744.
    • Pennacchi, P.1    Chatterton, S.2    Vania, A.3    Ricci, R.4    Borghesani, P.5
  • 2
    • 84887863490 scopus 로고    scopus 로고
    • A Doppler Transient Model based on the laplace wavelet and spectrum correlation assessment for locomotive bearing fault diagnosis
    • [2] Shen, C.Q., Liu, F., Wang, D., Zhang, A., Kong, F.R., Tse, P.W., A Doppler Transient Model based on the laplace wavelet and spectrum correlation assessment for locomotive bearing fault diagnosis. Sensors 13:11 (2013), 15726–15746.
    • (2013) Sensors , vol.13 , Issue.11 , pp. 15726-15746
    • Shen, C.Q.1    Liu, F.2    Wang, D.3    Zhang, A.4    Kong, F.R.5    Tse, P.W.6
  • 3
    • 79954415606 scopus 로고    scopus 로고
    • Rolling element bearing fault diagnosis using wavelet transform
    • [3] Kankar, P.K., Satish, C., Sharma, Harsha, S.P., Rolling element bearing fault diagnosis using wavelet transform. Neurocomputing 74 (2011), 1638–1645.
    • (2011) Neurocomputing , vol.74 , pp. 1638-1645
    • Kankar, P.K.1    Satish, C.2    Sharma3    Harsha, S.P.4
  • 4
    • 84887433963 scopus 로고    scopus 로고
    • Wavelets for fault diagnosis of rotary machines: a review with applications
    • [4] An, R.Q., Gao, R.X., Chen, X.F., Wavelets for fault diagnosis of rotary machines: a review with applications. Signal Process. 96 (2014), 1–15.
    • (2014) Signal Process. , vol.96 , pp. 1-15
    • An, R.Q.1    Gao, R.X.2    Chen, X.F.3
  • 5
    • 84889096899 scopus 로고    scopus 로고
    • Multiwavelet transform and its applications in mechanical fault diagnosis - a review
    • FEB 3
    • [5] Sun, H.L., He, Z.J., Zi, Y.Y., Yuan, J., Wang, X.D., Chen, J.L., He, S.L., Multiwavelet transform and its applications in mechanical fault diagnosis - a review. FEB 3 Mech. Syst. Signal Process. 43:1–2 (2014), 1–24.
    • (2014) Mech. Syst. Signal Process. , vol.43 , Issue.1-2 , pp. 1-24
    • Sun, H.L.1    He, Z.J.2    Zi, Y.Y.3    Yuan, J.4    Wang, X.D.5    Chen, J.L.6    He, S.L.7
  • 7
    • 4344660716 scopus 로고    scopus 로고
    • Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings
    • [7] Yu, D.J., Cheng, J.S., Yang, Y., Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings. Mech. Syst. Signal Process. 19:2 (2005), 259–271.
    • (2005) Mech. Syst. Signal Process. , vol.19 , Issue.2 , pp. 259-271
    • Yu, D.J.1    Cheng, J.S.2    Yang, Y.3
  • 8
    • 34249751601 scopus 로고    scopus 로고
    • Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform
    • [8] Rai, V.K., Mohanty, A.R., Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform. Mech. Syst. Signal Process. 21:6 (2007), 2601–2675.
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.6 , pp. 2601-2675
    • Rai, V.K.1    Mohanty, A.R.2
  • 9
    • 84881311030 scopus 로고    scopus 로고
    • Generalized empirical mode decomposition and its applications to rolling element bearing fault diagnosis
    • [9] Zheng, J.D., Cheng, J.S., Yang, Y., Generalized empirical mode decomposition and its applications to rolling element bearing fault diagnosis. Mech. Syst. Signal Process. 40:1 (2013), 136–153.
    • (2013) Mech. Syst. Signal Process. , vol.40 , Issue.1 , pp. 136-153
    • Zheng, J.D.1    Cheng, J.S.2    Yang, Y.3
  • 10
    • 84885579397 scopus 로고    scopus 로고
    • Bearing fault detection based on hybrid ensemble detector and empirical mode decomposition
    • [10] Georgoulasa, George, Loutasb, Theodore, Styliosa, Chrysostomos D., Kostopoulosb, Vassilis, Bearing fault detection based on hybrid ensemble detector and empirical mode decomposition. Mech. Syst. Signal Process. 41:1–2 (2013), 510–525.
