메뉴 건너뛰기




Volumn 92, Issue , 2017, Pages 173-195

Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings

Author keywords

Autocorrelation; Compound fault; Fault diagnosis; Improved MCKD; Maximum correlated kurtosis deconvolution (MCKD); Rolling element bearing

Indexed keywords

AUTOCORRELATION; BEARINGS (MACHINE PARTS); FAILURE ANALYSIS; HIGHER ORDER STATISTICS; ITERATIVE METHODS; PLASMA DIAGNOSTICS; ROLLER BEARINGS; SIGNAL PROCESSING; SPECTRUM ANALYSIS;

EID: 85013647609     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2017.01.033     Document Type: Article
Times cited : (325)

References (44)
  • 1
    • 84891585059 scopus 로고    scopus 로고
    • Vibration-Based Condition Monitoring: Industrial, Aerospace and Automotive Applications
    • John Wiley & Sons
    • [1] Randall, R.B., Vibration-Based Condition Monitoring: Industrial, Aerospace and Automotive Applications. 2011, John Wiley & Sons.
    • (2011)
    • Randall, R.B.1
  • 2
    • 78649600770 scopus 로고    scopus 로고
    • Rolling element bearing diagnostics—A tutorial
    • [2] Randall, R.B., Antoni, J., Rolling element bearing diagnostics—A tutorial. Mech. Syst. Signal Process. 25 (2011), 485–520.
    • (2011) Mech. Syst. Signal Process. , vol.25 , pp. 485-520
    • Randall, R.B.1    Antoni, J.2
  • 3
    • 79953838303 scopus 로고    scopus 로고
    • Application of an improved kurtogram method for fault diagnosis of rolling element bearings
    • [3] Lei, Y., Lin, J., He, Z., Zi, Y., Application of an improved kurtogram method for fault diagnosis of rolling element bearings. Mech. Syst. Signal Process. 25 (2011), 1738–1749.
    • (2011) Mech. Syst. Signal Process. , vol.25 , pp. 1738-1749
    • Lei, Y.1    Lin, J.2    He, Z.3    Zi, Y.4
  • 4
    • 84979463234 scopus 로고    scopus 로고
    • A new rolling bearing fault diagnosis method based on GFT impulse component extraction
    • [4] Ou, L., Yu, D., Yang, H., A new rolling bearing fault diagnosis method based on GFT impulse component extraction. Mech. Syst. Signal Process. 81 (2016), 162–182.
    • (2016) Mech. Syst. Signal Process. , vol.81 , pp. 162-182
    • Ou, L.1    Yu, D.2    Yang, H.3
  • 5
    • 84944345608 scopus 로고    scopus 로고
    • A fault diagnosis scheme for rolling bearing based on local mean decomposition and improved multiscale fuzzy entropy
    • [5] Li, Y., Xu, M., Wang, R., Huang, W., A fault diagnosis scheme for rolling bearing based on local mean decomposition and improved multiscale fuzzy entropy. J. Sound Vib. 360 (2016), 277–299.
    • (2016) J. Sound Vib. , vol.360 , pp. 277-299
    • Li, Y.1    Xu, M.2    Wang, R.3    Huang, W.4
  • 6
    • 45849131299 scopus 로고    scopus 로고
    • Bearing condition diagnosis and prognosis using applied nonlinear dynamical analysis of machine vibration signal
    • [6] Janjarasjitt, S., Ocak, H., Loparo, K., Bearing condition diagnosis and prognosis using applied nonlinear dynamical analysis of machine vibration signal. J. Sound Vib. 317 (2008), 112–126.
    • (2008) J. Sound Vib. , vol.317 , pp. 112-126
    • Janjarasjitt, S.1    Ocak, H.2    Loparo, K.3
  • 7
    • 84870401853 scopus 로고    scopus 로고
    • An enhanced Kurtogram method for fault diagnosis of rolling element bearings
    • [7] Wang, D., Peter, W.T., Tsui, K.L., An enhanced Kurtogram method for fault diagnosis of rolling element bearings. Mech. Syst. Signal Process. 35 (2013), 176–199.
