메뉴 건너뛰기




Volumn 69, Issue , 2015, Pages 164-179

A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM

Author keywords

Ensemble empirical mode decomposition; Fault diagnosis; Inter cluster distance; Motor bearing; Permutation entropy; Support vector machine

Indexed keywords

ENTROPY; FAILURE ANALYSIS; SIGNAL DETECTION; SIGNAL PROCESSING; SUPPORT VECTOR MACHINES; VECTOR SPACES;

EID: 84926352537     PISSN: 02632241     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.measurement.2015.03.017     Document Type: Article
Times cited : (549)

References (63)
  • 1
    • 29244467991 scopus 로고    scopus 로고
    • Condition monitoring and fault diagnosis of electrical motors - a review
    • S. Nandi, H.A. Toliyat, and X. Li Condition monitoring and fault diagnosis of electrical motors - a review IEEE Trans. Energy Convers. 20 2005 719 729
    • (2005) IEEE Trans. Energy Convers. , vol.20 , pp. 719-729
    • Nandi, S.1    Toliyat, H.A.2    Li, X.3
  • 2
    • 2942525326 scopus 로고    scopus 로고
    • Bearing fault diagnosis based on wavelet transform and fuzzy inference
    • X. Lou, and K. Loparo Bearing fault diagnosis based on wavelet transform and fuzzy inference Mech. Syst. Signal Process. 18 2004 1077 1095
    • (2004) Mech. Syst. Signal Process. , vol.18 , pp. 1077-1095
    • Lou, X.1    Loparo, K.2
  • 3
    • 80052802541 scopus 로고    scopus 로고
    • Identification of bearing faults using time domain zero-crossings
    • P.E. William, and M.W. Hoffman Identification of bearing faults using time domain zero-crossings Mech. Syst. Signal Process. 25 2011 3078 3088
    • (2011) Mech. Syst. Signal Process. , vol.25 , pp. 3078-3088
    • William, P.E.1    Hoffman, M.W.2
  • 4
    • 84885611750 scopus 로고    scopus 로고
    • Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines
    • X. Zhang, and J. Zhou Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines Mech. Syst. Signal Process. 41 2013 127 140
    • (2013) Mech. Syst. Signal Process. , vol.41 , pp. 127-140
    • Zhang, X.1    Zhou, J.2
  • 5
    • 79951581707 scopus 로고    scopus 로고
    • EEMD method and WNN for fault diagnosis of locomotive roller bearings
    • Y.G. Lei, Z.J. He, and Y.Y. Zi EEMD method and WNN for fault diagnosis of locomotive roller bearings Expert Syst. Appl. 38 2011 7334 7341
    • (2011) Expert Syst. Appl. , vol.38 , pp. 7334-7341
    • Lei, Y.G.1    He, Z.J.2    Zi, Y.Y.3
  • 6
    • 84887433963 scopus 로고    scopus 로고
    • Wavelets for fault diagnosis of rotary machines: a review with applications
    • R. Yan, R.X. Gao, and X. Chen Wavelets for fault diagnosis of rotary machines: a review with applications Signal Process. 96 Part A 2014 1 15
    • (2014) Signal Process. , vol.96 , pp. 1-15
    • Yan, R.1    Gao, R.X.2    Chen, X.3
  • 7
    • 84870404381 scopus 로고    scopus 로고
    • A review on empirical mode decomposition in fault diagnosis of rotating machinery
    • Y. Lei, J. Lin, Z. He, and M.J. Zuo A review on empirical mode decomposition in fault diagnosis of rotating machinery Mech. Syst. Signal Process. 35 2013 108 126
    • (2013) Mech. Syst. Signal Process. , vol.35 , pp. 108-126
    • Lei, Y.1    Lin, J.2    He, Z.3    Zuo, M.J.4
  • 8
    • 84885590616 scopus 로고    scopus 로고
    • Fault diagnosis of diesel engine based on adaptive wavelet packets and EEMD-fractal dimension
    • X. Wang, C. Liu, F. Bi, X. Bi, and K. Shao Fault diagnosis of diesel engine based on adaptive wavelet packets and EEMD-fractal dimension Mech. Syst. Signal Process. 41 2013 581 597
    • (2013) Mech. Syst. Signal Process. , vol.41 , pp. 581-597
    • Wang, X.1    Liu, C.2    Bi, F.3    Bi, X.4    Shao, K.5
