-
1
-
-
38649115342
-
Microbial influences in inflammatory bowel diseases
-
Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008;134:577-594.
-
(2008)
Gastroenterology
, vol.134
, pp. 577-594
-
-
Sartor, R.B.1
-
2
-
-
80051856839
-
The human gut microbiome: ecology and recent evolutionary changes
-
Walter J, Ley R. The human gut microbiome: ecology and recent evolutionary changes. Annu Rev Microbiol. 2011;65:411-429.
-
(2011)
Annu Rev Microbiol
, vol.65
, pp. 411-429
-
-
Walter, J.1
Ley, R.2
-
3
-
-
84937901925
-
The intestinal microbiome in early life: health and disease
-
Arrieta MC, Stiemsma LT, Amenyogbe N, Brown EM, Finlay B. The intestinal microbiome in early life: health and disease. Front Immunol. 2014;5:427.
-
(2014)
Front Immunol
, vol.5
, pp. 427
-
-
Arrieta, M.C.1
Stiemsma, L.T.2
Amenyogbe, N.3
Brown, E.M.4
Finlay, B.5
-
5
-
-
84947420101
-
New developments providing mechanistic insight into the impact of the microbiota on allergic disease
-
McCoy KD, Koller Y. New developments providing mechanistic insight into the impact of the microbiota on allergic disease. Clin Immunol. 2015;159:170-176.
-
(2015)
Clin Immunol
, vol.159
, pp. 170-176
-
-
McCoy, K.D.1
Koller, Y.2
-
7
-
-
0013921793
-
The enhancing effect of the microbial flora on macrophage function and the immune response. A study in germfree mice
-
Bauer H, Paronetto F, Burns WA, Einheber A. The enhancing effect of the microbial flora on macrophage function and the immune response. A study in germfree mice. J Exp Med. 1966;123:1013-1024.
-
(1966)
J Exp Med
, vol.123
, pp. 1013-1024
-
-
Bauer, H.1
Paronetto, F.2
Burns, W.A.3
Einheber, A.4
-
8
-
-
85017434376
-
Dissecting the interplay between intestinal microbiota and host immunity in health and disease: lessons learned from germfree and gnotobiotic animal models
-
Fiebiger U, Bereswill S, Heimesaat MM. Dissecting the interplay between intestinal microbiota and host immunity in health and disease: lessons learned from germfree and gnotobiotic animal models. Eur J Microbiol Immunol (Bp). 2016;6:253-271.
-
(2016)
Eur J Microbiol Immunol (Bp)
, vol.6
, pp. 253-271
-
-
Fiebiger, U.1
Bereswill, S.2
Heimesaat, M.M.3
-
9
-
-
16144363520
-
The response of the lymphatic tissue to bacterial antigen. Studies in germfree mice
-
Horowitz RE, Bauer H, Paronetto F, Abrams GD, Watkins KC, Popper H. The response of the lymphatic tissue to bacterial antigen. Studies in germfree mice. Am J Pathol. 1964;44:747-761.
-
(1964)
Am J Pathol
, vol.44
, pp. 747-761
-
-
Horowitz, R.E.1
Bauer, H.2
Paronetto, F.3
Abrams, G.D.4
Watkins, K.C.5
Popper, H.6
-
10
-
-
84928881439
-
Standardised animal models of host microbial mutualism
-
Macpherson AJ, McCoy KD. Standardised animal models of host microbial mutualism. Mucosal Immunol. 2015;8:476-486.
-
(2015)
Mucosal Immunol
, vol.8
, pp. 476-486
-
-
Macpherson, A.J.1
McCoy, K.D.2
-
11
-
-
2942578705
-
The response of the lymphatic tissue to the microbial flora. Studies on germfree mice
-
Bauer H, Horowitz RE, Levenson SM, Popper H. The response of the lymphatic tissue to the microbial flora. Studies on germfree mice. Am J Pathol. 1963;42:471-483.
-
(1963)
Am J Pathol
, vol.42
, pp. 471-483
-
-
Bauer, H.1
Horowitz, R.E.2
Levenson, S.M.3
Popper, H.4
-
12
-
-
84887960425
-
Intestinal microbial diversity during early-life colonization shapes long-term IgE levels
-
Cahenzli J, Koller Y, Wyss M, Geuking MB, McCoy KD. Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe. 2013;14:559-570.
-
(2013)
Cell Host Microbe
, vol.14
, pp. 559-570
-
-
Cahenzli, J.1
Koller, Y.2
Wyss, M.3
Geuking, M.B.4
McCoy, K.D.5
-
13
-
-
84865369416
-
Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice
-
El Aidy S, van Baarlen P, Derrien M, et al. Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice. Mucosal Immunol. 2012;5:567-579.
-
(2012)
Mucosal Immunol
, vol.5
, pp. 567-579
-
-
El Aidy, S.1
van Baarlen, P.2
Derrien, M.3
-
14
-
-
84858956036
-
Patterns of early gut colonization shape future immune responses of the host
-
Hansen CH, Nielsen DS, Kverka M, et al. Patterns of early gut colonization shape future immune responses of the host. PLoS ONE. 2012;7:e34043.
-
(2012)
PLoS ONE
, vol.7
-
-
Hansen, C.H.1
Nielsen, D.S.2
Kverka, M.3
-
15
-
-
84860216630
-
Microbial exposure during early life has persistent effects on natural killer T cell function
-
Olszak T, An D, Zeissig S, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336:489-493.
-
(2012)
Science
, vol.336
, pp. 489-493
-
-
Olszak, T.1
An, D.2
Zeissig, S.3
-
16
-
-
84865339630
-
A microarray analysis of gnotobiotic mice indicating that microbial exposure during the neonatal period plays an essential role in immune system development
-
Yamamoto M, Yamaguchi R, Munakata K, et al. A microarray analysis of gnotobiotic mice indicating that microbial exposure during the neonatal period plays an essential role in immune system development. BMC Genom. 2012;13:335.
-
(2012)
BMC Genom
, vol.13
, pp. 335
-
-
Yamamoto, M.1
Yamaguchi, R.2
Munakata, K.3
-
17
-
-
84965002935
-
How colonization by microbiota in early life shapes the immune system
-
Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016;352:539-544.
-
(2016)
Science
, vol.352
, pp. 539-544
-
-
Gensollen, T.1
Iyer, S.S.2
Kasper, D.L.3
Blumberg, R.S.4
-
18
-
-
85014690479
-
The neonatal window of opportunity: setting the stage for life-long host-microbial interaction and immune homeostasis
-
Torow N, Hornef MW. The neonatal window of opportunity: setting the stage for life-long host-microbial interaction and immune homeostasis. J Immunol. 2017;198:557-563.
-
(2017)
J Immunol
, vol.198
, pp. 557-563
-
-
Torow, N.1
Hornef, M.W.2
-
19
-
-
84947461438
-
Feeding the brain and nurturing the mind: linking nutrition and the gut microbiota to brain development
-
Goyal MS, Venkatesh S, Milbrandt J, Gordon JI, Raichle ME. Feeding the brain and nurturing the mind: linking nutrition and the gut microbiota to brain development. Proc Natl Acad Sci USA. 2015;112:14105-14112.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. 14105-14112
-
-
Goyal, M.S.1
Venkatesh, S.2
Milbrandt, J.3
Gordon, J.I.4
Raichle, M.E.5
-
20
-
-
85019888691
-
Does a prenatal bacterial microbiota exist?
-
Hornef M, Penders J. Does a prenatal bacterial microbiota exist? Mucosal Immunol. 2017;10:598-601.
-
(2017)
Mucosal Immunol
, vol.10
, pp. 598-601
-
-
Hornef, M.1
Penders, J.2
-
21
-
-
85022198188
-
A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome
-
Perez-Munoz ME, Arrieta MC, Ramer-Tait AE, Walter J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017;5:48.
-
(2017)
Microbiome
, vol.5
, pp. 48
-
-
Perez-Munoz, M.E.1
Arrieta, M.C.2
Ramer-Tait, A.E.3
Walter, J.4
-
22
-
-
0018134040
-
Factors involved in colonization of the gut epithelial surface
-
Savage DC. Factors involved in colonization of the gut epithelial surface. Am J Clin Nutr. 1978;31:S131-S135.
-
(1978)
Am J Clin Nutr
, vol.31
, pp. S131-S135
-
-
Savage, D.C.1
-
23
-
-
0003034862
-
The development of the bacterial flora in the gastrointestinal tract of mice
-
Schaedler RW, Dubos R, Costello R. The development of the bacterial flora in the gastrointestinal tract of mice. J Exp Med. 1965;122:59-66.
-
(1965)
J Exp Med
, vol.122
, pp. 59-66
-
-
Schaedler, R.W.1
Dubos, R.2
Costello, R.3
-
24
-
-
0032956143
-
Developmental microbial ecology of the neonatal gastrointestinal tract
-
Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr. 1999;69:1035S-1045S.
-
(1999)
Am J Clin Nutr
, vol.69
, pp. 1035S-1045S
-
-
Mackie, R.I.1
Sghir, A.2
Gaskins, H.R.3
-
25
-
-
84907597286
-
The first thousand days - intestinal microbiology of early life: establishing a symbiosis
-
Wopereis H, Oozeer R, Knipping K, Belzer C, Knol J. The first thousand days - intestinal microbiology of early life: establishing a symbiosis. Pediatr Allergy Immunol. 2014;25:428-438.
-
(2014)
Pediatr Allergy Immunol
, vol.25
, pp. 428-438
-
-
Wopereis, H.1
Oozeer, R.2
Knipping, K.3
Belzer, C.4
Knol, J.5
-
26
-
-
84862777474
-
Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation
-
Hill DA, Siracusa MC, Abt MC, et al. Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat Med. 2012;18:538-546.
-
(2012)
Nat Med
, vol.18
, pp. 538-546
-
-
Hill, D.A.1
Siracusa, M.C.2
Abt, M.C.3
-
27
-
-
79952855316
-
Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression
-
Reikvam DH, Erofeev A, Sandvik A, et al. Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression. PLoS ONE. 2011;6:e17996.