    • (2013) Mech. Syst. Signal Process. , vol.35 , pp. 176-199
    • Wang, D.1    Peter, W.T.2    Tsui, K.L.3
  • 8
    • 70349272168 scopus 로고    scopus 로고
    • Enhancement of signal denoising and multiple fault signatures detecting in rotating machinery using dual-tree complex wavelet transform
    • [8] Wang, Y., He, Z., Zi, Y., Enhancement of signal denoising and multiple fault signatures detecting in rotating machinery using dual-tree complex wavelet transform. Mech. Syst. Signal Process. 24 (2010), 119–137.
    • (2010) Mech. Syst. Signal Process. , vol.24 , pp. 119-137
    • Wang, Y.1    He, Z.2    Zi, Y.3
  • 9
    • 84966588500 scopus 로고    scopus 로고
    • Kurtosis based weighted sparse model with convex optimization technique for bearing fault diagnosis
    • [9] Zhang, H., Chen, X., Du, Z., Yan, R., Kurtosis based weighted sparse model with convex optimization technique for bearing fault diagnosis. Mech. Syst. Signal Process. 80 (2016), 349–376.
    • (2016) Mech. Syst. Signal Process. , vol.80 , pp. 349-376
    • Zhang, H.1    Chen, X.2    Du, Z.3    Yan, R.4
  • 10
    • 0003989701 scopus 로고
    • Mechanical Signature Analysis: Theory and Applications
    • Academic Pr
    • [10] Braun, S., Mechanical Signature Analysis: Theory and Applications. 1986, Academic Pr.
    • (1986)
    • Braun, S.1
  • 11
    • 78349312157 scopus 로고    scopus 로고
    • A novel method for the optimal band selection for vibration signal demodulation and comparison with the Kurtogram
    • [11] Barszcz, T., JabŁoński, A., A novel method for the optimal band selection for vibration signal demodulation and comparison with the Kurtogram. Mech. Syst. Signal Process. 25 (2011), 431–451.
    • (2011) Mech. Syst. Signal Process. , vol.25 , pp. 431-451
    • Barszcz, T.1    JabŁoński, A.2
  • 12
    • 84991548185 scopus 로고
    • Detection of rolling element bearing damage by statistical vibration analysis
    • [12] Dyer, D., Stewart, R., Detection of rolling element bearing damage by statistical vibration analysis. J. Mech. Des. 100 (1978), 229–235.
    • (1978) J. Mech. Des. , vol.100 , pp. 229-235
    • Dyer, D.1    Stewart, R.2
  • 13
    • 27744587461 scopus 로고    scopus 로고
    • The spectral kurtosis: a useful tool for characterising non-stationary signals
    • [13] Antoni, J., The spectral kurtosis: a useful tool for characterising non-stationary signals. Mech. Syst. Signal Process. 20 (2006), 282–307.
    • (2006) Mech. Syst. Signal Process. , vol.20 , pp. 282-307
    • Antoni, J.1
  • 14
    • 27744553270 scopus 로고    scopus 로고
    • The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines
    • [14] Antoni, J., Randall, R., The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines. Mech. Syst. Signal Process. 20 (2006), 308–331.
    • (2006) Mech. Syst. Signal Process. , vol.20 , pp. 308-331
    • Antoni, J.1    Randall, R.2
  • 15
    • 33749508107 scopus 로고    scopus 로고
    • Fast computation of the kurtogram for the detection of transient faults
    • [15] Antoni, J., Fast computation of the kurtogram for the detection of transient faults. Mech. Syst. Signal Process. 21 (2007), 108–124.
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 108-124
    • Antoni, J.1
  • 16
    • 79953874236 scopus 로고    scopus 로고
    • An adaptive SK technique and its application for fault detection of rolling element bearings
    • [16] Wang, Y., Liang, M., An adaptive SK technique and its application for fault detection of rolling element bearings. Mech. Syst. Signal Process. 25 (2011), 1750–1764.
    • (2011) Mech. Syst. Signal Process. , vol.25 , pp. 1750-1764
    • Wang, Y.1    Liang, M.2
  • 17
    • 84940403569 scopus 로고    scopus 로고
    • Periodicity-based kurtogram for random impulse resistance
    • [17] Xu, X., Zhao, M., Lin, J., Lei, Y., Periodicity-based kurtogram for random impulse resistance. Meas. Sci. Technol., 26, 2015, 085011.