  • 9
    • 78649955453 scopus 로고    scopus 로고
    • A novel model-based fault detection method for temperature sensor using fractal correlation dimension
    • X.-B. Yang, X.-Q. Jin, Z.-M. Du, and Y.-H. Zhu A novel model-based fault detection method for temperature sensor using fractal correlation dimension Build. Environ. 46 2011 970 979
    • (2011) Build. Environ. , vol.46 , pp. 970-979
    • Yang, X.-B.1    Jin, X.-Q.2    Du, Z.-M.3    Zhu, Y.-H.4
  • 10
    • 34047275789 scopus 로고    scopus 로고
    • Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension
    • J.Y. Yang, Y.Y. Zhang, and Y.S. Zhu Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension Mech. Syst. Signal Process. 21 2007 2012 2024
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 2012-2024
    • Yang, J.Y.1    Zhang, Y.Y.2    Zhu, Y.S.3
  • 11
    • 18144418963 scopus 로고    scopus 로고
    • A method for the correlation dimension estimation for on-line condition monitoring of large rotating machinery
    • A. Rolo-Naranjo, and M.E. Montesino-Otero A method for the correlation dimension estimation for on-line condition monitoring of large rotating machinery Mech. Syst. Signal Process. 19 2005 939 954
    • (2005) Mech. Syst. Signal Process. , vol.19 , pp. 939-954
    • Rolo-Naranjo, A.1    Montesino-Otero, M.E.2
  • 12
    • 84881316486 scopus 로고    scopus 로고
    • Quantitative diagnosis of a spall-like fault of a rolling element bearing by empirical mode decomposition and the approximate entropy method
    • S. Zhao, L. Liang, G. Xu, J. Wang, and W. Zhang Quantitative diagnosis of a spall-like fault of a rolling element bearing by empirical mode decomposition and the approximate entropy method Mech. Syst. Signal Process. 40 2013 154 177
    • (2013) Mech. Syst. Signal Process. , vol.40 , pp. 154-177
    • Zhao, S.1    Liang, L.2    Xu, G.3    Wang, J.4    Zhang, W.5
  • 13
    • 33750528937 scopus 로고    scopus 로고
    • Approximate entropy as a diagnostic tool for machine health monitoring
    • R.Q. Yan, and R.X. Gao Approximate entropy as a diagnostic tool for machine health monitoring Mech. Syst. Signal Process. 21 2007 824 839
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 824-839
    • Yan, R.Q.1    Gao, R.X.2
  • 14
    • 79955575020 scopus 로고    scopus 로고
    • Intelligent prognostics for battery health monitoring based on sample entropy
    • A. Widodo, M.-C. Shim, W. Caesarendra, and B.-S. Yang Intelligent prognostics for battery health monitoring based on sample entropy Expert Syst. Appl. 38 2011 11763 11769
    • (2011) Expert Syst. Appl. , vol.38 , pp. 11763-11769
    • Widodo, A.1    Shim, M.-C.2    Caesarendra, W.3    Yang, B.-S.4
  • 15
    • 84883808644 scopus 로고    scopus 로고
    • A rolling bearing fault diagnosis approach based on LCD and fuzzy entropy
    • J. Zheng, J. Cheng, and Y. Yang A rolling bearing fault diagnosis approach based on LCD and fuzzy entropy Mech. Mach. Theory 70 2013 441 453
    • (2013) Mech. Mach. Theory , vol.70 , pp. 441-453
    • Zheng, J.1    Cheng, J.2    Yang, Y.3
  • 16
    • 84920964609 scopus 로고    scopus 로고
    • Bearing fault diagnosis based on multi-scale permutation entropy and adaptive neuro fuzzy classifier
    • R. Tiwari, V.K. Gupta, and P.K. Kankar Bearing fault diagnosis based on multi-scale permutation entropy and adaptive neuro fuzzy classifier J. Vib. Control 2013 1 7 10.1177/1077546313490778
    • (2013) J. Vib. Control , pp. 1-7
    • Tiwari, R.1    Gupta, V.K.2    Kankar, P.K.3
  • 17
    • 0026015905 scopus 로고
    • Approximate entropy as a measure of system complexity