-
(2011)
PLoS ONE
, vol.6
-
-
Reikvam, D.H.1
Erofeev, A.2
Sandvik, A.3
-
28
-
-
84871124415
-
A metagenomic insight into our gut's microbiome
-
Lepage P, Leclerc MC, Joossens M, et al. A metagenomic insight into our gut's microbiome. Gut. 2013;62:146-158.
-
(2013)
Gut
, vol.62
, pp. 146-158
-
-
Lepage, P.1
Leclerc, M.C.2
Joossens, M.3
-
30
-
-
84997701899
-
A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice
-
Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23:107-113.
-
(2017)
Nat Med
, vol.23
, pp. 107-113
-
-
Plovier, H.1
Everard, A.2
Druart, C.3
-
31
-
-
85019043035
-
Cultured microbes represent a substantial fraction of the human and mouse gut microbiota
-
Lagkouvardos I, Overmann J, Clavel T. Cultured microbes represent a substantial fraction of the human and mouse gut microbiota. Gut Microbes. 2017;1–11.
-
(2017)
Gut Microbes
, pp. 1-11
-
-
Lagkouvardos, I.1
Overmann, J.2
Clavel, T.3
-
32
-
-
84859963423
-
Lactocepin secreted by Lactobacillus exerts anti-inflammatory effects by selectively degrading proinflammatory chemokines
-
von Schillde MA, Hormannsperger G, Weiher M, et al. Lactocepin secreted by Lactobacillus exerts anti-inflammatory effects by selectively degrading proinflammatory chemokines. Cell Host Microbe. 2012;11:387-396.
-
(2012)
Cell Host Microbe
, vol.11
, pp. 387-396
-
-
von Schillde, M.A.1
Hormannsperger, G.2
Weiher, M.3
-
33
-
-
84886909059
-
A Lactobacillus rhamnosus GG-derived soluble protein, p40, stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor
-
Yan F, Liu L, Dempsey PJ, et al. A Lactobacillus rhamnosus GG-derived soluble protein, p40, stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor. J Biol Chem. 2013;288:30742-30751.
-
(2013)
J Biol Chem
, vol.288
, pp. 30742-30751
-
-
Yan, F.1
Liu, L.2
Dempsey, P.J.3
-
34
-
-
77958558890
-
Functional metagenomics: a high throughput screening method to decipher microbiota-driven NF-kappaB modulation in the human gut
-
Lakhdari O, Cultrone A, Tap J, et al. Functional metagenomics: a high throughput screening method to decipher microbiota-driven NF-kappaB modulation in the human gut. PLoS ONE. 2010;5.
-
(2010)
PLoS ONE
, vol.5
-
-
Lakhdari, O.1
Cultrone, A.2
Tap, J.3
-
35
-
-
85014094708
-
An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk
-
e1112
-
Yissachar N, Zhou Y, Ung L, et al. An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk. Cell. 2017;168:1135-1148 e1112.
-
(2017)
Cell
, vol.168
, pp. 1135-1148
-
-
Yissachar, N.1
Zhou, Y.2
Ung, L.3
-
36
-
-
84941749788
-
Manipulating the gut microbiota: methods and challenges
-
Ericsson AC, Franklin CL. Manipulating the gut microbiota: methods and challenges. ILAR J. 2015;56:205-217.
-
(2015)
ILAR J
, vol.56
, pp. 205-217
-
-
Ericsson, A.C.1
Franklin, C.L.2
-
37
-
-
84902649784
-
Mining the human gut microbiota for effector strains that shape the immune system
-
Ahern PP, Faith JJ, Gordon JI. Mining the human gut microbiota for effector strains that shape the immune system. Immunity. 2014;40:815-823.
-
(2014)
Immunity
, vol.40
, pp. 815-823
-
-
Ahern, P.P.1
Faith, J.J.2
Gordon, J.I.3
-
38
-
-
84893370250
-
Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice
-
Faith JJ, Ahern PP, Ridaura VK, Cheng J, Gordon JI. Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. Sci Transl Med. 2014;6:220ra211.
-
(2014)
Sci Transl Med
, vol.6
, pp. 220ra211
-
-
Faith, J.J.1
Ahern, P.P.2
Ridaura, V.K.3
Cheng, J.4
Gordon, J.I.5
-
39
-
-
85003426944
-
Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice
-
Tan TG, Sefik E, Geva-Zatorsky N, et al. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc Natl Acad Sci USA. 2016;113:E8141-E8150.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, pp. E8141-E8150
-
-
Tan, T.G.1
Sefik, E.2
Geva-Zatorsky, N.3
-
40
-
-
85012863046
-
Mining the human gut microbiota for immunomodulatory organisms
-
Geva-Zatorsky N, Sefik E, Kua L, et al. Mining the human gut microbiota for immunomodulatory organisms. Cell. 2017;168:928–943 e911.
-
(2017)
Cell
, vol.168
, pp. 928-943 e911
-
-
Geva-Zatorsky, N.1
Sefik, E.2
Kua, L.3
-
41
-
-
84961168891
-
The mouse gut microbiome revisited: from complex diversity to model ecosystems
-
Clavel T, Lagkouvardos I, Blaut M, Stecher B. The mouse gut microbiome revisited: from complex diversity to model ecosystems. Int J Med Microbiol. 2016;306:316-327.
-
(2016)
Int J Med Microbiol
, vol.306
, pp. 316-327
-
-
Clavel, T.1
Lagkouvardos, I.2
Blaut, M.3
Stecher, B.4
-
42
-
-
84871732071
-
Genomic variation landscape of the human gut microbiome
-
Schloissnig S, Arumugam M, Sunagawa S, et al. Genomic variation landscape of the human gut microbiome. Nature. 2013;493:45-50.
-
(2013)
Nature
, vol.493
, pp. 45-50
-
-
Schloissnig, S.1
Arumugam, M.2
Sunagawa, S.3
-
43
-
-
84859474080
-
Insights into the bovine rumen plasmidome
-
Brown Kav A, Sasson G, Jami E, Doron-Faigenboim A, Benhar I, Mizrahi I. Insights into the bovine rumen plasmidome. Proc Natl Acad Sci USA. 2012;109:5452-5457.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 5452-5457
-
-
Brown Kav, A.1
Sasson, G.2
Jami, E.3
Doron-Faigenboim, A.4
Benhar, I.5
Mizrahi, I.6
-
44
-
-
0028126829
-
The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations
-
Collins MD, Lawson PA, Willems A, et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol. 1994;44:812-826.
-
(1994)
Int J Syst Bacteriol
, vol.44
, pp. 812-826
-
-
Collins, M.D.1
Lawson, P.A.2
Willems, A.3
-
45
-
-
84879109909
-
A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice
-
Hayashi A, Sato T, Kamada N, et al. A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice. Cell Host Microbe. 2013;13:711-722.
-
(2013)
Cell Host Microbe
, vol.13
, pp. 711-722
-
-
Hayashi, A.1
Sato, T.2
Kamada, N.3
-
46
-
-
84937724740
-
Smad2 and Smad3 inversely regulate TGF-beta autoinduction in Clostridium butyricum-activated dendritic cells
-
Kashiwagi I, Morita R, Schichita T, et al. Smad2 and Smad3 inversely regulate TGF-beta autoinduction in Clostridium butyricum-activated dendritic cells. Immunity. 2015;43:65-79.
-
(2015)
Immunity
, vol.43
, pp. 65-79
-
-
Kashiwagi, I.1
Morita, R.2
Schichita, T.3
-
47
-
-
84944400160
-
Mucosa-associated Faecalibacterium prausnitzii phylotype richness is reduced in patients with inflammatory bowel disease
-
Lopez-Siles M, Martinez-Medina M, Abella C, et al. Mucosa-associated Faecalibacterium prausnitzii phylotype richness is reduced in patients with inflammatory bowel disease. Appl Environ Microbiol. 2015;81:7582-7592.
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 7582-7592
-
-
Lopez-Siles, M.1
Martinez-Medina, M.2
Abella, C.3
-
48
-
-
70349488325
-
Low counts of Faecalibacterium prausnitzii in colitis microbiota
-
Sokol H, Seksik P, Furet JP, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009;15:1183-1189.
-
(2009)
Inflamm Bowel Dis
, vol.15
, pp. 1183-1189
-
-
Sokol, H.1
Seksik, P.2
Furet, J.P.3
-
49
-
-
84955558823
-
Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn's disease
-
Takahashi K, Nishida A, Fujimoto T, et al. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn's disease. Digestion. 2016;93:59-65.
-
(2016)
Digestion
, vol.93
, pp. 59-65
-
-
Takahashi, K.1
Nishida, A.2
Fujimoto, T.3
-
50
-
-
84880924622
-
Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis
-
Rigottier-Gois L. Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis. ISME J. 2013;7:1256-1261.
-
(2013)
ISME J
, vol.7
, pp. 1256-1261
-
-
Rigottier-Gois, L.1
-
51
-
-
84963512940
-
Depletion of butyrate-producing clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella
-
Rivera-Chavez F, Zhang LF, Faber F, et al. Depletion of butyrate-producing clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella. Cell Host Microbe. 2016;19:443-454.
-
(2016)
Cell Host Microbe
, vol.19
, pp. 443-454
-
-
Rivera-Chavez, F.1
Zhang, L.F.2
Faber, F.3
-
52
-
-
84926612462
-
Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model
-
Martin R, Miquel S, Chain F, et al. Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model. BMC Microbiol. 2015;15:67.
-
(2015)
BMC Microbiol
, vol.15
, pp. 67
-
-
Martin, R.1
Miquel, S.2
Chain, F.3
-
53
-
-
84881559009
-
Faecalibacterium prausnitzii and human intestinal health
-
Miquel S, Martin R, Rossi O, et al. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol. 2013;16:255-261.
-
(2013)
Curr Opin Microbiol
, vol.16
, pp. 255-261
-
-
Miquel, S.1
Martin, R.2
Rossi, O.3
-
54
-
-
84953252234
-
Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses
-
Rossi O, van Berkel LA, Chain F, et al. Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses. Sci Rep. 2016;6:18507.