    • (2015) Meas. Sci. Technol. , vol.26 , pp. 085011
    • Xu, X.1    Zhao, M.2    Lin, J.3    Lei, Y.4
  • 18
    • 58049188515 scopus 로고    scopus 로고
    • Optimal filtering of gear signals for early damage detection based on the spectral kurtosis
    • [18] Combet, F., Gelman, L., Optimal filtering of gear signals for early damage detection based on the spectral kurtosis. Mech. Syst. Signal Process. 23 (2009), 652–668.
    • (2009) Mech. Syst. Signal Process. , vol.23 , pp. 652-668
    • Combet, F.1    Gelman, L.2
  • 19
    • 63449106876 scopus 로고    scopus 로고
    • Rolling element bearing fault diagnosis based on the combination of genetic algorithms and fast kurtogram
    • [19] Zhang, Y., Randall, R., Rolling element bearing fault diagnosis based on the combination of genetic algorithms and fast kurtogram. Mech. Syst. Signal Process. 23 (2009), 1509–1517.
    • (2009) Mech. Syst. Signal Process. , vol.23 , pp. 1509-1517
    • Zhang, Y.1    Randall, R.2
  • 20
    • 58949090476 scopus 로고    scopus 로고
    • Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine
    • [20] Barszcz, T., Randall, R.B., Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine. Mech. Syst. Signal Process. 23 (2009), 1352–1365.
    • (2009) Mech. Syst. Signal Process. , vol.23 , pp. 1352-1365
    • Barszcz, T.1    Randall, R.B.2
  • 21
    • 33847167496 scopus 로고    scopus 로고
    • Spectral kurtosis optimization for rolling element bearings, Signal Processing and Its Applications, 2005
    • IEEE
    • [21] Sawalhi, N., Randall, R.B., Spectral kurtosis optimization for rolling element bearings, Signal Processing and Its Applications, 2005. Proceedings of the Eighth International Symposium on, 2005, IEEE, 839–842.
    • (2005) Proceedings of the Eighth International Symposium on , pp. 839-842
    • Sawalhi, N.1    Randall, R.B.2
  • 22
    • 33750517287 scopus 로고    scopus 로고
    • Enhancement of autoregressive model based gear tooth fault detection technique by the use of minimum entropy deconvolution filter
    • [22] Endo, H., Randall, R.B., Enhancement of autoregressive model based gear tooth fault detection technique by the use of minimum entropy deconvolution filter. Mech. Syst. Signal Process. 21 (2007), 906–919.
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 906-919
    • Endo, H.1    Randall, R.B.2
  • 23
    • 34249733154 scopus 로고    scopus 로고
    • The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis
    • [23] Sawalhi, N., Randall, R.B., Endo, H., The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis. Mech. Syst. Signal Process. 21 (2007), 2616–2633.
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 2616-2633
    • Sawalhi, N.1    Randall, R.B.2    Endo, H.3
  • 24
    • 84865624808 scopus 로고    scopus 로고
    • Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection
    • [24] McDonald, G.L., Zhao, Q., Zuo, M.J., Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection. Mech. Syst. Signal Process. 33 (2012), 237–255.
    • (2012) Mech. Syst. Signal Process. , vol.33 , pp. 237-255
    • McDonald, G.L.1    Zhao, Q.2    Zuo, M.J.3
  • 25
    • 84892609656 scopus 로고    scopus 로고
    • A time domain approach to diagnose gearbox fault based on measured vibration signals
    • [25] Hong, L., Dhupia, J.S., A time domain approach to diagnose gearbox fault based on measured vibration signals. J. Sound Vib. 333 (2014), 2164–2180.
    • (2014) J. Sound Vib. , vol.333 , pp. 2164-2180
    • Hong, L.1    Dhupia, J.S.2
  • 27
    • 84947772934 scopus 로고    scopus 로고
    • Early fault diagnosis of bearings using an improved spectral kurtosis by maximum correlated kurtosis deconvolution
    • [27] Jia, F., Lei, Y., Shan, H., Lin, J., Early fault diagnosis of bearings using an improved spectral kurtosis by maximum correlated kurtosis deconvolution. Sensors 15 (2015), 29363–29377.