    • S.M. Pincus Approximate entropy as a measure of system complexity Proc. Natl. Acad. Sci. 88 1991 2297 2301
    • (1991) Proc. Natl. Acad. Sci. , vol.88 , pp. 2297-2301
    • Pincus, S.M.1
  • 18
    • 0033949457 scopus 로고    scopus 로고
    • Physiological time-series analysis using approximate entropy and sample entropy
    • J.S. Richman, and J.R. Moorman Physiological time-series analysis using approximate entropy and sample entropy Am. J. Physiol.-Heart Circulat. Physiol. 278 2000 H2039 H2049
    • (2000) Am. J. Physiol.-Heart Circulat. Physiol. , vol.278 , pp. H2039-H2049
    • Richman, J.S.1    Moorman, J.R.2
  • 20
    • 4243997063 scopus 로고    scopus 로고
    • Permutation entropy: a natural complexity measure for time series
    • 174102-1-174102-4
    • C. Bandt, and B. Pompe Permutation entropy: a natural complexity measure for time series Phys. Rev. Lett. 88 2002 (174102-1-174102-4)
    • (2002) Phys. Rev. Lett. , vol.88
    • Bandt, C.1    Pompe, B.2
  • 21
    • 84877000317 scopus 로고    scopus 로고
    • Dynamic characteristics of absence EEG recordings with multiscale permutation entropy analysis
    • G. Ouyang, J. Li, X. Liu, and X. Li Dynamic characteristics of absence EEG recordings with multiscale permutation entropy analysis Epilepsy Res. 104 2013 246 252
    • (2013) Epilepsy Res. , vol.104 , pp. 246-252
    • Ouyang, G.1    Li, J.2    Liu, X.3    Li, X.4
  • 22
    • 81855221797 scopus 로고    scopus 로고
    • Detection of epileptic electroencephalogram based on permutation entropy and support vector machines
    • N. Nicolaou, and J. Georgiou Detection of epileptic electroencephalogram based on permutation entropy and support vector machines Expert Syst. Appl. 39 2012 202 209
    • (2012) Expert Syst. Appl. , vol.39 , pp. 202-209
    • Nicolaou, N.1    Georgiou, J.2
  • 24
    • 84876988665 scopus 로고    scopus 로고
    • Permutation entropy and detrend fluctuation analysis for the natural complexity of cardiac heart interbeat signals
    • F. Taherkhani, M. Rahmani, F. Taherkhani, H. Akbarzadeh, and H. Abroshan Permutation entropy and detrend fluctuation analysis for the natural complexity of cardiac heart interbeat signals Physica A 392 2013 3106 3112
    • (2013) Physica A , vol.392 , pp. 3106-3112
    • Taherkhani, F.1    Rahmani, M.2    Taherkhani, F.3    Akbarzadeh, H.4    Abroshan, H.5
  • 25
    • 78650399061 scopus 로고    scopus 로고
    • The complexity of gene expression dynamics revealed by permutation entropy
    • X. Sun, Y. Zou, V. Nikiforova, J. Kurths, and D. Walther The complexity of gene expression dynamics revealed by permutation entropy BMC Bioinformatics 11 2010 607 623
    • (2010) BMC Bioinformatics , vol.11 , pp. 607-623
    • Sun, X.1    Zou, Y.2    Nikiforova, V.3    Kurths, J.4    Walther, D.5
  • 26
    • 67349253042 scopus 로고    scopus 로고
    • Forbidden patterns, permutation entropy and stock market inefficiency
    • L. Zunino, M. Zanin, B.M. Tabak, D.G. Pérez, and O.A. Rosso Forbidden patterns, permutation entropy and stock market inefficiency Physica A 388 2009 2854 2864
    • (2009) Physica A , vol.388 , pp. 2854-2864
    • Zunino, L.1    Zanin, M.2    Tabak, B.M.3    Pérez, D.G.4    Rosso, O.A.5
  • 27
    • 84889882206 scopus 로고    scopus 로고
    • Complexity analysis of the turbulent environmental fluid flow time series
    • D. Mihailović, E. Nikolić-Äorić, N. Drešković, and G. Mimić Complexity analysis of the turbulent environmental fluid flow time series Physica A 395 2014 96 104
    • (2014) Physica A , vol.395 , pp. 96-104
    • Mihailović, D.1    Nikolić-Äorić, E.2    Drešković, N.3    Mimić, G.4
  • 28
