-
1
-
-
84883783507
-
-
Experimental evidences in bearing diagnostics for traction system of high speed trains, in; Proceedings of the Prognostics and Health Management Conference. Vol.33 (2013) pp.739–744.
-
[1] P. Pennacchi, S. Chatterton, A. Vania, R. Ricci, P. Borghesani, Experimental evidences in bearing diagnostics for traction system of high speed trains, in; Proceedings of the Prognostics and Health Management Conference. Vol.33 (2013) pp.739–744.
-
-
-
Pennacchi, P.1
Chatterton, S.2
Vania, A.3
Ricci, R.4
Borghesani, P.5
-
2
-
-
84887863490
-
A Doppler Transient Model based on the laplace wavelet and spectrum correlation assessment for locomotive bearing fault diagnosis
-
[2] Shen, C.Q., Liu, F., Wang, D., Zhang, A., Kong, F.R., Tse, P.W., A Doppler Transient Model based on the laplace wavelet and spectrum correlation assessment for locomotive bearing fault diagnosis. Sensors 13:11 (2013), 15726–15746.
-
(2013)
Sensors
, vol.13
, Issue.11
, pp. 15726-15746
-
-
Shen, C.Q.1
Liu, F.2
Wang, D.3
Zhang, A.4
Kong, F.R.5
Tse, P.W.6
-
3
-
-
79954415606
-
Rolling element bearing fault diagnosis using wavelet transform
-
[3] Kankar, P.K., Satish, C., Sharma, Harsha, S.P., Rolling element bearing fault diagnosis using wavelet transform. Neurocomputing 74 (2011), 1638–1645.
-
(2011)
Neurocomputing
, vol.74
, pp. 1638-1645
-
-
Kankar, P.K.1
Satish, C.2
Sharma3
Harsha, S.P.4
-
4
-
-
84887433963
-
Wavelets for fault diagnosis of rotary machines: a review with applications
-
[4] An, R.Q., Gao, R.X., Chen, X.F., Wavelets for fault diagnosis of rotary machines: a review with applications. Signal Process. 96 (2014), 1–15.
-
(2014)
Signal Process.
, vol.96
, pp. 1-15
-
-
An, R.Q.1
Gao, R.X.2
Chen, X.F.3
-
5
-
-
84889096899
-
Multiwavelet transform and its applications in mechanical fault diagnosis - a review
-
FEB 3
-
[5] Sun, H.L., He, Z.J., Zi, Y.Y., Yuan, J., Wang, X.D., Chen, J.L., He, S.L., Multiwavelet transform and its applications in mechanical fault diagnosis - a review. FEB 3 Mech. Syst. Signal Process. 43:1–2 (2014), 1–24.
-
(2014)
Mech. Syst. Signal Process.
, vol.43
, Issue.1-2
, pp. 1-24
-
-
Sun, H.L.1
He, Z.J.2
Zi, Y.Y.3
Yuan, J.4
Wang, X.D.5
Chen, J.L.6
He, S.L.7
-
6
-
-
5444236478
-
The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
-
[6] Huang, N.E., Shen, Z., Long, S.R., Wu, M.L.C., Shih, H.H., Zheng, Q.N., Yen, N.C., Tung, C.C., Liu, H.H., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A-Math. Phys. Eng. Sci. 454:1971 (1998), 903–995.
-
(1998)
Proc. R. Soc. A-Math. Phys. Eng. Sci.
, vol.454
, Issue.1971
, pp. 903-995
-
-
Huang, N.E.1
Shen, Z.2
Long, S.R.3
Wu, M.L.C.4
Shih, H.H.5
Zheng, Q.N.6
Yen, N.C.7
Tung, C.C.8
Liu, H.H.9
-
7
-
-
4344660716
-
Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings
-
[7] Yu, D.J., Cheng, J.S., Yang, Y., Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings. Mech. Syst. Signal Process. 19:2 (2005), 259–271.
-
(2005)
Mech. Syst. Signal Process.