-
(2016)
Sci Rep
, vol.6
, pp. 18507
-
-
Rossi, O.1
van Berkel, L.A.2
Chain, F.3
-
55
-
-
55949124035
-
Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients
-
Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA. 2008;105:16731-16736.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 16731-16736
-
-
Sokol, H.1
Pigneur, B.2
Watterlot, L.3
-
56
-
-
84960373289
-
Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease
-
Quevrain E, Maubert MA, Michon C, et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease. Gut. 2016;65:415-425.
-
(2016)
Gut
, vol.65
, pp. 415-425
-
-
Quevrain, E.1
Maubert, M.A.2
Michon, C.3
-
57
-
-
84893859801
-
The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition
-
Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA. 2014;111:2247-2252.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 2247-2252
-
-
Chang, P.V.1
Hao, L.2
Offermanns, S.3
Medzhitov, R.4
-
58
-
-
84890550163
-
Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
-
Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451-455.
-
(2013)
Nature
, vol.504
, pp. 451-455
-
-
Arpaia, N.1
Campbell, C.2
Fan, X.3
-
59
-
-
84861954448
-
‘Candidatus Arthromitus’ revised: segmented filamentous bacteria in arthropod guts are members of Lachnospiraceae
-
Thompson CL, Vier R, Mikaelyan A, Wienemann T, Brune A. ‘Candidatus Arthromitus’ revised: segmented filamentous bacteria in arthropod guts are members of Lachnospiraceae. Environ Microbiol. 2012;14:1454-1465.
-
(2012)
Environ Microbiol
, vol.14
, pp. 1454-1465
-
-
Thompson, C.L.1
Vier, R.2
Mikaelyan, A.3
Wienemann, T.4
Brune, A.5
-
60
-
-
84876337823
-
Comparative analysis of the distribution of segmented filamentous bacteria in humans, mice and chickens
-
Yin Y, Wang Y, Zhu L, et al. Comparative analysis of the distribution of segmented filamentous bacteria in humans, mice and chickens. ISME J. 2013;7:615-621.
-
(2013)
ISME J
, vol.7
, pp. 615-621
-
-
Yin, Y.1
Wang, Y.2
Zhu, L.3
-
61
-
-
0027411385
-
Intestinal, segmented, filamentous bacteria in a wide range of vertebrate species
-
Klaasen HL, Koopman JP, Van den Brink ME, Bakker MH, Poelma FG, Beynen AC. Intestinal, segmented, filamentous bacteria in a wide range of vertebrate species. Lab Anim. 1993;27:141-150.
-
(1993)
Lab Anim
, vol.27
, pp. 141-150
-
-
Klaasen, H.L.1
Koopman, J.P.2
Van den Brink, M.E.3
Bakker, M.H.4
Poelma, F.G.5
Beynen, A.C.6
-
62
-
-
84897407542
-
Segmented filamentous bacteria: commensal microbes with potential effects on research
-
Ericsson AC, Hagan CE, Davis DJ, Franklin CL. Segmented filamentous bacteria: commensal microbes with potential effects on research. Comp Med. 2014;64:90-98.
-
(2014)
Comp Med
, vol.64
, pp. 90-98
-
-
Ericsson, A.C.1
Hagan, C.E.2
Davis, D.J.3
Franklin, C.L.4
-
63
-
-
84943638660
-
An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses
-
Sano T, Huang W, Hall JA, et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell. 2015;163:381-393.
-
(2015)
Cell
, vol.163
, pp. 381-393
-
-
Sano, T.1
Huang, W.2
Hall, J.A.3
-
64
-
-
84943639694
-
Th17 cell induction by adhesion of microbes to intestinal epithelial cells
-
Atarashi K, Tanoue T, Ando M, et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell. 2015;163:367-380.
-
(2015)
Cell
, vol.163
, pp. 367-380
-
-
Atarashi, K.1
Tanoue, T.2
Ando, M.3
-
65
-
-
70350343544
-
Induction of intestinal Th17 cells by segmented filamentous bacteria
-
Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139:485-498.
-
(2009)
Cell
, vol.139
, pp. 485-498
-
-
Ivanov, I.I.1
Atarashi, K.2
Manel, N.3
-
66
-
-
84898679249
-
Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation
-
Goto Y, Panea C, Nakato G, et al. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity. 2014;40:594-607.
-
(2014)
Immunity
, vol.40
, pp. 594-607
-
-
Goto, Y.1
Panea, C.2
Nakato, G.3
-
67
-
-
84939793511
-
Intestinal monocyte-derived macrophages control commensal-specific Th17 responses
-
Panea C, Farkas AM, Goto Y, et al. Intestinal monocyte-derived macrophages control commensal-specific Th17 responses. Cell Rep. 2015;12:1314-1324.
-
(2015)
Cell Rep
, vol.12
, pp. 1314-1324
-
-
Panea, C.1
Farkas, A.M.2
Goto, Y.3
-
68
-
-
70349742524
-
The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses
-
Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31:677-689.
-
(2009)
Immunity
, vol.31
, pp. 677-689
-
-
Gaboriau-Routhiau, V.1
Rakotobe, S.2
Lecuyer, E.3
-
69
-
-
35348945960
-
Segmented filamentous bacteria in a defined bacterial cocktail induce intestinal inflammation in SCID mice reconstituted with CD45RBhigh CD4+ T cells
-
Stepankova R, Powrie F, Kofronova O, et al. Segmented filamentous bacteria in a defined bacterial cocktail induce intestinal inflammation in SCID mice reconstituted with CD45RBhigh CD4+ T cells. Inflamm Bowel Dis. 2007;13:1202-1211.
-
(2007)
Inflamm Bowel Dis
, vol.13
, pp. 1202-1211
-
-
Stepankova, R.1
Powrie, F.2
Kofronova, O.3
-
70
-
-
77953913586
-
Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells
-
Wu HJ, Ivanov II, Darce J, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32:815-827.
-
(2010)
Immunity
, vol.32
, pp. 815-827
-
-
Wu, H.J.1
Ivanov, I.I.2
Darce, J.3
-
71
-
-
77954738601
-
Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota
-
Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA. 2010;107:12204-12209.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 12204-12209
-
-
Round, J.L.1
Mazmanian, S.K.2
-
72
-
-
22144490199
-
An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system
-
Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122:107-118.
-
(2005)
Cell
, vol.122
, pp. 107-118
-
-
Mazmanian, S.K.1
Liu, C.H.2
Tzianabos, A.O.3
Kasper, D.L.4
-
73
-
-
44449106055
-
A microbial symbiosis factor prevents intestinal inflammatory disease
-
Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453:620-625.
-
(2008)
Nature
, vol.453
, pp. 620-625
-
-
Mazmanian, S.K.1
Round, J.L.2
Kasper, D.L.3
-
74
-
-
84867656021
-
Outer membrane vesicles of a human commensal mediate immune regulation and disease protection
-
Shen Y, Giardino Torchia ML, Lawson GW, Karp CL, Ashwell JD, Mazmanian SK. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe. 2012;12:509-520.
-
(2012)
Cell Host Microbe
, vol.12
, pp. 509-520
-
-
Shen, Y.1
Giardino Torchia, M.L.2
Lawson, G.W.3
Karp, C.L.4
Ashwell, J.D.5
Mazmanian, S.K.6
-
75
-
-
79956311926
-
The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota
-
Round JL, Lee SM, Li J, et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011;332:974-977.
-
(2011)
Science
, vol.332
, pp. 974-977
-
-
Round, J.L.1
Lee, S.M.2
Li, J.3
-
76
-
-
84898647980
-
Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms
-
Dasgupta S, Erturk-Hasdemir D, Ochoa-Reparaz J, Reinecker HC, Kasper DL. Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms. Cell Host Microbe. 2014;15:413-423.
-
(2014)
Cell Host Microbe
, vol.15
, pp. 413-423
-
-
Dasgupta, S.1
Erturk-Hasdemir, D.2
Ochoa-Reparaz, J.3
Reinecker, H.C.4
Kasper, D.L.5
-
77
-
-
84892774558
-
Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells
-
An D, Oh SF, Olszak T, et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell. 2014;156:123-133.
-
(2014)
Cell
, vol.156
, pp. 123-133
-
-
An, D.1
Oh, S.F.2
Olszak, T.3
-
78
-
-
84904694854
-
An intestinal commensal symbiosis factor controls neuroinflammation via TLR2-mediated CD39 signalling
-
Wang Y, Telesford KM, Ochoa-Reparaz J, et al. An intestinal commensal symbiosis factor controls neuroinflammation via TLR2-mediated CD39 signalling. Nat Commun. 2014;5:4432.
-
(2014)
Nat Commun
, vol.5
, pp. 4432
-
-
Wang, Y.1
Telesford, K.M.2
Ochoa-Reparaz, J.3
-
79
-
-
77955913743
-
A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease
-
Ochoa-Reparaz J, Mielcarz DW, Wang Y, et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol. 2010;3:487-495.
-
(2010)
Mucosal Immunol
, vol.3
, pp. 487-495
-
-
Ochoa-Reparaz, J.1
Mielcarz, D.W.2
Wang, Y.3
-
80
-
-
84908340275
-
A commensal bacterial product elicits and modulates migratory capacity of CD39(+) CD4 T regulatory subsets in the suppression of neuroinflammation
-
Wang Y, Begum-Haque S, Telesford KM, et al. A commensal bacterial product elicits and modulates migratory capacity of CD39(+) CD4 T regulatory subsets in the suppression of neuroinflammation. Gut Microbes. 2014;5:552-561.
-
(2014)
Gut Microbes
, vol.5
, pp. 552-561
-
-
Wang, Y.1
Begum-Haque, S.2
Telesford, K.M.3
-
81
-
-
69949120571
-
A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses
-
Wu S, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15:1016-1022.
-
(2009)
Nat Med
, vol.15
, pp. 1016-1022
-
-
Wu, S.1
Rhee, K.J.2
Albesiano, E.3
-
82
-
-
84985014376
-
Strain competition restricts colonization of an enteric pathogen and prevents colitis
-
Hecht AL, Casterline BW, Earley ZM, Goo YA, Goodlett DR, Bubeck Wardenburg J. Strain competition restricts colonization of an enteric pathogen and prevents colitis. EMBO Rep. 2016;17:1281-1291.
