메뉴 건너뛰기




Volumn 63, Issue 5, 2016, Pages 3137-3147

An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards Mechanical Big Data

Author keywords

Intelligent fault diagnosis; mechanical big data; softmax regression; sparse filtering; unsupervised feature learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIG DATA; ELECTROMECHANICAL FILTERS; FAILURE ANALYSIS; NETWORK LAYERS; VIBRATIONS (MECHANICAL);

EID: 84963934455     PISSN: 02780046     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIE.2016.2519325     Document Type: Article
Times cited : (1102)

References (51)
  • 1
    • 84905960935 scopus 로고    scopus 로고
    • Process data analytics in the era of big data
    • Jul.
    • S. J. Qin, "Process data analytics in the era of big data," AIChE J., vol. 60, no. 9, pp. 3092-3100, Jul. 2014.
    • (2014) AIChE J. , vol.60 , Issue.9 , pp. 3092-3100
    • Qin, S.J.1
  • 2
    • 84984775970 scopus 로고    scopus 로고
    • Big data: Distilling meaning from data
    • Sep.
    • F. Frankel and R. Reid, "Big data: Distilling meaning from data," Nature, vol. 455, no. 7209, pp. 30-30, Sep. 2008.
    • (2008) Nature , vol.455 , Issue.7209 , pp. 30
    • Frankel, F.1    Reid, R.2
  • 3
    • 84923318381 scopus 로고    scopus 로고
    • Big data deep learning: Challenges and perspectives
    • May
    • X.-W. Chen and X. Lin, "Big data deep learning: Challenges and perspectives," IEEE Access, vol. 2, pp. 514-525, May 2014.
    • (2014) IEEE Access , vol.2 , pp. 514-525
    • Chen, X.-W.1    Lin, X.2
  • 5
    • 84926319635 scopus 로고    scopus 로고
    • Big data for modern industry: Challenges and trends
    • Feb.
    • S. Yin and O. Kaynak, "Big data for modern industry: Challenges and trends," Proc. IEEE, vol. 103, no. 2, pp. 143-146, Feb. 2015.
    • (2015) Proc. IEEE , vol.103 , Issue.2 , pp. 143-146
    • Yin, S.1    Kaynak, O.2
  • 6
    • 84941578649 scopus 로고    scopus 로고
    • A survey on wind turbine condition monitoring and fault diagnosis
    • Oct.
    • W. Qiao and D. Lu, "A survey on wind turbine condition monitoring and fault diagnosis," IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6536-6545, Oct. 2015.
    • (2015) IEEE Trans. Ind. Electron. , vol.62 , Issue.10 , pp. 6536-6545
    • Qiao, W.1    Lu, D.2
  • 7
    • 84890044969 scopus 로고    scopus 로고
    • Condition monitoring and fault diagnosis of planetary gearboxes: A review
    • Feb.
    • Y. Lei, J. Lin, M. J. Zuo, and Z. He, "Condition monitoring and fault diagnosis of planetary gearboxes: A review," Measurement, vol. 48, pp. 292-305, Feb. 2014.
    • (2014) Measurement , vol.48 , pp. 292-305
    • Lei, Y.1    Lin, J.2    Zuo, M.J.3    He, Z.4
  • 8
    • 84876902144 scopus 로고    scopus 로고
    • A nonlinear probabilistic method and contribution analysis for machine condition monitoring
    • May
    • J. Yu, "A nonlinear probabilistic method and contribution analysis for machine condition monitoring," Mech. Syst. Signal Process., vol. 37, no. 1, pp. 293-314, May 2013.
    • (2013) Mech. Syst. Signal Process. , vol.37 , Issue.1 , pp. 293-314
    • Yu, J.1
  • 9
    • 78349261500 scopus 로고    scopus 로고
    • Natural computing for mechanical systems research: A tutorial overview
    • Jan.
    • K. Worden, W. J. Staszewski, and J. J. Hensman, "Natural computing for mechanical systems research: A tutorial overview," Mech. Syst. Signal Process., vol. 25, no. 1, pp. 4-111, Jan. 2011.
    • (2011) Mech. Syst. Signal Process. , vol.25 , Issue.1 , pp. 4-111
    • Worden, K.1    Staszewski, W.J.2    Hensman, J.J.3
  • 10
    • 84883387648 scopus 로고    scopus 로고
    • Fault diagnosis in internal combustion engines using extension neural network
    • Mar.