    • 74249091915 scopus 로고    scopus 로고
    • Permutation entropy based real-time chatter detection using audio signal in turning process
    • U. Nair, B.M. Krishna, V. Namboothiri, and V. Nampoori Permutation entropy based real-time chatter detection using audio signal in turning process Int. J. Adv. Manuf. Technol. 46 2010 61 68
    • (2010) Int. J. Adv. Manuf. Technol. , vol.46 , pp. 61-68
    • Nair, U.1    Krishna, B.M.2    Namboothiri, V.3    Nampoori, V.4
  • 29
    • 37549028448 scopus 로고    scopus 로고
    • Complexity measure of motor current signals for tool flute breakage detection in end milling
    • X. Li, G. Ouyang, and Z. Liang Complexity measure of motor current signals for tool flute breakage detection in end milling Int. J. Mach. Tools Manuf 48 2008 371 379
    • (2008) Int. J. Mach. Tools Manuf , vol.48 , pp. 371-379
    • Li, X.1    Ouyang, G.2    Liang, Z.3
  • 30
    • 84859427324 scopus 로고    scopus 로고
    • Permutation entropy: a nonlinear statistical measure for status characterization of rotary machines
    • R. Yan, Y. Liu, and R.X. Gao Permutation entropy: a nonlinear statistical measure for status characterization of rotary machines Mech. Syst. Signal Process. 29 2012 474 484
    • (2012) Mech. Syst. Signal Process. , vol.29 , pp. 474-484
    • Yan, R.1    Liu, Y.2    Gao, R.X.3
  • 31
    • 84867606873 scopus 로고    scopus 로고
    • Bearing fault diagnosis based on multiscale permutation entropy and support vector machine
    • S.-D. Wu, P.-H. Wu, C.-W. Wu, J.-J. Ding, and C.-C. Wang Bearing fault diagnosis based on multiscale permutation entropy and support vector machine Entropy 14 2012 1343 1356
    • (2012) Entropy , vol.14 , pp. 1343-1356
    • Wu, S.-D.1    Wu, P.-H.2    Wu, C.-W.3    Ding, J.-J.4    Wang, C.-C.5
  • 32
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: a noise-assisted data analysis method
    • Z. Wu, and N.E. Huang Ensemble empirical mode decomposition: a noise-assisted data analysis method Adv. Adapt. Data Anal. 1 2009 1 41
    • (2009) Adv. Adapt. Data Anal. , vol.1 , pp. 1-41
    • Wu, Z.1    Huang, N.E.2
  • 34
    • 79960045420 scopus 로고    scopus 로고
    • Non-linear multivariate and multiscale monitoring and signal denoising strategy using kernel principal component analysis combined with ensemble empirical mode decomposition method
    • M. Žvokelj, S. Zupan, and I. Prebil Non-linear multivariate and multiscale monitoring and signal denoising strategy using kernel principal component analysis combined with ensemble empirical mode decomposition method Mech. Syst. Signal Process. 25 2011 2631 2653
    • (2011) Mech. Syst. Signal Process. , vol.25 , pp. 2631-2653
    • Žvokelj, M.1    Zupan, S.2    Prebil, I.3
  • 35
    • 79955647441 scopus 로고    scopus 로고
    • Feed-axis gearbox condition monitoring using built-in position sensors and EEMD method
    • Y.Q. Zhou, T. Tao, X.S. Mei, G.D. Jiang, and N.G. Sun Feed-axis gearbox condition monitoring using built-in position sensors and EEMD method Robot. Comput.-Integr. Manuf. 27 2011 785 793
    • (2011) Robot. Comput.-Integr. Manuf. , vol.27 , pp. 785-793
    • Zhou, Y.Q.1    Tao, T.2    Mei, X.S.3    Jiang, G.D.4    Sun, N.G.5
  • 36
    • 58949088453 scopus 로고    scopus 로고
    • Application of the EEMD method to rotor fault diagnosis of rotating machinery
    • Y.G. Lei, Z.J. He, and Y.Y. Zi Application of the EEMD method to rotor fault diagnosis of rotating machinery Mech. Syst. Signal Process. 23 2009 1327 1338
    • (2009) Mech. Syst. Signal Process. , vol.23 , pp. 1327-1338
    • Lei, Y.G.1    He, Z.J.2    Zi, Y.Y.3
  • 38
    • 84881172864 scopus 로고    scopus 로고