, vol.19
, Issue.2
, pp. 259-271
-
-
Yu, D.J.1
Cheng, J.S.2
Yang, Y.3
-
8
-
-
34249751601
-
Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform
-
[8] Rai, V.K., Mohanty, A.R., Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform. Mech. Syst. Signal Process. 21:6 (2007), 2601–2675.
-
(2007)
Mech. Syst. Signal Process.
, vol.21
, Issue.6
, pp. 2601-2675
-
-
Rai, V.K.1
Mohanty, A.R.2
-
9
-
-
84881311030
-
Generalized empirical mode decomposition and its applications to rolling element bearing fault diagnosis
-
[9] Zheng, J.D., Cheng, J.S., Yang, Y., Generalized empirical mode decomposition and its applications to rolling element bearing fault diagnosis. Mech. Syst. Signal Process. 40:1 (2013), 136–153.
-
(2013)
Mech. Syst. Signal Process.
, vol.40
, Issue.1
, pp. 136-153
-
-
Zheng, J.D.1
Cheng, J.S.2
Yang, Y.3
-
10
-
-
84885579397
-
Bearing fault detection based on hybrid ensemble detector and empirical mode decomposition
-
[10] Georgoulasa, George, Loutasb, Theodore, Styliosa, Chrysostomos D., Kostopoulosb, Vassilis, Bearing fault detection based on hybrid ensemble detector and empirical mode decomposition. Mech. Syst. Signal Process. 41:1–2 (2013), 510–525.
-
(2013)
Mech. Syst. Signal Process.
, vol.41
, Issue.1-2
, pp. 510-525
-
-
Georgoulasa, G.1
Loutasb, T.2
Styliosa, C.D.3
Kostopoulosb, V.4
-
11
-
-
84908118070
-
Bi-spectrum based-EMD applied to the non-stationary vibration signals for bearing faults diagnosis
-
[11] Saidi, Lotfi, Ali, Jaouher Ben, Fnaiech, Farhat, Bi-spectrum based-EMD applied to the non-stationary vibration signals for bearing faults diagnosis. ISA Trans. 53:5 (2014), 1650–1660.
-
(2014)
ISA Trans.
, vol.53
, Issue.5
, pp. 1650-1660
-
-
Saidi, L.1
Ali, J.B.2
Fnaiech, F.3
-
12
-
-
84908098929
-
Bearing faults diagnostics based on hybrid LS-SVM and EMD method
-
[12] Liu, Xiaofeng, BO, Lin, Luo, Honglin, Bearing faults diagnostics based on hybrid LS-SVM and EMD method. Measurement 59 (2015), 145–166.
-
(2015)
Measurement
, vol.59
, pp. 145-166
-
-
Liu, X.1
BO, L.2
Luo, H.3
-
13
-
-
84867674014
-
A novel signal compression method based on optimal ensemble empirical mode decomposition for bearing vibration signals
-
[13] Guo, W., Tse, P.W., A novel signal compression method based on optimal ensemble empirical mode decomposition for bearing vibration signals. J. Sound Vib. 332:2 (2013), 423–441.
-
(2013)
J. Sound Vib.
, vol.332
, Issue.2
, pp. 423-441
-
-
Guo, W.1
Tse, P.W.2
-
14
-
-
1542357546
-
A confidence limit for the empirical mode decomposition and Hilbert spectral analysis
-
[14] Huang, N.E., Wu, M.L.C., Long, S.R., Shen, S.S.P., Qu, W.D., Gloersen, P., Fan, K.L., A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proc. R. Soc. A-Math. Phys. Eng. Sci. 459:2034 (2003), 2317–2345.
-
(2003)
Proc. R. Soc. A-Math. Phys. Eng. Sci.
