메뉴 건너뛰기




Volumn 81, Issue , 2016, Pages 219-234

Multivariate empirical mode decomposition and its application to fault diagnosis of rolling bearing

Author keywords

Fault correlation factor; Multiple sensors; Multivariate EM.D.; Rolling bearing

Indexed keywords

BEARINGS (MACHINE PARTS); FAILURE ANALYSIS; FAULT DETECTION; FEATURE EXTRACTION; MACHINERY; NUMERICAL METHODS; SIGNAL PROCESSING; SPECTRUM ANALYSIS; STRUCTURAL ANALYSIS;

EID: 84979459993     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2016.03.010     Document Type: Article
Times cited : (226)

References (31)
  • 1
    • 84876947364 scopus 로고    scopus 로고
    • Hard competitive growing neural network for the diagnosis of small bearing faults
    • M. Barakat, M. El Badaoui, and F. Guillet Hard competitive growing neural network for the diagnosis of small bearing faults Mech. Syst. Signal Process. 37 2013 276 292
    • (2013) Mech. Syst. Signal Process. , vol.37 , pp. 276-292
    • Barakat, M.1    El Badaoui, M.2    Guillet, F.3
  • 2
    • 84887493381 scopus 로고    scopus 로고
    • Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell
    • M.S. Safizadeh, and S.K. Latifi Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell Inf. Fusion 18 4 2014 1 8
    • (2014) Inf. Fusion , vol.18 , Issue.4 , pp. 1-8
    • Safizadeh, M.S.1    Latifi, S.K.2
  • 3
    • 67651155773 scopus 로고    scopus 로고
    • Multiple manifolds analysis and its application to fault diagnosis
    • M. Li, J. Xu, J. Yang, and D. Yang Multiple manifolds analysis and its application to fault diagnosis Mech. Syst. Signal Process. 23 8 2009 2500 2509
    • (2009) Mech. Syst. Signal Process. , vol.23 , Issue.8 , pp. 2500-2509
    • Li, M.1    Xu, J.2    Yang, J.3    Yang, D.4
  • 4
    • 84880891329 scopus 로고    scopus 로고
    • Empirical wavelet transform
    • J. Gilles, and et al. Empirical wavelet transform IEEE Trans. Signal Process. 61 16 2013 3999 4010
    • (2013) IEEE Trans. Signal Process. , vol.61 , Issue.16 , pp. 3999-4010
    • Gilles, J.1
  • 5
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • A. Hyvärinen Independent component analysis: Algorithms and applications Neural Netw. 45 2000 411 430
    • (2000) Neural Netw. , vol.45 , pp. 411-430
    • Hyvärinen, A.1
  • 6
    • 27844487555 scopus 로고    scopus 로고
    • Empirical mode decomposition: An analytical approach for sifting process
    • E. Delechelle, and et al. Empirical mode decomposition: An analytical approach for sifting process IEEE Signal Process. Lett. 12 11 2005 764 767
    • (2005) IEEE Signal Process. Lett. , vol.12 , Issue.11 , pp. 764-767
    • Delechelle, E.1
  • 7
    • 34547728582 scopus 로고    scopus 로고
    • Robust image watermarking based on multiband wavelets and empirical mode decomposition
    • Ning Bi, and et al. Robust image watermarking based on multiband wavelets and empirical mode decomposition IEEE Trans. Image Process. 16 8 2007 1956 1966
    • (2007) IEEE Trans. Image Process. , vol.16 , Issue.8 , pp. 1956-1966
    • Bi, N.1
  • 8
    • 79951580715 scopus 로고    scopus 로고
    • Diagnostics of gear faults based on EMD and automatic selection of intrinsic mode functions
    • R. Ricci, and P. Pennacchi Diagnostics of gear faults based on EMD and automatic selection of intrinsic mode functions Mech. Syst. Signal Process. 25 3 2011 821 838
    • (2011) Mech. Syst. Signal Process. , vol.25 , Issue.3 , pp. 821-838