-
(2016)
EMBO Rep
, vol.17
, pp. 1281-1291
-
-
Hecht, A.L.1
Casterline, B.W.2
Earley, Z.M.3
Goo, Y.A.4
Goodlett, D.R.5
Bubeck Wardenburg, J.6
-
83
-
-
84997787497
-
Effects of a gut pathobiont in a gnotobiotic mouse model of childhood undernutrition
-
Wagner VE, Dey N, Guruge J, et al. Effects of a gut pathobiont in a gnotobiotic mouse model of childhood undernutrition. Sci Transl Med. 2016;8:366ra164.
-
(2016)
Sci Transl Med
, vol.8
, pp. 366ra164
-
-
Wagner, V.E.1
Dey, N.2
Guruge, J.3
-
85
-
-
0017616431
-
Intestinal immune response to E. coli antigens in the germ-free chicken
-
Parry SH, Allen WD, Porter P. Intestinal immune response to E. coli antigens in the germ-free chicken. Immunology. 1977;32:731-741.
-
(1977)
Immunology
, vol.32
, pp. 731-741
-
-
Parry, S.H.1
Allen, W.D.2
Porter, P.3
-
86
-
-
0016339732
-
Intestinal antibody secretion in the young pig in response to oral immunization with Escherichia coli
-
Porter P, Kenworthy R, Noakes DE, Allen WD. Intestinal antibody secretion in the young pig in response to oral immunization with Escherichia coli. Immunology. 1974;27:841-853.
-
(1974)
Immunology
, vol.27
, pp. 841-853
-
-
Porter, P.1
Kenworthy, R.2
Noakes, D.E.3
Allen, W.D.4
-
87
-
-
84965088915
-
The response of the germfree guinea pig to oral bacterial challenge with Escherichia coli and Shigella flexneri
-
Sprinz H, Kundel DW, Dammin GJ, Horowitz RE, Schneider H, Formal SB. The response of the germfree guinea pig to oral bacterial challenge with Escherichia coli and Shigella flexneri. Am J Pathol. 1961;39:681-695.
-
(1961)
Am J Pathol
, vol.39
, pp. 681-695
-
-
Sprinz, H.1
Kundel, D.W.2
Dammin, G.J.3
Horowitz, R.E.4
Schneider, H.5
Formal, S.B.6
-
88
-
-
84880417771
-
Probiotic bacteria reduce salmonella typhimurium intestinal colonization by competing for iron
-
Deriu E, Liu JZ, Pezeshki M, et al. Probiotic bacteria reduce salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe. 2013;14:26-37.
-
(2013)
Cell Host Microbe
, vol.14
, pp. 26-37
-
-
Deriu, E.1
Liu, J.Z.2
Pezeshki, M.3
-
89
-
-
84872517425
-
Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157:H7 in the mouse intestine
-
Maltby R, Leatham-Jensen MP, Gibson T, Cohen PS, Conway T. Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157:H7 in the mouse intestine. PLoS ONE. 2013;8:e53957.
-
(2013)
PLoS ONE
, vol.8
-
-
Maltby, R.1
Leatham-Jensen, M.P.2
Gibson, T.3
Cohen, P.S.4
Conway, T.5
-
90
-
-
4143069158
-
High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease
-
Darfeuille-Michaud A, Boudeau J, Bulois P, et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology. 2004;127:412-421.
-
(2004)
Gastroenterology
, vol.127
, pp. 412-421
-
-
Darfeuille-Michaud, A.1
Boudeau, J.2
Bulois, P.3
-
91
-
-
0032768352
-
Invasive ability of an Escherichia coli strain isolated from the ileal mucosa of a patient with Crohn's disease
-
Boudeau J, Glasser AL, Masseret E, Joly B, Darfeuille-Michaud A. Invasive ability of an Escherichia coli strain isolated from the ileal mucosa of a patient with Crohn's disease. Infect Immun. 1999;67:4499-4509.
-
(1999)
Infect Immun
, vol.67
, pp. 4499-4509
-
-
Boudeau, J.1
Glasser, A.L.2
Masseret, E.3
Joly, B.4
Darfeuille-Michaud, A.5
-
92
-
-
85012906125
-
IgA-coated E. coli enriched in Crohn's disease spondyloarthritis promote TH17-dependent inflammation
-
Viladomiu M, Kivolowitz C, Abdulhamid A, et al. IgA-coated E. coli enriched in Crohn's disease spondyloarthritis promote TH17-dependent inflammation. Sci Transl Med. 2017;9:eaaf9655.
-
(2017)
Sci Transl Med
, vol.9
-
-
Viladomiu, M.1
Kivolowitz, C.2
Abdulhamid, A.3
-
93
-
-
77956569409
-
Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis
-
Garrett WS, Gallini CA, Yatsunenko T, et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe. 2010;8:292-300.
-
(2010)
Cell Host Microbe
, vol.8
, pp. 292-300
-
-
Garrett, W.S.1
Gallini, C.A.2
Yatsunenko, T.3
-
94
-
-
34848889673
-
Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system
-
Garrett WS, Lord GM, Punit S, et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell. 2007;131:33-45.
-
(2007)
Cell
, vol.131
, pp. 33-45
-
-
Garrett, W.S.1
Lord, G.M.2
Punit, S.3
-
95
-
-
84928175356
-
Distinct commensals induce interleukin-1beta via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury
-
Seo SU, Kamada N, Munoz-Planillo R, et al. Distinct commensals induce interleukin-1beta via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity. 2015;42:744-755.
-
(2015)
Immunity
, vol.42
, pp. 744-755
-
-
Seo, S.U.1
Kamada, N.2
Munoz-Planillo, R.3
-
96
-
-
21144434501
-
Dual infection with Helicobacter bilis and Helicobacter hepaticus in p-glycoprotein-deficient mdr1a-/- mice results in colitis that progresses to dysplasia
-
Maggio-Price L, Bielefeldt-Ohmann H, Treuting P, et al. Dual infection with Helicobacter bilis and Helicobacter hepaticus in p-glycoprotein-deficient mdr1a-/- mice results in colitis that progresses to dysplasia. Am J Pathol. 2005;166:1793-1806.
-
(2005)
Am J Pathol
, vol.166
, pp. 1793-1806
-
-
Maggio-Price, L.1
Bielefeldt-Ohmann, H.2
Treuting, P.3
-
97
-
-
0029873909
-
Inflammatory large bowel disease in immunodeficient mice naturally infected with Helicobacter hepaticus
-
Ward JM, Anver MR, Haines DC, et al. Inflammatory large bowel disease in immunodeficient mice naturally infected with Helicobacter hepaticus. Lab Anim Sci. 1996;46:15-20.
-
(1996)
Lab Anim Sci
, vol.46
, pp. 15-20
-
-
Ward, J.M.1
Anver, M.R.2
Haines, D.C.3
-
98
-
-
0028093372
-
Chronic active hepatitis and associated liver tumors in mice caused by a persistent bacterial infection with a novel Helicobacter species
-
Ward JM, Fox JG, Anver MR, et al. Chronic active hepatitis and associated liver tumors in mice caused by a persistent bacterial infection with a novel Helicobacter species. J Natl Cancer Inst. 1994;86:1222-1227.
-
(1994)
J Natl Cancer Inst
, vol.86
, pp. 1222-1227
-
-
Ward, J.M.1
Fox, J.G.2
Anver, M.R.3
-
99
-
-
0346734121
-
Induction of colitis by a CD4+ T cell clone specific for a bacterial epitope
-
Kullberg MC, Andersen JF, Gorelick PL, et al. Induction of colitis by a CD4+ T cell clone specific for a bacterial epitope. Proc Natl Acad Sci USA. 2003;100:15830-15835.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 15830-15835
-
-
Kullberg, M.C.1
Andersen, J.F.2
Gorelick, P.L.3
-
100
-
-
33750505009
-
Interleukin-23 drives innate and T cell-mediated intestinal inflammation
-
Hue S, Ahern P, Buonocore S, et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J Exp Med. 2006;203:2473-2483.
-
(2006)
J Exp Med
, vol.203
, pp. 2473-2483
-
-
Hue, S.1
Ahern, P.2
Buonocore, S.3
-
101
-
-
84961769001
-
CD11c(+) monocyte/macrophages promote chronic Helicobacter hepaticus-induced intestinal inflammation through the production of IL-23
-
Arnold IC, Mathisen S, Schulthess J, Danne C, Hegazy AN, Powrie F. CD11c(+) monocyte/macrophages promote chronic Helicobacter hepaticus-induced intestinal inflammation through the production of IL-23. Mucosal Immunol. 2016;9:352-363.
-
(2016)
Mucosal Immunol
, vol.9
, pp. 352-363
-
-
Arnold, I.C.1
Mathisen, S.2
Schulthess, J.3
Danne, C.4
Hegazy, A.N.5
Powrie, F.6
-
102
-
-
33750530394
-
IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis
-
Kullberg MC, Jankovic D, Feng CG, et al. IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J Exp Med. 2006;203:2485-2494.
-
(2006)
J Exp Med
, vol.203
, pp. 2485-2494
-
-
Kullberg, M.C.1
Jankovic, D.2
Feng, C.G.3
-
103
-
-
77951878587
-
Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology
-
Buonocore S, Ahern PP, Uhlig HH, et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature. 2010;464:1371-1375.
-
(2010)
Nature
, vol.464
, pp. 1371-1375
-
-
Buonocore, S.1
Ahern, P.P.2
Uhlig, H.H.3
-
104
-
-
77955346494
-
Pathogenic and protective roles of MyD88 in leukocytes and epithelial cells in mouse models of inflammatory bowel disease
-
529 e511-512
-
Asquith MJ, Boulard O, Powrie F, Maloy KJ. Pathogenic and protective roles of MyD88 in leukocytes and epithelial cells in mouse models of inflammatory bowel disease. Gastroenterology. 2010;139:519-529, 529 e511-512.