    • Y. Shatnawi and M. Al-khassaweneh, "Fault diagnosis in internal combustion engines using extension neural network," IEEE Trans. Ind. Electron., vol. 61, no. 3, pp. 1434-1443, Mar. 2014.
    • (2014) IEEE Trans. Ind. Electron. , vol.61 , Issue.3 , pp. 1434-1443
    • Shatnawi, Y.1    Al-Khassaweneh, M.2
  • 11
    • 84876248148 scopus 로고    scopus 로고
    • Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks
    • Aug.
    • M. D. Prieto, G. Cirrincione, A. G. Espinosa, J. A. Ortega, and H. Henao, "Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks," IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3398-3407, Aug. 2013.
    • (2013) IEEE Trans. Ind. Electron. , vol.60 , Issue.8 , pp. 3398-3407
    • Prieto, M.D.1    Cirrincione, G.2    Espinosa, A.G.3    Ortega, J.A.4    Henao, H.5
  • 12
    • 84919934624 scopus 로고    scopus 로고
    • WPD-PCA-based laser welding process monitoring and defects diagnosis by using FNN and SVM
    • Jan.
    • D. You, X. Gao, and S. Katayama, "WPD-PCA-based laser welding process monitoring and defects diagnosis by using FNN and SVM," IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 628-638, Jan. 2015.
    • (2015) IEEE Trans. Ind. Electron. , vol.62 , Issue.1 , pp. 628-638
    • You, D.1    Gao, X.2    Katayama, S.3
  • 13
    • 36048939640 scopus 로고    scopus 로고
    • New clustering algorithm-based fault diagnosis using compensation distance evaluation technique
    • Feb.
    • Y. Lei, Z. He, Y. Zi, and X. Chen, "New clustering algorithm-based fault diagnosis using compensation distance evaluation technique," Mech. Syst. Signal Process., vol. 22, no. 2, pp. 419-435, Feb. 2008.
    • (2008) Mech. Syst. Signal Process. , vol.22 , Issue.2 , pp. 419-435
    • Lei, Y.1    He, Z.2    Zi, Y.3    Chen, X.4
  • 14
    • 84920116176 scopus 로고    scopus 로고
    • Reliable fault diagnosis for low-speed bearings using individually trained support vector machines with kernel discriminative feature analysis
    • May
    • M. Kang, J. Kim, J.-M. Kim, A. C. Tan, E. Y. Kim, and B.-K. Choi, "Reliable fault diagnosis for low-speed bearings using individually trained support vector machines with kernel discriminative feature analysis," IEEE Trans. Power Electron., vol. 30, no. 5, pp. 2786-2797, May 2015.
    • (2015) IEEE Trans. Power Electron. , vol.30 , Issue.5 , pp. 2786-2797
    • Kang, M.1    Kim, J.2    Kim, J.-M.3    Tan, A.C.4    Kim, E.Y.5    Choi, B.-K.6
  • 15
    • 84899481774 scopus 로고    scopus 로고
    • A review on basic datadriven approaches for industrial process monitoring
    • Nov.
    • S. Yin, S. X. Ding, X. Xie, and H. Luo, "A review on basic datadriven approaches for industrial process monitoring," IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 6418-6428, Nov. 2014.
    • (2014) IEEE Trans. Ind. Electron. , vol.61 , Issue.11 , pp. 6418-6428
    • Yin, S.1    Ding, S.X.2    Xie, X.3    Luo, H.4
  • 16
    • 34047251505 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs
    • Jul.
    • Y. Lei, Z. He, Y. Zi, and Q. Hu, "Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs," Mech. Syst. Signal Process., vol. 21, no. 5, pp. 2280-2294, Jul. 2007.
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.5 , pp. 2280-2294
    • Lei, Y.1    He, Z.2    Zi, Y.3    Hu, Q.4
  • 17
    • 84863014249 scopus 로고    scopus 로고
    • Local and nonlocal preserving projection for bearing defect classification and performance assessment
    • May
    • J. Yu, "Local and nonlocal preserving projection for bearing defect classification and performance assessment," IEEE Trans. Ind. Electron., vol. 59, no. 5, pp. 2363-2376, May 2012.