    • Ricci, R.1    Pennacchi, P.2
  • 9
    • 52349111044 scopus 로고    scopus 로고
    • Applications of empirical mode decomposition for processing nonstationary signal
    • D.M. Klionski, N.I. Oreshko, and V.V. Geppener Applications of empirical mode decomposition for processing nonstationary signal Pattern Recognit. Image Anal. 18 3 2008 390 399
    • (2008) Pattern Recognit. Image Anal. , vol.18 , Issue.3 , pp. 390-399
    • Klionski, D.M.1    Oreshko, N.I.2    Geppener, V.V.3
  • 10
    • 85032750818 scopus 로고    scopus 로고
    • Empirical mode decomposition-based time-frequency analysis of multivariate signal: The power of adaptive data analysis
    • D.P. Mandic, N.U. Rehman, Z. Wu, and et al. Empirical mode decomposition-based time-frequency analysis of multivariate signal: The power of adaptive data analysis IEEE Signal Process. Mag. 6 2013 74 86
    • (2013) IEEE Signal Process. Mag. , vol.6 , pp. 74-86
    • Mandic, D.P.1    Rehman, N.U.2    Wu, Z.3
  • 12
    • 84908042448 scopus 로고    scopus 로고
    • Classification of epileptic seizures in EEG signal based on phase space representation of intrinsic mode functions
    • R. Sharma, and R.B. Pachori Classification of epileptic seizures in EEG signal based on phase space representation of intrinsic mode functions Expert Syst. Appl. 42 2015 1106 1117
    • (2015) Expert Syst. Appl. , vol.42 , pp. 1106-1117
    • Sharma, R.1    Pachori, R.B.2
  • 15
    • 78449288116 scopus 로고    scopus 로고
    • Empirical mode decomposition for trivariate signal
    • N. Rehman, D.P. Mandic, and et al. Empirical mode decomposition for trivariate signal IEEE Trans. Signal Process. 3 2010 1059 1068
    • (2010) IEEE Trans. Signal Process. , vol.3 , pp. 1059-1068
    • Rehman, N.1    Mandic, D.P.2
  • 16
    • 18644361852 scopus 로고    scopus 로고
    • Interpolating three-dimensional kinematic data using quaternion splines and hermite curves
    • J. Coburn, and J.J. Crisco Interpolating three-dimensional kinematic data using quaternion splines and hermite curves J. Biomech. Eng. 127 2 2004 311 317
    • (2004) J. Biomech. Eng. , vol.127 , Issue.2 , pp. 311-317
    • Coburn, J.1    Crisco, J.J.2
  • 17
    • 82255179549 scopus 로고    scopus 로고
    • Multivariate EMD and full spectrum based condition monitoring for rotating machinery
    • Xiaomin Zhao, and et al. Multivariate EMD and full spectrum based condition monitoring for rotating machinery Mech. Syst. Signal Process. 27 1 2012 712 728
    • (2012) Mech. Syst. Signal Process. , vol.27 , Issue.1 , pp. 712-728
    • Zhao, X.1
  • 18
    • 0041668171 scopus 로고    scopus 로고
    • Reliability and accuracy of different sensors of a flexible electrogoniometer
    • Angela Shiratsu, and H.J.C.G. Coury Reliability and accuracy of different sensors of a flexible electrogoniometer Clin. Biomech. 18 7 2003 682 684
    • (2003) Clin. Biomech. , vol.18 , Issue.7 , pp. 682-684
    • Shiratsu, A.1    Coury, H.J.C.G.2
  • 19
    • 79954482528 scopus 로고    scopus 로고
    • Examining the distribution of sampling point sets on sphere for monte carlo image rendering
    • A. Penzov A, T. Dimov I, M. Mitev N, et al., Examining the distribution of sampling point sets on sphere for monte carlo image rendering, in: AIP Conference Proceedings. 1281 1, (2010), 2103-2106.
    • (2010) AIP Conference Proceedings , vol.1281 , Issue.1 , pp. 2103-2106
    • Penzov, A.A.1    Dimov, I.T.2    Mitev, N.M.3
  • 20