-
(2010)
Gastroenterology
, vol.139
, pp. 519-529
-
-
Asquith, M.J.1
Boulard, O.2
Powrie, F.3
Maloy, K.J.4
-
105
-
-
84866362664
-
IL-1beta mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells
-
Coccia M, Harrison OJ, Schiering C, et al. IL-1beta mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells. J Exp Med. 2012;209:1595-1609.
-
(2012)
J Exp Med
, vol.209
, pp. 1595-1609
-
-
Coccia, M.1
Harrison, O.J.2
Schiering, C.3
-
106
-
-
0037136284
-
Bacteria-triggered CD4(+) T regulatory cells suppress Helicobacter hepaticus-induced colitis
-
Kullberg MC, Jankovic D, Gorelick PL, et al. Bacteria-triggered CD4(+) T regulatory cells suppress Helicobacter hepaticus-induced colitis. J Exp Med. 2002;196:505-515.
-
(2002)
J Exp Med
, vol.196
, pp. 505-515
-
-
Kullberg, M.C.1
Jankovic, D.2
Gorelick, P.L.3
-
107
-
-
77954607064
-
A pathobiont of the microbiota balances host colonization and intestinal inflammation
-
Chow J, Mazmanian SK. A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe. 2010;7:265-276.
-
(2010)
Cell Host Microbe
, vol.7
, pp. 265-276
-
-
Chow, J.1
Mazmanian, S.K.2
-
108
-
-
80052365606
-
Pathobionts of the gastrointestinal microbiota and inflammatory disease
-
Chow J, Tang H, Mazmanian SK. Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr Opin Immunol. 2011;23:473-480.
-
(2011)
Curr Opin Immunol
, vol.23
, pp. 473-480
-
-
Chow, J.1
Tang, H.2
Mazmanian, S.K.3
-
109
-
-
84882354326
-
Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment
-
Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14:207-215.
-
(2013)
Cell Host Microbe
, vol.14
, pp. 207-215
-
-
Kostic, A.D.1
Chun, E.2
Robertson, L.3
-
110
-
-
84991644107
-
Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc
-
Abed J, Emgard JE, Zamir G, et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe. 2016;20:215-225.
-
(2016)
Cell Host Microbe
, vol.20
, pp. 215-225
-
-
Abed, J.1
Emgard, J.E.2
Zamir, G.3
-
111
-
-
84923053706
-
Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack
-
Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42:344-355.
-
(2015)
Immunity
, vol.42
, pp. 344-355
-
-
Gur, C.1
Ibrahim, Y.2
Isaacson, B.3
-
112
-
-
84978081339
-
Human gut microbes impact host serum metabolome and insulin sensitivity
-
Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535:376-381.
-
(2016)
Nature
, vol.535
, pp. 376-381
-
-
Pedersen, H.K.1
Gudmundsdottir, V.2
Nielsen, H.B.3
-
113
-
-
84958831500
-
Dysbiotic gut microbiota causes transmissible Crohn's disease-like ileitis independent of failure in antimicrobial defence
-
Schaubeck M, Clavel T, Calasan J, et al. Dysbiotic gut microbiota causes transmissible Crohn's disease-like ileitis independent of failure in antimicrobial defence. Gut. 2016;65:225-237.
-
(2016)
Gut
, vol.65
, pp. 225-237
-
-
Schaubeck, M.1
Clavel, T.2
Calasan, J.3
-
114
-
-
0032803862
-
Phylogeny of the defined murine microbiota: altered Schaedler flora
-
Dewhirst FE, Chien CC, Paster BJ, et al. Phylogeny of the defined murine microbiota: altered Schaedler flora. Appl Environ Microbiol. 1999;65:3287-3292.
-
(1999)
Appl Environ Microbiol
, vol.65
, pp. 3287-3292
-
-
Dewhirst, F.E.1
Chien, C.C.2
Paster, B.J.3
-
115
-
-
84941771586
-
The altered Schaedler flora: continued applications of a defined murine microbial community
-
Wymore Brand M, Wannemuehler MJ, Phillips GJ, et al. The altered Schaedler flora: continued applications of a defined murine microbial community. ILAR J. 2015;56:169-178.
-
(2015)
ILAR J
, vol.56
, pp. 169-178
-
-
Wymore Brand, M.1
Wannemuehler, M.J.2
Phillips, G.J.3
-
116
-
-
79956224326
-
Human intestinal microbiota: characterization of a simplified and stable gnotobiotic rat model
-
Becker N, Kunath J, Loh G, Blaut M. Human intestinal microbiota: characterization of a simplified and stable gnotobiotic rat model. Gut Microbes. 2011;2:25-33.
-
(2011)
Gut Microbes
, vol.2
, pp. 25-33
-
-
Becker, N.1
Kunath, J.2
Loh, G.3
Blaut, M.4
-
117
-
-
77953287834
-
Intestinal microflora functions in laboratory mice claimed to harbor a “normal” intestinal microflora. Is the SPF concept running out of date?
-
Norin E, Midtvedt T. Intestinal microflora functions in laboratory mice claimed to harbor a “normal” intestinal microflora. Is the SPF concept running out of date? Anaerobe. 2010;16:311-313.
-
(2010)
Anaerobe
, vol.16
, pp. 311-313
-
-
Norin, E.1
Midtvedt, T.2
-
118
-
-
84900452663
-
Induction of bacterial antigen-specific colitis by a simplified human microbiota consortium in gnotobiotic interleukin-10-/- mice
-
Eun CS, Mishima Y, Wohlgemuth S, et al. Induction of bacterial antigen-specific colitis by a simplified human microbiota consortium in gnotobiotic interleukin-10-/- mice. Infect Immun. 2014;82:2239-2246.
-
(2014)
Infect Immun
, vol.82
, pp. 2239-2246
-
-
Eun, C.S.1
Mishima, Y.2
Wohlgemuth, S.3
-
119
-
-
84883813272
-
Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice
-
Ganesh BP, Klopfleisch R, Loh G, Blaut M. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice. PLoS ONE. 2013;8:e74963.
-
(2013)
PLoS ONE
, vol.8
-
-
Ganesh, B.P.1
Klopfleisch, R.2
Loh, G.3
Blaut, M.4
-
120
-
-
34347264174
-
Helicobacter bilis triggers persistent immune reactivity to antigens derived from the commensal bacteria in gnotobiotic C3H/HeN mice
-
Jergens AE, Wilson-Welder JH, Dorn A, et al. Helicobacter bilis triggers persistent immune reactivity to antigens derived from the commensal bacteria in gnotobiotic C3H/HeN mice. Gut. 2007;56:934-940.
-
(2007)
Gut
, vol.56
, pp. 934-940
-
-
Jergens, A.E.1
Wilson-Welder, J.H.2
Dorn, A.3
-
121
-
-
84996868126
-
Response of germ-free mice to colonization with O. formigenes and altered Schaedler flora
-
Li X, Ellis ML, Dowell AE, et al. Response of germ-free mice to colonization with O. formigenes and altered Schaedler flora. Appl Environ Microbiol. 2016;82:6952-6960.
-
(2016)
Appl Environ Microbiol
, vol.82
, pp. 6952-6960
-
-
Li, X.1
Ellis, M.L.2
Dowell, A.E.3
-
122
-
-
84908406670
-
Clostridium ramosum promotes high-fat diet-induced obesity in gnotobiotic mouse models
-
Woting A, Pfeiffer N, Loh G, Klaus S, Blaut M. Clostridium ramosum promotes high-fat diet-induced obesity in gnotobiotic mouse models. MBio. 2014;5:e01530-01514.
-
(2014)
MBio
, vol.5
, pp. e01514-e01530
-
-
Woting, A.1
Pfeiffer, N.2
Loh, G.3
Klaus, S.4
Blaut, M.5
-
123
-
-
84969704060
-
Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation
-
Browne HP, Forster SC, Anonye BO, et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature. 2016;533:543-546.
-
(2016)
Nature
, vol.533
, pp. 543-546
-
-
Browne, H.P.1
Forster, S.C.2
Anonye, B.O.3
-
124
-
-
84994399678
-
Culture of previously uncultured members of the human gut microbiota by culturomics
-
Lagier JC, Khelaifia S, Alou MT, et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol. 2016;1:16203.
-
(2016)
Nat Microbiol
, vol.1
, pp. 16203
-
-
Lagier, J.C.1
Khelaifia, S.2
Alou, M.T.3
-
125
-
-
84926360580
-
Growth and host interaction of mouse segmented filamentous bacteria in vitro
-
Schnupf P, Gaboriau-Routhiau V, Gros M, et al. Growth and host interaction of mouse segmented filamentous bacteria in vitro. Nature. 2015;520:99-103.
-
(2015)
Nature
, vol.520
, pp. 99-103
-
-
Schnupf, P.1
Gaboriau-Routhiau, V.2
Gros, M.3
-
126
-
-
84981341034
-
The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota
-
Lagkouvardos I, Pukall R, Abt B, et al. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol. 2016;1:16131.
-
(2016)
Nat Microbiol
, vol.1
, pp. 16131
-
-
Lagkouvardos, I.1
Pukall, R.2
Abt, B.3
-
127
-
-
84996490811
-
Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium
-
Brugiroux S, Beutler M, Pfann C, et al. Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nat Microbiol. 2016;2:16215.
-
(2016)
Nat Microbiol
, vol.2
, pp. 16215
-
-
Brugiroux, S.1
Beutler, M.2
Pfann, C.3
-
128
-
-
85019419979
-
The effects of micronutrient deficiencies on bacterial species from the human gut microbiota
-
Hibberd MC, Wu M, Rodionov DA, et al. The effects of micronutrient deficiencies on bacterial species from the human gut microbiota. Sci Transl Med. 2017;9:eaal4069.
-
(2017)
Sci Transl Med
, vol.9
-
-
Hibberd, M.C.1
Wu, M.2
Rodionov, D.A.3
-
129
-
-
84930571109
-
Porcine models of digestive disease: the future of large animal translational research
-
Gonzalez LM, Moeser AJ, Blikslager AT. Porcine models of digestive disease: the future of large animal translational research. Transl Res. 2015;166:12-27.