    • (2012) IEEE Trans. Ind. Electron. , vol.59 , Issue.5 , pp. 2363-2376
    • Yu, J.1
  • 18
    • 84919933755 scopus 로고    scopus 로고
    • Vibration spectrum imaging: A novel bearing fault classification approach
    • Jan.
    • M. Amar, I. Gondal, and C. Wilson, "Vibration spectrum imaging: A novel bearing fault classification approach," IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 494-502, Jan. 2015.
    • (2015) IEEE Trans. Ind. Electron. , vol.62 , Issue.1 , pp. 494-502
    • Amar, M.1    Gondal, I.2    Wilson, C.3
  • 19
    • 76149141199 scopus 로고    scopus 로고
    • An enhanced diagnostic scheme for bearing condition monitoring
    • Feb.
    • J. Liu, W. Wang, and F. Golnaraghi, "An enhanced diagnostic scheme for bearing condition monitoring," IEEE Trans. Instrum. Meas., vol. 59, no. 2, pp. 309-321, Feb. 2010.
    • (2010) IEEE Trans. Instrum. Meas. , vol.59 , Issue.2 , pp. 309-321
    • Liu, J.1    Wang, W.2    Golnaraghi, F.3
  • 20
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Aug.
    • Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 22
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • May
    • Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, May 2015.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 23
    • 80052889296 scopus 로고    scopus 로고
    • Learning image representations from the pixel level via hierarchical sparse coding
    • K. Yu, Y. Lin, and J. Lafferty, "Learning image representations from the pixel level via hierarchical sparse coding," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2011, pp. 1713-1720.
    • (2011) Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , pp. 1713-1720
    • Yu, K.1    Lin, Y.2    Lafferty, J.3
  • 25
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • Nov.
    • G. Hinton et al., "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups," IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82-97, Nov. 2012.
    • (2012) IEEE Signal Process. Mag. , vol.29 , Issue.6 , pp. 82-97
    • Hinton, G.1
  • 26
    • 84903779279 scopus 로고    scopus 로고
    • Searching for exotic particles in high-energy physics with deep learning
    • Jul.
    • P. Baldi, P. Sadowski, and D. Whiteson, "Searching for exotic particles in high-energy physics with deep learning," Nat. Commun., vol. 5, no. 4308, pp. 1-9, Jul. 2014.
    • (2014) Nat. Commun. , vol.5 , Issue.4308 , pp. 1-9
    • Baldi, P.1    Sadowski, P.2    Whiteson, D.3
  • 27
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Jul.
    • G. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, Jul. 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 28
    • 84861125212 scopus 로고    scopus 로고
    • A practical guide to training restricted Boltzmann machines
    • K.-R. Muller, G. Montavon, and G. B. Orr, Eds. New York, NY, USA: Springer
    • G. Hinton, "A practical guide to training restricted Boltzmann machines," in Neural Networks: Tricks of the Trade, K.-R. Muller, G. Montavon, and G. B. Orr, Eds. New York, NY, USA: Springer, 2013.
    • (2013) Neural Networks: Tricks of the Trade
    • Hinton, G.1
  • 30
    • 84928255925 scopus 로고    scopus 로고
    • Smartphone based visible iris recognition using deep sparse filtering
    • May
    • K. B. Raja, R. Raghavendra, V. K. Vemuri, and C. Busch, "Smartphone based visible iris recognition using deep sparse filtering," Pattern Recognit. Lett., vol. 57, pp. 33-42, May 2015.
    • (2015) Pattern Recognit. Lett. , vol.57 , pp. 33-42
    • Raja, K.B.1    Raghavendra, R.2    Vemuri, V.K.3    Busch, C.4
  • 31
    • 0000929221 scopus 로고
    • What is the goal of sensory coding?
    • Jul.
    • D. J. Field, "What is the goal of sensory coding?" Neural Comput., vol. 6, no. 4, pp. 559-601, Jul. 1994.
    • (1994) Neural Comput. , vol.6 , Issue.4 , pp. 559-601
    • Field, D.J.1
  • 32
    • 0005713456 scopus 로고    scopus 로고
    • Characterizing the sparseness of neural codes
    • B. Willmore and D. J. Tolhurst, "Characterizing the sparseness of neural codes," Netw.: Comput. Neural Syst., vol. 12, no. 3, pp. 255-270, 2001.