    • 70349896197 scopus 로고    scopus 로고
    • L p discrepancy of generalized two-dimensional Hammersley point sets
    • Henri Faure, and Friedrich Pillichshammer L p discrepancy of generalized two-dimensional Hammersley point sets Mon. Math. 158 1 2009 31 61
    • (2009) Mon. Math. , vol.158 , Issue.1 , pp. 31-61
    • Faure, H.1    Pillichshammer, F.2
  • 21
    • 31044443577 scopus 로고    scopus 로고
    • Research on the intrinsic mode function (IMF) criterion in EMD method
    • Cheng Junsheng, Yu Dejie, and Yu Yang Research on the intrinsic mode function (IMF) criterion in EMD method Mech. Syst. Signal Process. 20 4 2006 817 824
    • (2006) Mech. Syst. Signal Process. , vol.20 , Issue.4 , pp. 817-824
    • Junsheng, C.1    Dejie, Y.2    Yang, Y.3
  • 23
    • 84899502032 scopus 로고    scopus 로고
    • EMD via MEMD: Multivariate noise-Aided computation of standard EMD
    • N.U. Rehman, C. Park, and N.E. Huang EMD via MEMD: multivariate noise-Aided computation of standard EMD Adv. Adapt. Data Anal. 5 2 2013 1 25
    • (2013) Adv. Adapt. Data Anal. , vol.5 , Issue.2 , pp. 1-25
    • Rehman, N.U.1    Park, C.2    Huang, N.E.3
  • 24
    • 38349039525 scopus 로고    scopus 로고
    • Multiscale morphology analysis and its application to fault diagnosis
    • Lijun Zhang, and et al. Multiscale morphology analysis and its application to fault diagnosis Mech. Syst. Signal Process. 22 3 2008 597 610
    • (2008) Mech. Syst. Signal Process. , vol.22 , Issue.3 , pp. 597-610
    • Zhang, L.1
  • 26
    • 33645653318 scopus 로고    scopus 로고
    • A review of image denoising algorithms, with a new one
    • Antoni Buades, Bartomeu Coll, and Jean-Michel Morel A review of image denoising algorithms, with a new one Multiscale Model. Simul. 4 2 2005 490 530
    • (2005) Multiscale Model. Simul. , vol.4 , Issue.2 , pp. 490-530
    • Buades, A.1    Coll, B.2    Morel, J.-M.3
  • 27
    • 27644496932 scopus 로고    scopus 로고
    • A new dependency and correlation analysis for features
    • Guangzhi Qu, Salim Hariri, and Mazin Yousif A new dependency and correlation analysis for features IEEE Trans. Knowl. Data Eng. 17 9 2005 1199 1207
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.9 , pp. 1199-1207
    • Qu, G.1    Hariri, S.2    Yousif, M.3
  • 28
    • 84875800500 scopus 로고    scopus 로고
    • Fault vibration signal feature of rolling bearing and its diagnosis method
    • W. Bin, W. Min-jie, and K. Jing Fault vibration signal feature of rolling bearing and its diagnosis method J. Dalian Univ. Technol. 53 1 2013 76 81
    • (2013) J. Dalian Univ. Technol. , vol.53 , Issue.1 , pp. 76-81
    • Bin, W.1    Min-Jie, W.2    Jing, K.3
  • 30
    • 84920962217 scopus 로고    scopus 로고
    • Fault diagnosis of rolling bearing based on fast nonlocal means and envelop spectrum
    • Lv Yong, Zhu Qinglin, and Yuan Rui Fault diagnosis of rolling bearing based on fast nonlocal means and envelop spectrum Sensors 15 1 2015 1182 1198
    • (2015) Sensors , vol.15 , Issue.1 , pp. 1182-1198
    • Yong, L.1    Qinglin, Z.2    Rui, Y.3
  • 31
    • 37349079091 scopus 로고    scopus 로고
    • Case Western Reserve University http://csegroups.case.edu/bearingdatacenter/home.
    • K.A. Loparo, Bearings vibration data set, Case Western Reserve University http://csegroups.case.edu/bearingdatacenter/home.
    • Bearings Vibration Data Set
    • Loparo, K.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.