    • Multiclass fault diagnosis in gears using support vector machine algorithms based on frequency domain data
    • S. Bansal, S. Sahoo, R. Tiwari, and D.J. Bordoloi Multiclass fault diagnosis in gears using support vector machine algorithms based on frequency domain data Measurement 46 2013 3469 3481
    • (2013) Measurement , vol.46 , pp. 3469-3481
    • Bansal, S.1    Sahoo, S.2    Tiwari, R.3    Bordoloi, D.J.4
  • 39
    • 84870249587 scopus 로고    scopus 로고
    • A novel fault diagnosis model for gearbox based on wavelet support vector machine with immune genetic algorithm
    • F. Chen, B. Tang, and R. Chen A novel fault diagnosis model for gearbox based on wavelet support vector machine with immune genetic algorithm Measurement 46 2013 220 232
    • (2013) Measurement , vol.46 , pp. 220-232
    • Chen, F.1    Tang, B.2    Chen, R.3
  • 40
    • 84885342190 scopus 로고    scopus 로고
    • Multi-fault diagnosis study on roller bearing based on multi-kernel support vector machine with chaotic particle swarm optimization
    • F. Chen, B. Tang, T. Song, and L. Li Multi-fault diagnosis study on roller bearing based on multi-kernel support vector machine with chaotic particle swarm optimization Measurement 47 2014 576 590
    • (2014) Measurement , vol.47 , pp. 576-590
    • Chen, F.1    Tang, B.2    Song, T.3    Li, L.4
  • 41
    • 84880675844 scopus 로고    scopus 로고
    • Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine
    • B. Tang, T. Song, F. Li, and L. Deng Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine Renewable Energy 62 2014 1 9
    • (2014) Renewable Energy , vol.62 , pp. 1-9
    • Tang, B.1    Song, T.2    Li, F.3    Deng, L.4
  • 42
    • 84881092393 scopus 로고    scopus 로고
    • An intelligent approach for engine fault diagnosis based on Hilbert-Huang transform and support vector machine
    • Y.S. Wang, Q.H. Ma, Q. Zhu, X.T. Liu, and L.H. Zhao An intelligent approach for engine fault diagnosis based on Hilbert-Huang transform and support vector machine Appl. Acoust. 75 2014 1 9
    • (2014) Appl. Acoust. , vol.75 , pp. 1-9
    • Wang, Y.S.1    Ma, Q.H.2    Zhu, Q.3    Liu, X.T.4    Zhao, L.H.5
  • 43
    • 33646512202 scopus 로고    scopus 로고
    • Practical scheme for fast detection and classification of rolling-element bearing faults using support vector machines
    • A. Rojas, and A.K. Nandi Practical scheme for fast detection and classification of rolling-element bearing faults using support vector machines Mech. Syst. Signal Process. 20 2006 1523 1536
    • (2006) Mech. Syst. Signal Process. , vol.20 , pp. 1523-1536
    • Rojas, A.1    Nandi, A.K.2
  • 44
    • 78650195131 scopus 로고    scopus 로고
    • An ACO-based algorithm for parameter optimization of support vector machines
    • X.L. Zhang, X.F. Chen, and Z.J. He An ACO-based algorithm for parameter optimization of support vector machines Expert Syst. Appl. 37 2010 6618 6628
    • (2010) Expert Syst. Appl. , vol.37 , pp. 6618-6628
    • Zhang, X.L.1    Chen, X.F.2    He, Z.J.3
  • 45
    • 40649101024 scopus 로고    scopus 로고
    • Choosing the kernel parameters of support vector machines according to the inter-cluster distance
    • IJCNN'06, July 16, 2006-July 21, 2006, Institute of Electrical and Electronics Engineers Inc., Vancouver, BC, Canada
    • K.-P. Wu, S.-D. Wang, Choosing the kernel parameters of support vector machines according to the inter-cluster distance, in: International Joint Conference on Neural Networks 2006, IJCNN'06, July 16, 2006-July 21, 2006, Institute of Electrical and Electronics Engineers Inc., Vancouver, BC, Canada, 2006, pp. 1205-1211.