-
(2015)
Transl Res
, vol.166
, pp. 12-27
-
-
Gonzalez, L.M.1
Moeser, A.J.2
Blikslager, A.T.3
-
130
-
-
80051732169
-
A metabolic system-wide characterisation of the pig: a model for human physiology
-
Merrifield CA, Lewis M, Claus SP, et al. A metabolic system-wide characterisation of the pig: a model for human physiology. Mol BioSyst. 2011;7:2577-2588.
-
(2011)
Mol BioSyst
, vol.7
, pp. 2577-2588
-
-
Merrifield, C.A.1
Lewis, M.2
Claus, S.P.3
-
131
-
-
0013933905
-
Ontogeny of the immune response. I. Development of immunoglobulins in germfree and conventional colostrum-deprived piglets
-
Kim YB, Bradley SG, Watson DW. Ontogeny of the immune response. I. Development of immunoglobulins in germfree and conventional colostrum-deprived piglets. J Immunol. 1966;97:52-63.
-
(1966)
J Immunol
, vol.97
, pp. 52-63
-
-
Kim, Y.B.1
Bradley, S.G.2
Watson, D.W.3
-
133
-
-
84866398667
-
A defined intestinal colonization microbiota for gnotobiotic pigs
-
Laycock G, Sait L, Inman C, et al. A defined intestinal colonization microbiota for gnotobiotic pigs. Vet Immunol Immunopathol. 2012;149:216-224.
-
(2012)
Vet Immunol Immunopathol
, vol.149
, pp. 216-224
-
-
Laycock, G.1
Sait, L.2
Inman, C.3
-
134
-
-
84954099831
-
Diet-induced extinctions in the gut microbiota compound over generations
-
Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016;529:212-215.
-
(2016)
Nature
, vol.529
, pp. 212-215
-
-
Sonnenburg, E.D.1
Smits, S.A.2
Tikhonov, M.3
Higginbottom, S.K.4
Wingreen, N.S.5
Sonnenburg, J.L.6
-
135
-
-
84938577126
-
Selective enrichment of commensal gut bacteria protects against Citrobacter rodentium-induced colitis
-
Vong L, Pinnell LJ, Maattanen P, Yeung CW, Lurz E, Sherman PM. Selective enrichment of commensal gut bacteria protects against Citrobacter rodentium-induced colitis. Am J Physiol Gastrointest Liver Physiol. 2015;309:G181-G192.
-
(2015)
Am J Physiol Gastrointest Liver Physiol
, vol.309
, pp. G181-G192
-
-
Vong, L.1
Pinnell, L.J.2
Maattanen, P.3
Yeung, C.W.4
Lurz, E.5
Sherman, P.M.6
-
136
-
-
84881477044
-
Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota
-
Atarashi K, Tanoue T, Oshima K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500:232-236.
-
(2013)
Nature
, vol.500
, pp. 232-236
-
-
Atarashi, K.1
Tanoue, T.2
Oshima, K.3
-
137
-
-
84890564250
-
Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells
-
Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446-450.
-
(2013)
Nature
, vol.504
, pp. 446-450
-
-
Furusawa, Y.1
Obata, Y.2
Fukuda, S.3
-
138
-
-
84964313180
-
Characterization of the 17 strains of regulatory T cell-inducing human-derived Clostridia
-
Narushima S, Sugiura Y, Oshima K, et al. Characterization of the 17 strains of regulatory T cell-inducing human-derived Clostridia. Gut Microbes. 2014;5:333-339.
-
(2014)
Gut Microbes
, vol.5
, pp. 333-339
-
-
Narushima, S.1
Sugiura, Y.2
Oshima, K.3
-
139
-
-
84977119864
-
Metabolism meets immunity: the role of free fatty acid receptors in the immune system
-
Alvarez-Curto E, Milligan G. Metabolism meets immunity: the role of free fatty acid receptors in the immune system. Biochem Pharmacol. 2016;114:3-13.
-
(2016)
Biochem Pharmacol
, vol.114
, pp. 3-13
-
-
Alvarez-Curto, E.1
Milligan, G.2
-
140
-
-
47949094965
-
Integration of metabolism and inflammation by lipid-activated nuclear receptors
-
Bensinger SJ, Tontonoz P. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature. 2008;454:470-477.
-
(2008)
Nature
, vol.454
, pp. 470-477
-
-
Bensinger, S.J.1
Tontonoz, P.2
-
141
-
-
84971519476
-
From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites
-
Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165:1332-1345.
-
(2016)
Cell
, vol.165
, pp. 1332-1345
-
-
Koh, A.1
De Vadder, F.2
Kovatcheva-Datchary, P.3
Backhed, F.4
-
142
-
-
84971201113
-
Gut microbiota, metabolites and host immunity
-
Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16:341-352.
-
(2016)
Nat Rev Immunol
, vol.16
, pp. 341-352
-
-
Rooks, M.G.1
Garrett, W.S.2
-
143
-
-
1542331436
-
Gnotobiotic rats harboring human intestinal microbiota as a model for studying cholesterol-to-coprostanol conversion
-
Gerard P, Beguet F, Lepercq P, et al. Gnotobiotic rats harboring human intestinal microbiota as a model for studying cholesterol-to-coprostanol conversion. FEMS Microbiol Ecol. 2004;47:337-343.
-
(2004)
FEMS Microbiol Ecol
, vol.47
, pp. 337-343
-
-
Gerard, P.1
Beguet, F.2
Lepercq, P.3
-
144
-
-
33244467651
-
Bile salt biotransformations by human intestinal bacteria
-
Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47:241-259.
-
(2006)
J Lipid Res
, vol.47
, pp. 241-259
-
-
Ridlon, J.M.1
Kang, D.J.2
Hylemon, P.B.3
-
145
-
-
84923613697
-
Dynamics and diversity of the ‘Atopobium cluster’ in the human faecal microbiota, and phenotypic characterization of ‘Atopobium cluster’ isolates
-
Thorasin T, Hoyles L, McCartney AL. Dynamics and diversity of the ‘Atopobium cluster’ in the human faecal microbiota, and phenotypic characterization of ‘Atopobium cluster’ isolates. Microbiology. 2015;161:565-579.
-
(2015)
Microbiology
, vol.161
, pp. 565-579
-
-
Thorasin, T.1
Hoyles, L.2
McCartney, A.L.3
-
146
-
-
79955579989
-
The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon
-
Donohoe DR, Garge N, Zhang X, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011;13:517-526.
-
(2011)
Cell Metab
, vol.13
, pp. 517-526
-
-
Donohoe, D.R.1
Garge, N.2
Zhang, X.3
-
147
-
-
84964577698
-
Microbial metabolite butyrate facilitates M2 macrophage polarization and function
-
Ji J, Shu D, Zheng M, et al. Microbial metabolite butyrate facilitates M2 macrophage polarization and function. Sci Rep. 2016;6:24838.
-
(2016)
Sci Rep
, vol.6
, pp. 24838
-
-
Ji, J.1
Shu, D.2
Zheng, M.3
-
148
-
-
84892449521
-
Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis
-
Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40:128-139.
-
(2014)
Immunity
, vol.40
, pp. 128-139
-
-
Singh, N.1
Gurav, A.2
Sivaprakasam, S.3
-
149
-
-
85014936442
-
Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells
-
Goverse G, Molenaar R, Macia L, et al. Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells. J Immunol. 2017;198:2172-2181.
-
(2017)
J Immunol
, vol.198
, pp. 2172-2181
-
-
Goverse, G.1
Molenaar, R.2
Macia, L.3
-
150
-
-
84946762832
-
The effect of short-chain fatty acids on human monocyte-derived dendritic cells
-
Nastasi C, Candela M, Bonefeld CM, et al. The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci Rep. 2015;5:16148.
-
(2015)
Sci Rep
, vol.5
, pp. 16148
-
-
Nastasi, C.1
Candela, M.2
Bonefeld, C.M.3
-
151
-
-
79958812655
-
SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor
-
Vinolo MA, Ferguson GJ, Kulkarni S, et al. SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. PLoS ONE. 2011;6:e21205.
-
(2011)
PLoS ONE
, vol.6
-
-
Vinolo, M.A.1
Ferguson, G.J.2
Kulkarni, S.3
-
152
-
-
70350141417
-
Short-chain fatty acids stimulate the migration of neutrophils to inflammatory sites
-
Vinolo MA, Rodrigues HG, Hatanaka E, Hebeda CB, Farsky SH, Curi R. Short-chain fatty acids stimulate the migration of neutrophils to inflammatory sites. Clin Sci (Lond). 2009;117:331-338.
-
(2009)
Clin Sci (Lond)
, vol.117
, pp. 331-338
-
-
Vinolo, M.A.1
Rodrigues, H.G.2
Hatanaka, E.3
Hebeda, C.B.4
Farsky, S.H.5
Curi, R.6
-
153
-
-
85011340433
-
Bacterial short-chain fatty acid metabolites modulate the inflammatory response against infectious bacteria
-
Correa RO, Vieira A, Sernaglia EM, et al. Bacterial short-chain fatty acid metabolites modulate the inflammatory response against infectious bacteria. Cell Microbiol. 2017.
-
(2017)
Cell Microbiol
-
-
Correa, R.O.1
Vieira, A.2
Sernaglia, E.M.3
-
154
-
-
84881068658
-
The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
-
Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569-573.
-
(2013)
Science
, vol.341
, pp. 569-573
-
-
Smith, P.M.1
Howitt, M.R.2
Panikov, N.3
-
155
-
-
84971268506
-
Memory CD8(+) T cells require increased concentrations of acetate induced by stress for optimal function
-
Balmer ML, Ma EH, Bantug GR, et al. Memory CD8(+) T cells require increased concentrations of acetate induced by stress for optimal function. Immunity. 2016;44:1312-1324.
-
(2016)
Immunity
, vol.44
, pp. 1312-1324
-
-
Balmer, M.L.1
Ma, E.H.2
Bantug, G.R.3
-
156
-
-
84979735744
-
Gut microbial metabolites fuel host antibody responses
-
Kim M, Qie Y, Park J, Kim CH. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe. 2016;20:202-214.