    • (2015) Sensors , vol.15 , pp. 29363-29377
    • Jia, F.1    Lei, Y.2    Shan, H.3    Lin, J.4
  • 28
    • 80055012780 scopus 로고    scopus 로고
    • Identification of multiple transient faults based on the adaptive spectral kurtosis method
    • [28] Wang, Y., Liang, M., Identification of multiple transient faults based on the adaptive spectral kurtosis method. J. Sound Vib. 331 (2012), 470–486.
    • (2012) J. Sound Vib. , vol.331 , pp. 470-486
    • Wang, Y.1    Liang, M.2
  • 29
    • 84960145723 scopus 로고    scopus 로고
    • Multifractal entropy based adaptive multiwavelet construction and its application for mechanical compound-fault diagnosis
    • [29] He, S., Chen, J., Zhou, Z., Zi, Y., Wang, Y., Wang, X., Multifractal entropy based adaptive multiwavelet construction and its application for mechanical compound-fault diagnosis. Mech. Syst. Signal Process. 76 (2016), 742–758.
    • (2016) Mech. Syst. Signal Process. , vol.76 , pp. 742-758
    • He, S.1    Chen, J.2    Zhou, Z.3    Zi, Y.4    Wang, Y.5    Wang, X.6
  • 30
    • 84876906121 scopus 로고    scopus 로고
    • Compound faults detection of rotating machinery using improved adaptive redundant lifting multiwavelet
    • [30] Chen, J., Zi, Y., He, Z., Yuan, J., Compound faults detection of rotating machinery using improved adaptive redundant lifting multiwavelet. Mech. Syst. Signal Process. 38 (2013), 36–54.
    • (2013) Mech. Syst. Signal Process. , vol.38 , pp. 36-54
    • Chen, J.1    Zi, Y.2    He, Z.3    Yuan, J.4
  • 31
    • 84971426728 scopus 로고    scopus 로고
    • Detection and recovery of fault impulses via improved harmonic product spectrum and its application in defect size estimation of train bearings
    • [31] Zhao, M., Lin, J., Miao, Y., Xu, X., Detection and recovery of fault impulses via improved harmonic product spectrum and its application in defect size estimation of train bearings. Measurement 91 (2016), 421–439.
    • (2016) Measurement , vol.91 , pp. 421-439
    • Zhao, M.1    Lin, J.2    Miao, Y.3    Xu, X.4
  • 32
    • 84954480716 scopus 로고    scopus 로고
    • Diagnosis of compound faults of rolling bearings through adaptive maximum correlated kurtosis deconvolution
    • [32] Tang, G., Wang, X., He, Y., Diagnosis of compound faults of rolling bearings through adaptive maximum correlated kurtosis deconvolution. J. Mech. Sci. Technol. 30 (2016), 43–54.
    • (2016) J. Mech. Sci. Technol. , vol.30 , pp. 43-54
    • Tang, G.1    Wang, X.2    He, Y.3
  • 33
    • 84864116161 scopus 로고    scopus 로고
    • Fault detection enhancement in rolling element bearings using the minimum entropy deconvolution
    • [33] Barszcz, T., Sawalhi, N., Fault detection enhancement in rolling element bearings using the minimum entropy deconvolution. Arch. Acoust., 37, 2012.
    • (2012) Arch. Acoust. , vol.37
    • Barszcz, T.1    Sawalhi, N.2
  • 34
    • 84880749392 scopus 로고    scopus 로고
    • The weak fault diagnosis and condition monitoring of rolling element bearing using minimum entropy deconvolution and envelope spectrum
    • 0954406212457892
    • [34] Jiang, R., Chen, J., Dong, G., Liu, T., Xiao, W., The weak fault diagnosis and condition monitoring of rolling element bearing using minimum entropy deconvolution and envelope spectrum. Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 2012 0954406212457892.
    • (2012) Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
    • Jiang, R.1    Chen, J.2    Dong, G.3    Liu, T.4    Xiao, W.5
  • 36
    • 84874168759 scopus 로고    scopus 로고
    • Fault diagnosis method for rolling bearing's weak fault based on minimum entropy deconvolution and sparse decomposition
    • [36] Wang, H., Fault diagnosis method for rolling bearing's weak fault based on minimum entropy deconvolution and sparse decomposition. J. Mech. Eng., 49, 2013, 88.