, vol.459
, Issue.2034
, pp. 2317-2345
-
-
Huang, N.E.1
Wu, M.L.C.2
Long, S.R.3
Shen, S.S.P.4
Qu, W.D.5
Gloersen, P.6
Fan, K.L.7
-
15
-
-
84875269406
-
An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis
-
[15] Jiang, H.K., Li, C.L., Li, H.X., An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis. Mech. Syst. Signal Process. 36:2 (2013), 225–239.
-
(2013)
Mech. Syst. Signal Process.
, vol.36
, Issue.2
, pp. 225-239
-
-
Jiang, H.K.1
Li, C.L.2
Li, H.X.3
-
16
-
-
84903775246
-
Fault identification of rotor-bearing system based on ensemble empirical mode decomposition and self-zero space projection analysis
-
[16] Jiang, Fan, Zhu, Zhencai, Li, Wei, Zhou, Gongbo, Chen, Guoan, Fault identification of rotor-bearing system based on ensemble empirical mode decomposition and self-zero space projection analysis. J. Sound Vib. 333:14 (2014), 3321–3331.
-
(2014)
J. Sound Vib.
, vol.333
, Issue.14
, pp. 3321-3331
-
-
Jiang, F.1
Zhu, Z.2
Li, W.3
Zhou, G.4
Chen, G.5
-
17
-
-
84928609215
-
An adaptively fast ensemble empirical mode decomposition method and its applications to rolling element bearing fault diagnosis
-
[17] Xue, Xiaoming, Zhou, Jianzhong, Xu, Yanhe, Zhu, Wenlong, Li, Chaoshun, An adaptively fast ensemble empirical mode decomposition method and its applications to rolling element bearing fault diagnosis. Mech. Syst. Signal Process. 62–63 (2015), 444–459.
-
(2015)
Mech. Syst. Signal Process.
, vol.62-63
, pp. 444-459
-
-
Xue, X.1
Zhou, J.2
Xu, Y.3
Zhu, W.4
Li, C.5
-
18
-
-
33747100681
-
The local mean decomposition and its application to EEG perception data
-
[18] Smith, J.S., The local mean decomposition and its application to EEG perception data. J. R. Soc. Interface 2:5 (2005), 443–454.
-
(2005)
J. R. Soc. Interface
, vol.2
, Issue.5
, pp. 443-454
-
-
Smith, J.S.1
-
19
-
-
84894063847
-
A fault diagnosis method based on local mean decomposition and multi-scale entropy for roller bearings
-
[19] Liu, Huanhuan, Han, Minghong, A fault diagnosis method based on local mean decomposition and multi-scale entropy for roller bearings. Mech. Mach. Theory 75 (2014), 67–78.
-
(2014)
Mech. Mach. Theory
, vol.75
, pp. 67-78
-
-
Liu, H.1
Han, M.2
-
20
-
-
84959874134
-
-
Zhiwen Liu, Zhengjia He, Wei Guo, Zhangchun Tang, A hybrid fault diagnosis method based on second generation wavelet de-noising and local mean decomposition for rotating machinery, ISA Transactions Available (Jan).
-
[20] Zhiwen Liu, Zhengjia He, Wei Guo, Zhangchun Tang, A hybrid fault diagnosis method based on second generation wavelet de-noising and local mean decomposition for rotating machinery, ISA Transactions Available (Jan 2016).
-
(2016)
-
-
-
21
-
-
84953395679
-
Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals
-
[21] Chen, Jinglong, Pan, Jun, Li, Zipeng, Zi, Yanyang, Chen, Xuefeng, Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals. Renew. Energy 89 (2016), 80–92.
-
(2016)
Renew. Energy
, vol.89
, pp. 80-92
-
-
Chen, J.1
Pan, J.2
Li, Z.3
Zi, Y.4
Chen, X.5
-
22
-
-
84955487882
-
Mono-component feature extraction for mechanical fault diagnosis using modified empirical wavelet transform via data-driven adaptive Fourier spectrum segment
-
[22] Pan, Jun, Chen, Jinglong, Zia, Yanyang, Li, Yueming, He, Zhengjia, Mono-component feature extraction for mechanical fault diagnosis using modified empirical wavelet transform via data-driven adaptive Fourier spectrum segment. Mech. Syst. Signal Process. 72–73 (2016), 160–183.