-
(2016)
Cell Host Microbe
, vol.20
, pp. 202-214
-
-
Kim, M.1
Qie, Y.2
Park, J.3
Kim, C.H.4
-
157
-
-
85020848232
-
Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43
-
Wu W, Sun M, Chen F, et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol. 2016;10:946–956.
-
(2016)
Mucosal Immunol
, vol.10
, pp. 946-956
-
-
Wu, W.1
Sun, M.2
Chen, F.3
-
158
-
-
70350666634
-
Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43
-
Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461:1282-1286.
-
(2009)
Nature
, vol.461
, pp. 1282-1286
-
-
Maslowski, K.M.1
Vieira, A.T.2
Ng, A.3
-
160
-
-
84945550161
-
The effect of Clostridium butyricum MIYAIRI on the prevention of pouchitis and alteration of the microbiota profile in patients with ulcerative colitis
-
Yasueda A, Mizushima T, Nezu R, et al. The effect of Clostridium butyricum MIYAIRI on the prevention of pouchitis and alteration of the microbiota profile in patients with ulcerative colitis. Surg Today. 2016;46:939-949.
-
(2016)
Surg Today
, vol.46
, pp. 939-949
-
-
Yasueda, A.1
Mizushima, T.2
Nezu, R.3
-
161
-
-
85027001555
-
Clostridium butyricum B1 alleviates high-fat diet-induced steatohepatitis in mice via enterohepatic immunoregulation
-
[Epub ahead of print]
-
Zhou D, Pan Q, Liu XL, et al. Clostridium butyricum B1 alleviates high-fat diet-induced steatohepatitis in mice via enterohepatic immunoregulation. J Gastroenterol Hepatol. 2017; https://doi.org/10.1111/jgh.13742 [Epub ahead of print].
-
(2017)
J Gastroenterol Hepatol
-
-
Zhou, D.1
Pan, Q.2
Liu, X.L.3
-
162
-
-
84893704050
-
Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis
-
Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20:159-166.
-
(2014)
Nat Med
, vol.20
, pp. 159-166
-
-
Trompette, A.1
Gollwitzer, E.S.2
Yadava, K.3
-
163
-
-
85014049062
-
The dual role of short fatty acid chains in the pathogenesis of autoimmune disease models
-
Mizuno M, Noto D, Kaga N, Chiba A, Miyake S. The dual role of short fatty acid chains in the pathogenesis of autoimmune disease models. PLoS ONE. 2017;12:e0173032.
-
(2017)
PLoS ONE
, vol.12
-
-
Mizuno, M.1
Noto, D.2
Kaga, N.3
Chiba, A.4
Miyake, S.5
-
164
-
-
79951500672
-
Recombinant lactobacilli expressing linoleic acid isomerase can modulate the fatty acid composition of host adipose tissue in mice
-
Rosberg-Cody E, Stanton C, O'Mahony L, et al. Recombinant lactobacilli expressing linoleic acid isomerase can modulate the fatty acid composition of host adipose tissue in mice. Microbiology. 2011;157:609-615.
-
(2011)
Microbiology
, vol.157
, pp. 609-615
-
-
Rosberg-Cody, E.1
Stanton, C.2
O'Mahony, L.3
-
165
-
-
84957803320
-
Intestinal removal of free fatty acids from hosts by Lactobacilli for the treatment of obesity
-
Chung HJ, Yu JG, Lee IA, et al. Intestinal removal of free fatty acids from hosts by Lactobacilli for the treatment of obesity. FEBS Open Bio. 2016;6:64-76.
-
(2016)
FEBS Open Bio
, vol.6
, pp. 64-76
-
-
Chung, H.J.1
Yu, J.G.2
Lee, I.A.3
-
166
-
-
0032114156
-
Incorporation of cholesterol into the cellular membrane of Bifidobacterium longum
-
Dambekodi PC, Gilliland SE. Incorporation of cholesterol into the cellular membrane of Bifidobacterium longum. J Dairy Sci. 1998;81:1818-1824.
-
(1998)
J Dairy Sci
, vol.81
, pp. 1818-1824
-
-
Dambekodi, P.C.1
Gilliland, S.E.2
-
167
-
-
77949968856
-
Removal of cholesterol by lactobacilli via incorporation and conversion to coprostanol
-
Lye HS, Rusul G, Liong MT. Removal of cholesterol by lactobacilli via incorporation and conversion to coprostanol. J Dairy Sci. 2010;93:1383-1392.
-
(2010)
J Dairy Sci
, vol.93
, pp. 1383-1392
-
-
Lye, H.S.1
Rusul, G.2
Liong, M.T.3
-
168
-
-
85004060392
-
Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation
-
Progatzky F, Sangha NJ, Yoshida N, et al. Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation. Nat Commun. 2014;5:5864.
-
(2014)
Nat Commun
, vol.5
, pp. 5864
-
-
Progatzky, F.1
Sangha, N.J.2
Yoshida, N.3
-
169
-
-
84867346639
-
Inhibition of intestinal cholesterol absorption decreases atherosclerosis but not adipose tissue inflammation
-
Umemoto T, Subramanian S, Ding Y, et al. Inhibition of intestinal cholesterol absorption decreases atherosclerosis but not adipose tissue inflammation. J Lipid Res. 2012;53:2380-2389.
-
(2012)
J Lipid Res
, vol.53
, pp. 2380-2389
-
-
Umemoto, T.1
Subramanian, S.2
Ding, Y.3
-
170
-
-
84865344897
-
Association of genetic variation in the NR1H4 gene, encoding the nuclear bile acid receptor FXR, with inflammatory bowel disease
-
Attinkara R, Mwinyi J, Truninger K, et al. Association of genetic variation in the NR1H4 gene, encoding the nuclear bile acid receptor FXR, with inflammatory bowel disease. BMC Res Notes. 2012;5:461.
-
(2012)
BMC Res Notes
, vol.5
, pp. 461
-
-
Attinkara, R.1
Mwinyi, J.2
Truninger, K.3
-
171
-
-
84874651768
-
Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases
-
Duboc H, Rajca S, Rainteau D, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut. 2013;62:531-539.
-
(2013)
Gut
, vol.62
, pp. 531-539
-
-
Duboc, H.1
Rajca, S.2
Rainteau, D.3
-
172
-
-
80055090450
-
The bile acid receptor GPBAR-1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis
-
Cipriani S, Mencarelli A, Chini MG, et al. The bile acid receptor GPBAR-1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis. PLoS ONE. 2011;6:e25637.
-
(2011)
PLoS ONE
, vol.6
-
-
Cipriani, S.1
Mencarelli, A.2
Chini, M.G.3
-
173
-
-
84994817318
-
Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome
-
Guo C, Xie S, Chi Z, et al. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity. 2016;45:802-816.
-
(2016)
Immunity
, vol.45
, pp. 802-816
-
-
Guo, C.1
Xie, S.2
Chi, Z.3
-
174
-
-
84872852300
-
The bile acid sensor FXR is required for immune-regulatory activities of TLR-9 in intestinal inflammation
-
Renga B, Mencarelli A, Cipriani S, et al. The bile acid sensor FXR is required for immune-regulatory activities of TLR-9 in intestinal inflammation. PLoS ONE. 2013;8:e54472.
-
(2013)
PLoS ONE
, vol.8
-
-
Renga, B.1
Mencarelli, A.2
Cipriani, S.3
-
175
-
-
79959187974
-
Structure-function analysis of the tertiary bile acid TUDCA for the resolution of endoplasmic reticulum stress in intestinal epithelial cells
-
Berger E, Haller D. Structure-function analysis of the tertiary bile acid TUDCA for the resolution of endoplasmic reticulum stress in intestinal epithelial cells. Biochem Biophys Res Commun. 2011;409:610-615.
-
(2011)
Biochem Biophys Res Commun
, vol.409
, pp. 610-615
-
-
Berger, E.1
Haller, D.2
-
176
-
-
84944876126
-
Activation of the bile acid receptor TGR5 enhances LPS-induced inflammatory responses in a human monocytic cell line
-
Mobraten K, Haugbro T, Karlstrom E, Kleiveland CR, Lea T. Activation of the bile acid receptor TGR5 enhances LPS-induced inflammatory responses in a human monocytic cell line. J Recept Signal Transduct Res. 2015;35:402-409.
-
(2015)
J Recept Signal Transduct Res
, vol.35
, pp. 402-409
-
-
Mobraten, K.1
Haugbro, T.2
Karlstrom, E.3
Kleiveland, C.R.4
Lea, T.5
-
177
-
-
84876041065
-
TGR5 signalling inhibits the production of pro-inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn's disease
-
Yoneno K, Hisamatsu T, Shimamura K, et al. TGR5 signalling inhibits the production of pro-inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn's disease. Immunology. 2013;139:19-29.
-
(2013)
Immunology
, vol.139
, pp. 19-29
-
-
Yoneno, K.1
Hisamatsu, T.2
Shimamura, K.3
-
178
-
-
0014991025
-
Determination of bile acid conversion potencies of intestinal bacteria by screening in vitro and subsequent establishment in germfree rats
-
Dickinson AB, Gustafsson BE, Norman A. Determination of bile acid conversion potencies of intestinal bacteria by screening in vitro and subsequent establishment in germfree rats. Acta Pathol Microbiol Scand B Microbiol Immunol. 1971;79:691-698.
-
(1971)
Acta Pathol Microbiol Scand B Microbiol Immunol
, vol.79
, pp. 691-698
-
-
Dickinson, A.B.1
Gustafsson, B.E.2
Norman, A.3
-
179
-
-
0014243313
-
Metabolism of cholic acid in germfree animals after the establishment in the intestinal tract of deconjugating and 7 alpha-dehydroxylating bacteria
-
Gustafsson BE, Midtvedt T, Norman A. Metabolism of cholic acid in germfree animals after the establishment in the intestinal tract of deconjugating and 7 alpha-dehydroxylating bacteria. Acta Pathol Microbiol Scand. 1968;72:433-443.