    • (2006) International Joint Conference on Neural Networks 2006 , pp. 1205-1211
    • Wu, K.-P.1    Wang, S.-D.2
  • 46
    • 58249083168 scopus 로고    scopus 로고
    • Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space
    • K.P. Wu, and S.D. Wang Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space Pattern Recogn. 42 2009 710 717
    • (2009) Pattern Recogn. , vol.42 , pp. 710-717
    • Wu, K.P.1    Wang, S.D.2
  • 47
    • 83555163892 scopus 로고    scopus 로고
    • Multi-class support vector machine optimized by inter-cluster distance and self-adaptive deferential evolution
    • X. Zhang, J. Zhou, C. Wang, C. Li, and L. Song Multi-class support vector machine optimized by inter-cluster distance and self-adaptive deferential evolution Appl. Math. Comput. 218 2012 4973 4987
    • (2012) Appl. Math. Comput. , vol.218 , pp. 4973-4987
    • Zhang, X.1    Zhou, J.2    Wang, C.3    Li, C.4    Song, L.5
  • 48
    • 42749097441 scopus 로고    scopus 로고
    • A non-parametric independence test using permutation entropy
    • M. Matilla-García, and M. Ruiz Marín A non-parametric independence test using permutation entropy J. Econom. 144 2008 139 155
    • (2008) J. Econom. , vol.144 , pp. 139-155
    • Matilla-García, M.1    Ruiz Marín, M.2
  • 49
    • 37649028653 scopus 로고    scopus 로고
    • Detecting dynamical changes in time series using the permutation entropy
    • 046217-1-046217-7
    • Y. Cao, W.-W. Tung, J. Gao, V. Protopopescu, and L. Hively Detecting dynamical changes in time series using the permutation entropy Phys. Rev.-Ser. E 70 2004 (046217-1-046217-7)
    • (2004) Phys. Rev.-Ser. E , vol.70
    • Cao, Y.1    Tung, W.-W.2    Gao, J.3    Protopopescu, V.4    Hively, L.5
  • 50
    • 35949006791 scopus 로고
    • Determining embedding dimension for phase-space reconstruction using a geometrical construction
    • M.B. Kennel, R. Brown, and H.D. Abarbanel Determining embedding dimension for phase-space reconstruction using a geometrical construction Phys. Rev. A 45 1992 3403 3411
    • (1992) Phys. Rev. A , vol.45 , pp. 3403-3411
    • Kennel, M.B.1    Brown, R.2    Abarbanel, H.D.3
  • 52
    • 3142575287 scopus 로고    scopus 로고
    • A complex filter for vibration signal demodulation in bearing defect diagnosis
    • Y.-T. Sheen A complex filter for vibration signal demodulation in bearing defect diagnosis J. Sound Vib. 276 2004 105 119
    • (2004) J. Sound Vib. , vol.276 , pp. 105-119
    • Sheen, Y.-T.1
  • 53
    • 77953139252 scopus 로고    scopus 로고
    • Rolling element bearing faults diagnosis based on optimal Morlet wavelet filter and autocorrelation enhancement
    • W. Su, F. Wang, H. Zhu, Z. Zhang, and Z. Guo Rolling element bearing faults diagnosis based on optimal Morlet wavelet filter and autocorrelation enhancement Mech. Syst. Signal Process. 24 2010 1458 1472
    • (2010) Mech. Syst. Signal Process. , vol.24 , pp. 1458-1472
    • Su, W.1    Wang, F.2    Zhu, H.3    Zhang, Z.4    Guo, Z.5
  • 56
    • 77951207585 scopus 로고    scopus 로고
    • Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference
    • L. Zhang, G. Xiong, H. Liu, H. Zou, and W. Guo Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference Expert Syst. Appl. 37 2010 6077 6085