    • (2001) Netw.: Comput. Neural Syst. , vol.12 , Issue.3 , pp. 255-270
    • Willmore, B.1    Tolhurst, D.J.2
  • 33
    • 85032751965 scopus 로고    scopus 로고
    • Compressive sensing
    • Jul.
    • R. G. Baraniuk, "Compressive sensing," IEEE Signal Process. Mag., vol. 24, no. 4, pp. 118-120, Jul. 2007.
    • (2007) IEEE Signal Process. Mag. , vol.24 , Issue.4 , pp. 118-120
    • Baraniuk, R.G.1
  • 35
    • 84923658437 scopus 로고    scopus 로고
    • Two-stage learning to predict human eye fixations via SDAEs
    • Feb.
    • J. Han, D. Zhang, S.Wen, L. Guo, T. Liu, and X. Li, "Two-stage learning to predict human eye fixations via SDAEs," IEEE Trans. Cybern., vol. 46, no. 2, pp. 487-498, Feb. 2016.
    • (2016) IEEE Trans. Cybern. , vol.46 , Issue.2 , pp. 487-498
    • Han, J.1    Zhang, D.2    Wen, S.3    Guo, L.4    Liu, T.5    Li, X.6
  • 36
    • 79151480613 scopus 로고    scopus 로고
    • Regularized logistic regression without a penalty term: An application to cancer classification with microarray data
    • May
    • C. Bielza, V. Robles, and P. Larrañaga, "Regularized logistic regression without a penalty term: An application to cancer classification with microarray data," Expert Syst. Appl., vol. 38, no. 5, pp. 5110-5118, May 2011.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.5 , pp. 5110-5118
    • Bielza, C.1    Robles, V.2    Larrañaga, P.3
  • 37
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • Jun.
    • A. Hyvärinen and E. Oja, "Independent component analysis: Algorithms and applications," Neural Netw., vol. 13, no. 4, pp. 411-430, Jun. 2000.
    • (2000) Neural Netw. , vol.13 , Issue.4 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 38
    • 80051609011 scopus 로고    scopus 로고
    • Learning a better representation of speech soundwaves using restricted boltzmann machines
    • N. Jaitly and G. Hinton, "Learning a better representation of speech soundwaves using restricted boltzmann machines," in Proc. Int. Conf. Acoust. Speech Signal Process., 2011, pp. 5884-5887.
    • (2011) Proc. Int. Conf. Acoust. Speech Signal Process. , pp. 5884-5887
    • Jaitly, N.1    Hinton, G.2
  • 39
    • 2942525326 scopus 로고    scopus 로고
    • Bearing fault diagnosis based on wavelet transform and fuzzy inference
    • Sep.
    • X. Lou and K. A. Loparo, "Bearing fault diagnosis based on wavelet transform and fuzzy inference," Mech. Syst. Signal Process., vol. 18, no. 5, pp. 1077-1095, Sep. 2004.
    • (2004) Mech. Syst. Signal Process. , vol.18 , Issue.5 , pp. 1077-1095
    • Lou, X.1    Loparo, K.A.2
  • 40
    • 51849156137 scopus 로고    scopus 로고
    • Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation
    • M. Sokolova, N. Japkowicz, and S. Szpakowicz, "Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation," in Proc. Adv. Artif. Intell. (AI'06), 2006, pp. 1015-1021.
    • (2006) Proc. Adv. Artif. Intell. (AI'06) , pp. 1015-1021
    • Sokolova, M.1    Japkowicz, N.2    Szpakowicz, S.3
  • 41
    • 84889100927 scopus 로고    scopus 로고
    • Wavelet leaders multifractal features based fault diagnosis of rotating mechanism
    • Feb.
    • W. Du, J. Tao, Y. Li, and C. Liu, "Wavelet leaders multifractal features based fault diagnosis of rotating mechanism," Mech. Syst. Signal Process., vol. 43, no. 1, pp. 57-75, Feb. 2014.
    • (2014) Mech. Syst. Signal Process. , vol.43 , Issue.1 , pp. 57-75
    • Du, W.1    Tao, J.2    Li, Y.3    Liu, C.4
  • 42
    • 84887125031 scopus 로고    scopus 로고
    • Motor bearing fault diagnosis using trace ratio linear discriminant analysis
    • May
    • X. Jin, M. Zhao, T. W. Chow, and M. Pecht, "Motor bearing fault diagnosis using trace ratio linear discriminant analysis," IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2441-2451, May 2014.