    • (2013) J. Mech. Eng. , vol.49 , pp. 88
    • Wang, H.1
  • 37
    • 58049157531 scopus 로고    scopus 로고
    • Differential diagnosis of spall vs. cracks in the gear tooth fillet region: experimental validation
    • [37] Endo, H., Randall, R.B., Gosselin, C., Differential diagnosis of spall vs. cracks in the gear tooth fillet region: experimental validation. Mech. Syst. Signal Process. 23 (2009), 636–651.
    • (2009) Mech. Syst. Signal Process. , vol.23 , pp. 636-651
    • Endo, H.1    Randall, R.B.2    Gosselin, C.3
  • 38
    • 84979469576 scopus 로고    scopus 로고
    • Identification of multiple faults in rotating machinery based on minimum entropy deconvolution combined with spectral kurtosis
    • [38] He, D., Wang, X., Li, S., Lin, J., Zhao, M., Identification of multiple faults in rotating machinery based on minimum entropy deconvolution combined with spectral kurtosis. Mech. Syst. Signal Process. 81 (2016), 235–249.
    • (2016) Mech. Syst. Signal Process. , vol.81 , pp. 235-249
    • He, D.1    Wang, X.2    Li, S.3    Lin, J.4    Zhao, M.5
  • 39
    • 0017961352 scopus 로고
    • Minimum entropy deconvolution
    • [39] Wiggins, R.A., Minimum entropy deconvolution. Geoexploration 16 (1978), 21–35.
    • (1978) Geoexploration , vol.16 , pp. 21-35
    • Wiggins, R.A.1
  • 40
    • 84929339948 scopus 로고    scopus 로고
    • A new improved kurtogram and its application to bearing fault diagnosis
    • [40] Zhang, X., Kang, J., Xiao, L., Zhao, J., Teng, H., A new improved kurtogram and its application to bearing fault diagnosis. Shock Vib. 2015 (2015), 1–22.
    • (2015) Shock Vib. , vol.2015 , pp. 1-22
    • Zhang, X.1    Kang, J.2    Xiao, L.3    Zhao, J.4    Teng, H.5
  • 41
    • 84989826881 scopus 로고    scopus 로고
    • Sparse maximum harmonics-to-noise-ratio deconvolution for weak fault signature detection in bearings
    • [41] Miao, Y., Zhao, M., Lin, J., Xu, X., Sparse maximum harmonics-to-noise-ratio deconvolution for weak fault signature detection in bearings. Meas. Sci. Technol., 27, 2016, 105004.
    • (2016) Meas. Sci. Technol. , vol.27 , pp. 105004
    • Miao, Y.1    Zhao, M.2    Lin, J.3    Xu, X.4
  • 42
    • 84971350673 scopus 로고    scopus 로고
    • Envelope harmonic-to-noise ratio for periodic impulses detection and its application to bearing diagnosis
    • [42] Xu, X., Zhao, M., Lin, J., Lei, Y., Envelope harmonic-to-noise ratio for periodic impulses detection and its application to bearing diagnosis. Measurement 91 (2016), 385–397.
    • (2016) Measurement , vol.91 , pp. 385-397
    • Xu, X.1    Zhao, M.2    Lin, J.3    Lei, Y.4
  • 43
    • 84991042512 scopus 로고    scopus 로고
    • Multipoint optimal minimum entropy deconvolution and convolution fix: application to vibration fault detection
    • [43] McDonald, G.L., Zhao, Q., Multipoint optimal minimum entropy deconvolution and convolution fix: application to vibration fault detection. Mech. Syst. Signal Process. 82 (2017), 461–477.
    • (2017) Mech. Syst. Signal Process. , vol.82 , pp. 461-477
    • McDonald, G.L.1    Zhao, Q.2
  • 44
    • 84916216664 scopus 로고    scopus 로고
    • Automatic fault feature extraction of mechanical anomaly on induction motor bearing using ensemble super-wavelet transform
    • [44] He, W., Zi, Y., Chen, B., Wu, F., He, Z., Automatic fault feature extraction of mechanical anomaly on induction motor bearing using ensemble super-wavelet transform. Mech. Syst. Signal Process. 54 (2015), 457–480.
    • (2015) Mech. Syst. Signal Process. , vol.54 , pp. 457-480
    • He, W.1    Zi, Y.2    Chen, B.3    Wu, F.4    He, Z.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.