    • (2013) Mech. Syst. Signal Process. , vol.41 , Issue.1-2 , pp. 510-525
    • Georgoulasa, G.1    Loutasb, T.2    Styliosa, C.D.3    Kostopoulosb, V.4
  • 11
    • 84908118070 scopus 로고    scopus 로고
    • Bi-spectrum based-EMD applied to the non-stationary vibration signals for bearing faults diagnosis
    • [11] Saidi, Lotfi, Ali, Jaouher Ben, Fnaiech, Farhat, Bi-spectrum based-EMD applied to the non-stationary vibration signals for bearing faults diagnosis. ISA Trans. 53:5 (2014), 1650–1660.
    • (2014) ISA Trans. , vol.53 , Issue.5 , pp. 1650-1660
    • Saidi, L.1    Ali, J.B.2    Fnaiech, F.3
  • 12
    • 84908098929 scopus 로고    scopus 로고
    • Bearing faults diagnostics based on hybrid LS-SVM and EMD method
    • [12] Liu, Xiaofeng, BO, Lin, Luo, Honglin, Bearing faults diagnostics based on hybrid LS-SVM and EMD method. Measurement 59 (2015), 145–166.
    • (2015) Measurement , vol.59 , pp. 145-166
    • Liu, X.1    BO, L.2    Luo, H.3
  • 13
    • 84867674014 scopus 로고    scopus 로고
    • A novel signal compression method based on optimal ensemble empirical mode decomposition for bearing vibration signals
    • [13] Guo, W., Tse, P.W., A novel signal compression method based on optimal ensemble empirical mode decomposition for bearing vibration signals. J. Sound Vib. 332:2 (2013), 423–441.
    • (2013) J. Sound Vib. , vol.332 , Issue.2 , pp. 423-441
    • Guo, W.1    Tse, P.W.2
  • 15
    • 84875269406 scopus 로고    scopus 로고
    • An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis
    • [15] Jiang, H.K., Li, C.L., Li, H.X., An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis. Mech. Syst. Signal Process. 36:2 (2013), 225–239.
    • (2013) Mech. Syst. Signal Process. , vol.36 , Issue.2 , pp. 225-239
    • Jiang, H.K.1    Li, C.L.2    Li, H.X.3
  • 16
    • 84903775246 scopus 로고    scopus 로고
    • Fault identification of rotor-bearing system based on ensemble empirical mode decomposition and self-zero space projection analysis
    • [16] Jiang, Fan, Zhu, Zhencai, Li, Wei, Zhou, Gongbo, Chen, Guoan, Fault identification of rotor-bearing system based on ensemble empirical mode decomposition and self-zero space projection analysis. J. Sound Vib. 333:14 (2014), 3321–3331.
    • (2014) J. Sound Vib. , vol.333 , Issue.14 , pp. 3321-3331
    • Jiang, F.1    Zhu, Z.2    Li, W.3    Zhou, G.4    Chen, G.5
  • 17
    • 84928609215 scopus 로고    scopus 로고
    • An adaptively fast ensemble empirical mode decomposition method and its applications to rolling element bearing fault diagnosis
    • [17] Xue, Xiaoming, Zhou, Jianzhong, Xu, Yanhe, Zhu, Wenlong, Li, Chaoshun, An adaptively fast ensemble empirical mode decomposition method and its applications to rolling element bearing fault diagnosis. Mech. Syst. Signal Process. 62–63 (2015), 444–459.
    • (2015) Mech. Syst. Signal Process. , vol.62-63 , pp. 444-459
    • Xue, X.1    Zhou, J.2    Xu, Y.3    Zhu, W.4    Li, C.5
  • 18
    • 33747100681 scopus 로고    scopus 로고
    • The local mean decomposition and its application to EEG perception data
    • [18] Smith, J.S., The local mean decomposition and its application to EEG perception data. J. R. Soc. Interface 2:5 (2005), 443–454.
    • (2005) J. R. Soc. Interface , vol.2 , Issue.5 , pp. 443-454
    • Smith, J.S.1
  • 19
    • 84894063847 scopus 로고    scopus 로고
    • A fault diagnosis method based on local mean decomposition and multi-scale entropy for roller bearings
    • [19] Liu, Huanhuan, Han, Minghong, A fault diagnosis method based on local mean decomposition and multi-scale entropy for roller bearings. Mech. Mach. Theory 75 (2014), 67–78.
    • (2014) Mech. Mach. Theory , vol.75 , pp. 67-78
    • Liu, H.1    Han, M.2
  • 20
    • 84959874134 scopus 로고    scopus 로고
    • Zhiwen Liu, Zhengjia He, Wei Guo, Zhangchun Tang, A hybrid fault diagnosis method based on second generation wavelet de-noising and local mean decomposition for rotating machinery, ISA Transactions Available (Jan).
    • [20] Zhiwen Liu, Zhengjia He, Wei Guo, Zhangchun Tang, A hybrid fault diagnosis method based on second generation wavelet de-noising and local mean decomposition for rotating machinery, ISA Transactions Available (Jan 2016).