    • (2014) IEEE Trans. Ind. Electron. , vol.61 , Issue.5 , pp. 2441-2451
    • Jin, X.1    Zhao, M.2    Chow, T.W.3    Pecht, M.4
  • 43
    • 84876054877 scopus 로고    scopus 로고
    • Semisupervised distance-preserving selforganizing map for machine-defect detection and classification
    • May
    • W. Li, S. Zhang, and G. He, "Semisupervised distance-preserving selforganizing map for machine-defect detection and classification," IEEE Trans. Instrum. Meas., vol. 62, no. 5, pp. 869-879, May 2013.
    • (2013) IEEE Trans. Instrum. Meas. , vol.62 , Issue.5 , pp. 869-879
    • Li, W.1    Zhang, S.2    He, G.3
  • 44
    • 84926352537 scopus 로고    scopus 로고
    • A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM
    • Jun.
    • X. Zhang, Y. Liang, and J. Zhou, "A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM," Measurement, vol. 69, pp. 164-179, Jun. 2015.
    • (2015) Measurement , vol.69 , pp. 164-179
    • Zhang, X.1    Liang, Y.2    Zhou, J.3
  • 46
    • 33644513420 scopus 로고    scopus 로고
    • Efficient auditory coding
    • Feb.
    • E. C. Smith and M. S. Lewicki, "Efficient auditory coding," Nature, vol. 439, no. 7079, pp. 978-982, Feb. 2006.
    • (2006) Nature , vol.439 , Issue.7079 , pp. 978-982
    • Smith, E.C.1    Lewicki, M.S.2
  • 47
    • 0030886924 scopus 로고    scopus 로고
    • Vergence eye movements in response to binocular disparity without depth perception
    • Sep.
    • G. Masson, C. Busettini, and F. Miles, "Vergence eye movements in response to binocular disparity without depth perception," Nature, vol. 389, no. 6648, pp. 283-286, Sep. 1997.
    • (1997) Nature , vol.389 , Issue.6648 , pp. 283-286
    • Masson, G.1    Busettini, C.2    Miles, F.3
  • 48
    • 77957757783 scopus 로고    scopus 로고
    • Fuzzy-model-based piecewise H-infinity static output feedback controller design for networked nonlinear systems
    • Oct.
    • J. Qiu, G. Feng, and H. Gao, "Fuzzy-model-based piecewise H-infinity static output feedback controller design for networked nonlinear systems," IEEE Trans. Fuzzy Syst., vol. 18, no. 5, pp. 919-934, Oct. 2010.
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , Issue.5 , pp. 919-934
    • Qiu, J.1    Feng, G.2    Gao, H.3
  • 49
    • 84928041800 scopus 로고    scopus 로고
    • A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control
    • Feb.
    • T. Wang, H. Gao, and J. Qiu, "A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control," IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 2, pp. 416-425, Feb. 2016.
    • (2016) IEEE Trans. Neural Netw. Learn. Syst. , vol.27 , Issue.2 , pp. 416-425
    • Wang, T.1    Gao, H.2    Qiu, J.3
  • 50
    • 84943417199 scopus 로고    scopus 로고
    • Model reduction for interval type-2 Takagi-Sugeno fuzzy systems
    • Nov.
    • H. Li, S. Yin, Y. Pan, and H. K. Lam, "Model reduction for interval type-2 Takagi-Sugeno fuzzy systems," Automatica, vol. 61, pp. 308-314, Nov. 2015.
    • (2015) Automatica , vol.61 , pp. 308-314
    • Li, H.1    Yin, S.2    Pan, Y.3    Lam, H.K.4
  • 51
    • 84962123242 scopus 로고    scopus 로고
    • Fuzzy-model-based reliable static output feedback H-infinity control of nonlinear hyperbolic PDE systems
    • to be published
    • J. Qiu, S. X. Ding, H. Gao, and S. Yin, "Fuzzy-model-based reliable static output feedback H-infinity control of nonlinear hyperbolic PDE systems," IEEE Trans. Fuzzy Syst., to be published.
    • IEEE Trans. Fuzzy Syst.
    • Qiu, J.1    Ding, S.X.2    Gao, H.3    Yin, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.