-
(2016)
Mech. Syst. Signal Process.
, vol.72-73
, pp. 160-183
-
-
Pan, J.1
Chen, J.2
Zia, Y.3
Li, Y.4
He, Z.5
-
23
-
-
84880891329
-
Empirical wavelet transform
-
[23] Gilles, J., Empirical wavelet transform. IEEE Trans. Signal Process. 61:16 (2013), 3999–4010.
-
(2013)
IEEE Trans. Signal Process.
, vol.61
, Issue.16
, pp. 3999-4010
-
-
Gilles, J.1
-
24
-
-
84921847696
-
Two-dimensional variational mode decomposition
-
[24] Dragomiretskiy, K., Zosso, D., Two-dimensional variational mode decomposition. Lect. Notes Comput. Sci. 8932 (2015), 197–208.
-
(2015)
Lect. Notes Comput. Sci.
, vol.8932
, pp. 197-208
-
-
Dragomiretskiy, K.1
Zosso, D.2
-
25
-
-
84925956911
-
Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system
-
[25] Wang, Y.X., Markert, R., Xiang, J.W., Zheng, W.G., Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system. Mech. Syst. Signal Process. 60–61 (2015), 243–251.
-
(2015)
Mech. Syst. Signal Process.
, vol.60-61
, pp. 243-251
-
-
Wang, Y.X.1
Markert, R.2
Xiang, J.W.3
Zheng, W.G.4
-
26
-
-
84924278075
-
Comparative study between VMD and EMD in bearing fault diagnosis
-
Proceedings of the 9th International Conference on Industrial and Information Systems (2014) pp.1–6.
-
[26] S. Mohanty, K.K. Gupta, K.S. Raju, Comparative study between VMD and EMD in bearing fault diagnosis, in: Proceedings of the 9th International Conference on Industrial and Information Systems (2014) pp.1–6.
-
-
-
Mohanty, S.1
Gupta, K.K.2
Raju, K.S.3
-
27
-
-
84924273523
-
-
Gupta, K.S. Raju, Bearing fault analysis using using variational mode decompositon, in:Proceedings of the 9th International Conference on Industrial and Information Systems (ICIIS) (Dec. 2014) pp.
-
[27] K.K. Mohanty, Gupta, K.S. Raju, Bearing fault analysis using using variational mode decompositon, in:Proceedings of the 9th International Conference on Industrial and Information Systems (ICIIS) (Dec. 2014) pp. 1–6.
-
-
-
Mohanty, K.K.1
-
28
-
-
84893418756
-
Variational mode decomposition
-
[28] Dragomiretskiy, K., Zosso, D., Variational mode decomposition. IEEE Trans. Signal Process. 62:3 (2014), 531–544.
-
(2014)
IEEE Trans. Signal Process.
, vol.62
, Issue.3
, pp. 531-544
-
-
Dragomiretskiy, K.1
Zosso, D.2
-
29
-
-
0014604308
-
Multiplier and gradient methods
-
[29] Hestenes, M.R., Multiplier and gradient methods. J. Optim. Theory Appl 4:5 (1969), 303–320.
-
(1969)
J. Optim. Theory Appl
, vol.4
, Issue.5
, pp. 303-320
-
-
Hestenes, M.R.1
-
30
-
-
84885602851
-
Spectrum auto-correlation analysis and its application to fault diagnosis of rolling element bearings
-
[30] Ming, A.B., Qin, Z.Y., Zhang, W., Chua, F.L., Spectrum auto-correlation analysis and its application to fault diagnosis of rolling element bearings. Mech. Syst. Signal Process. 41 (2013), 141–154.
-
(2013)
Mech. Syst. Signal Process.
, vol.41
, pp. 141-154
-
-
Ming, A.B.1
Qin, Z.Y.2
Zhang, W.3
Chua, F.L.4
|