    • (2016)
  • 21
    • 84953395679 scopus 로고    scopus 로고
    • Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals
    • [21] Chen, Jinglong, Pan, Jun, Li, Zipeng, Zi, Yanyang, Chen, Xuefeng, Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals. Renew. Energy 89 (2016), 80–92.
    • (2016) Renew. Energy , vol.89 , pp. 80-92
    • Chen, J.1    Pan, J.2    Li, Z.3    Zi, Y.4    Chen, X.5
  • 22
    • 84955487882 scopus 로고    scopus 로고
    • Mono-component feature extraction for mechanical fault diagnosis using modified empirical wavelet transform via data-driven adaptive Fourier spectrum segment
    • [22] Pan, Jun, Chen, Jinglong, Zia, Yanyang, Li, Yueming, He, Zhengjia, Mono-component feature extraction for mechanical fault diagnosis using modified empirical wavelet transform via data-driven adaptive Fourier spectrum segment. Mech. Syst. Signal Process. 72–73 (2016), 160–183.
    • (2016) Mech. Syst. Signal Process. , vol.72-73 , pp. 160-183
    • Pan, J.1    Chen, J.2    Zia, Y.3    Li, Y.4    He, Z.5
  • 23
    • 84880891329 scopus 로고    scopus 로고
    • Empirical wavelet transform
    • [23] Gilles, J., Empirical wavelet transform. IEEE Trans. Signal Process. 61:16 (2013), 3999–4010.
    • (2013) IEEE Trans. Signal Process. , vol.61 , Issue.16 , pp. 3999-4010
    • Gilles, J.1
  • 24
    • 84921847696 scopus 로고    scopus 로고
    • Two-dimensional variational mode decomposition
    • [24] Dragomiretskiy, K., Zosso, D., Two-dimensional variational mode decomposition. Lect. Notes Comput. Sci. 8932 (2015), 197–208.
    • (2015) Lect. Notes Comput. Sci. , vol.8932 , pp. 197-208
    • Dragomiretskiy, K.1    Zosso, D.2
  • 25
    • 84925956911 scopus 로고    scopus 로고
    • Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system
    • [25] Wang, Y.X., Markert, R., Xiang, J.W., Zheng, W.G., Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system. Mech. Syst. Signal Process. 60–61 (2015), 243–251.
    • (2015) Mech. Syst. Signal Process. , vol.60-61 , pp. 243-251
    • Wang, Y.X.1    Markert, R.2    Xiang, J.W.3    Zheng, W.G.4
  • 26
    • 84924278075 scopus 로고    scopus 로고
    • Comparative study between VMD and EMD in bearing fault diagnosis
    • Proceedings of the 9th International Conference on Industrial and Information Systems (2014) pp.1–6.
    • [26] S. Mohanty, K.K. Gupta, K.S. Raju, Comparative study between VMD and EMD in bearing fault diagnosis, in: Proceedings of the 9th International Conference on Industrial and Information Systems (2014) pp.1–6.
    • Mohanty, S.1    Gupta, K.K.2    Raju, K.S.3
  • 27
    • 84924273523 scopus 로고    scopus 로고
    • Gupta, K.S. Raju, Bearing fault analysis using using variational mode decompositon, in:Proceedings of the 9th International Conference on Industrial and Information Systems (ICIIS) (Dec. 2014) pp.
    • [27] K.K. Mohanty, Gupta, K.S. Raju, Bearing fault analysis using using variational mode decompositon, in:Proceedings of the 9th International Conference on Industrial and Information Systems (ICIIS) (Dec. 2014) pp. 1–6.
    • Mohanty, K.K.1
  • 29
    • 0014604308 scopus 로고
    • Multiplier and gradient methods
    • [29] Hestenes, M.R., Multiplier and gradient methods. J. Optim. Theory Appl 4:5 (1969), 303–320.
    • (1969) J. Optim. Theory Appl , vol.4 , Issue.5 , pp. 303-320
    • Hestenes, M.R.1
  • 30
    • 84885602851 scopus 로고    scopus 로고
    • Spectrum auto-correlation analysis and its application to fault diagnosis of rolling element bearings
    • [30] Ming, A.B., Qin, Z.Y., Zhang, W., Chua, F.L., Spectrum auto-correlation analysis and its application to fault diagnosis of rolling element bearings. Mech. Syst. Signal Process. 41 (2013), 141–154.
    • (2013) Mech. Syst. Signal Process. , vol.41 , pp. 141-154
    • Ming, A.B.1    Qin, Z.Y.2    Zhang, W.3    Chua, F.L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.