    • (2010) Expert Syst. Appl. , vol.37 , pp. 6077-6085
    • Zhang, L.1    Xiong, G.2    Liu, H.3    Zou, H.4    Guo, W.5
  • 57
    • 84947969274 scopus 로고    scopus 로고
    • A multiscale permutation entropy based approach to select wavelet for fault diagnosis of ball bearings
    • V. Vakharia, V.K. Gupta, and P.K. Kankar A multiscale permutation entropy based approach to select wavelet for fault diagnosis of ball bearings J. Vib. Control 2014 10.1177/1077546314520830
    • (2014) J. Vib. Control
    • Vakharia, V.1    Gupta, V.K.2    Kankar, P.K.3
  • 58
    • 84867863746 scopus 로고    scopus 로고
    • Multi-fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings
    • Z. Liu, H. Cao, X. Chen, Z. He, and Z. Shen Multi-fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings Neurocomputing 99 2013 399 410
    • (2013) Neurocomputing , vol.99 , pp. 399-410
    • Liu, Z.1    Cao, H.2    Chen, X.3    He, Z.4    Shen, Z.5
  • 59
    • 84885551457 scopus 로고    scopus 로고
    • A roller bearing fault diagnosis method based on hierarchical entropy and support vector machine with particle swarm optimization algorithm
    • K. Zhu, X. Song, and D. Xue A roller bearing fault diagnosis method based on hierarchical entropy and support vector machine with particle swarm optimization algorithm Measurement 47 2014 669 675
    • (2014) Measurement , vol.47 , pp. 669-675
    • Zhu, K.1    Song, X.2    Xue, D.3
  • 60
    • 84952882177 scopus 로고    scopus 로고
    • Feature extraction and fault severity classification in ball bearings
    • A. Sharma, M. Amarnath, and P.K. Kankar Feature extraction and fault severity classification in ball bearings J. Vib. Control 2014 10.1177/1077546314528021
    • (2014) J. Vib. Control
    • Sharma, A.1    Amarnath, M.2    Kankar, P.K.3
  • 61
    • 84876906121 scopus 로고    scopus 로고
    • Compound faults detection of rotating machinery using improved adaptive redundant lifting multiwavelet
    • J. Chen, Y. Zi, Z. He, and J. Yuan Compound faults detection of rotating machinery using improved adaptive redundant lifting multiwavelet Mech. Syst. Signal Process. 38 2013 36 54
    • (2013) Mech. Syst. Signal Process. , vol.38 , pp. 36-54
    • Chen, J.1    Zi, Y.2    He, Z.3    Yuan, J.4
  • 62
    • 84878012451 scopus 로고    scopus 로고
    • ANN and ANFIS-based multi-staged decision algorithm for the detection and diagnosis of bearing faults
    • H.M. Ertunc, H. Ocak, and C. Aliustaoglu ANN and ANFIS-based multi-staged decision algorithm for the detection and diagnosis of bearing faults Neural Comput. Appl. 22 2012 435 446
    • (2012) Neural Comput. Appl. , vol.22 , pp. 435-446
    • Ertunc, H.M.1    Ocak, H.2    Aliustaoglu, C.3
  • 63
    • 84877955002 scopus 로고    scopus 로고
    • Improved complexity based on time-frequency analysis in bearing quantitative diagnosis
    • J. Wang, L. Cui, H. Wang, and P. Chen Improved complexity based on time-frequency analysis in bearing quantitative diagnosis Adv. Mech. Eng. 2013 2013 1 11
    • (2013) Adv. Mech. Eng. , vol.2013 , pp. 1-11
    • Wang, J.1    Cui, L.2    Wang, H.3    Chen, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.