-
(1968)
Acta Pathol Microbiol Scand
, vol.72
, pp. 433-443
-
-
Gustafsson, B.E.1
Midtvedt, T.2
Norman, A.3
-
180
-
-
0032885993
-
Absence of cecal secondary bile acids in gnotobiotic mice associated with two human intestinal bacteria with the ability to dehydroxylate bile acids in vitro
-
Narushima S, Itoh K, Takamine F, Uchida K. Absence of cecal secondary bile acids in gnotobiotic mice associated with two human intestinal bacteria with the ability to dehydroxylate bile acids in vitro. Microbiol Immunol. 1999;43:893-897.
-
(1999)
Microbiol Immunol
, vol.43
, pp. 893-897
-
-
Narushima, S.1
Itoh, K.2
Takamine, F.3
Uchida, K.4
-
181
-
-
33751213596
-
Deoxycholic acid formation in gnotobiotic mice associated with human intestinal bacteria
-
Narushima S, Itoha K, Miyamoto Y, et al. Deoxycholic acid formation in gnotobiotic mice associated with human intestinal bacteria. Lipids. 2006;41:835-843.
-
(2006)
Lipids
, vol.41
, pp. 835-843
-
-
Narushima, S.1
Itoha, K.2
Miyamoto, Y.3
-
182
-
-
0000297357
-
The effect of the intestinal flora on the growth rate of mice, and on their susceptibility to experimental infections
-
Dubos RJ, Schaedler RW. The effect of the intestinal flora on the growth rate of mice, and on their susceptibility to experimental infections. J Exp Med. 1960;111:407-417.
-
(1960)
J Exp Med
, vol.111
, pp. 407-417
-
-
Dubos, R.J.1
Schaedler, R.W.2
-
183
-
-
84961904710
-
Analysis of factors contributing to variation in the C57BL/6J fecal microbiota across German animal facilities
-
Rausch P, Basic M, Batra A, et al. Analysis of factors contributing to variation in the C57BL/6J fecal microbiota across German animal facilities. Int J Med Microbiol. 2016;306:343-355.
-
(2016)
Int J Med Microbiol
, vol.306
, pp. 343-355
-
-
Rausch, P.1
Basic, M.2
Batra, A.3
-
184
-
-
85017126949
-
The impact of culturomics on taxonomy in clinical microbiology
-
[Epub ahead of print]
-
Abdallah RA, Beye M, Diop A, Bakour S, Raoult D, Fournier PE. The impact of culturomics on taxonomy in clinical microbiology. Antonie Van Leeuwenhoek. 2017; https://doi.org/10.1007/s10482-017-0871-1 [Epub ahead of print].
-
(2017)
Antonie Van Leeuwenhoek
-
-
Abdallah, R.A.1
Beye, M.2
Diop, A.3
Bakour, S.4
Raoult, D.5
Fournier, P.E.6
-
185
-
-
84903985430
-
Then and now: a systematic review of the systematics of prokaryotes in the last 80 years
-
Oren A, Garrity GM. Then and now: a systematic review of the systematics of prokaryotes in the last 80 years. Antonie Van Leeuwenhoek. 2014;106:43-56.
-
(2014)
Antonie Van Leeuwenhoek
, vol.106
, pp. 43-56
-
-
Oren, A.1
Garrity, G.M.2
-
186
-
-
84999491315
-
Significance and future role of microbial resource centers
-
Overmann J. Significance and future role of microbial resource centers. Syst Appl Microbiol. 2015;38:258-265.
-
(2015)
Syst Appl Microbiol
, vol.38
, pp. 258-265
-
-
Overmann, J.1
-
187
-
-
84862637797
-
Gut immune maturation depends on colonization with a host-specific microbiota
-
Chung H, Pamp SJ, Hill JA, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 2012;149:1578-1593.
-
(2012)
Cell
, vol.149
, pp. 1578-1593
-
-
Chung, H.1
Pamp, S.J.2
Hill, J.A.3
-
188
-
-
85020768616
-
From complex gut communities to minimal microbiomes via cultivation
-
Clavel T, Lagkouvardos I, Stecher B. From complex gut communities to minimal microbiomes via cultivation. Curr Opin Microbiol 2017;38:148-155.
-
(2017)
Curr Opin Microbiol
, vol.38
, pp. 148-155
-
-
Clavel, T.1
Lagkouvardos, I.2
Stecher, B.3
-
189
-
-
79952266302
-
The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri
-
Frese SA, Benson AK, Tannock GW, et al. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet. 2011;7:e1001314.
-
(2011)
PLoS Genet
, vol.7
-
-
Frese, S.A.1
Benson, A.K.2
Tannock, G.W.3
-
190
-
-
84961999746
-
Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design
-
Laukens D, Brinkman BM, Raes J, De Vos M, Vandenabeele P. Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiol Rev. 2015;40:117-132.
-
(2015)
FEMS Microbiol Rev
, vol.40
, pp. 117-132
-
-
Laukens, D.1
Brinkman, B.M.2
Raes, J.3
De Vos, M.4
Vandenabeele, P.5
-
191
-
-
84877020842
-
Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut
-
Petrof EO, Gloor GB, Vanner SJ, et al. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome. 2013;1:3.
-
(2013)
Microbiome
, vol.1
, pp. 3
-
-
Petrof, E.O.1
Gloor, G.B.2
Vanner, S.J.3
-
192
-
-
84994831796
-
Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects
-
Daillere R, Vetizou M, Waldschmitt N, et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity. 2016;45:931-943.
-
(2016)
Immunity
, vol.45
, pp. 931-943
-
-
Daillere, R.1
Vetizou, M.2
Waldschmitt, N.3
-
193
-
-
83655210633
-
Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila
-
Derrien M, Van Baarlen P, Hooiveld G, Norin E, Muller M, de Vos WM. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Front Microbiol. 2011;2:166.
-
(2011)
Front Microbiol
, vol.2
, pp. 166
-
-
Derrien, M.1
Van Baarlen, P.2
Hooiveld, G.3
Norin, E.4
Muller, M.5
de Vos, W.M.6
-
194
-
-
84955172629
-
Microorganisms linked to inflammatory bowel disease-associated dysbiosis differentially impact host physiology in gnotobiotic mice
-
Hoffmann TW, Pham HP, Bridonneau C, et al. Microorganisms linked to inflammatory bowel disease-associated dysbiosis differentially impact host physiology in gnotobiotic mice. ISME J. 2016;10:460-477.
-
(2016)
ISME J
, vol.10
, pp. 460-477
-
-
Hoffmann, T.W.1
Pham, H.P.2
Bridonneau, C.3
-
195
-
-
48649089796
-
Intestinal colonization of IL-2 deficient mice with non-colitogenic B. vulgatus prevents DC maturation and T-cell polarization
-
Muller M, Fink K, Geisel J, et al. Intestinal colonization of IL-2 deficient mice with non-colitogenic B. vulgatus prevents DC maturation and T-cell polarization. PLoS ONE. 2008;3:e2376.
-
(2008)
PLoS ONE
, vol.3
-
-
Muller, M.1
Fink, K.2
Geisel, J.3
-
196
-
-
0031132582
-
B cell-independent selection of memory T cells after mucosal immunization with Candida albicans
-
Jones-Carson J, Vazquez-Torres FA, Balish E. B cell-independent selection of memory T cells after mucosal immunization with Candida albicans. J Immunol. 1997;158:4328-4335.
-
(1997)
J Immunol
, vol.158
, pp. 4328-4335
-
-
Jones-Carson, J.1
Vazquez-Torres, F.A.2
Balish, E.3
-
197
-
-
53349173070
-
Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine
-
Ivanov II, Frutos Rde L, Manel N, et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008;4:337-349.
-
(2008)
Cell Host Microbe
, vol.4
, pp. 337-349
-
-
Ivanov, I.I.1
Frutos Rde, L.2
Manel, N.3
-
198
-
-
77954051526
-
Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses
-
Hapfelmeier S, Lawson MA, Slack E, et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science. 2010;328:1705-1709.
-
(2010)
Science
, vol.328
, pp. 1705-1709
-
-
Hapfelmeier, S.1
Lawson, M.A.2
Slack, E.3
-
199
-
-
77953486362
-
Microbiota innate stimulation is a prerequisite for T cell spontaneous proliferation and induction of experimental colitis
-
Feng T, Wang L, Schoeb TR, Elson CO, Cong Y. Microbiota innate stimulation is a prerequisite for T cell spontaneous proliferation and induction of experimental colitis. J Exp Med. 2010;207:1321-1332.
-
(2010)
J Exp Med
, vol.207
, pp. 1321-1332
-
-
Feng, T.1
Wang, L.2
Schoeb, T.R.3
Elson, C.O.4
Cong, Y.5
-
200
-
-
79956315886
-
Intestinal bacterial colonization induces mutualistic regulatory T cell responses
-
Geuking MB, Cahenzli J, Lawson MA, et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity. 2011;34:794-806.
-
(2011)
Immunity
, vol.34
, pp. 794-806
-
-
Geuking, M.B.1
Cahenzli, J.2
Lawson, M.A.3
-
201
-
-
84885402118
-
Intestinal bacteria induce TSLP to promote mutualistic T-cell responses
-
Mosconi I, Geuking MB, Zaiss MM, et al. Intestinal bacteria induce TSLP to promote mutualistic T-cell responses. Mucosal Immunol. 2013;6:1157-1167.
-
(2013)
Mucosal Immunol
, vol.6
, pp. 1157-1167
-
-
Mosconi, I.1
Geuking, M.B.2
Zaiss, M.M.3
-
202
-
-
84888212872
-
Differential induction of antimicrobial REGIII by the intestinal microbiota and Bifidobacterium breve NCC2950
-
Natividad JM, Hayes CL, Motta JP, et al. Differential induction of antimicrobial REGIII by the intestinal microbiota and Bifidobacterium breve NCC2950. Appl Environ Microbiol. 2013;79:7745-7754.
-
(2013)
Appl Environ Microbiol
, vol.79
, pp. 7745-7754
-
-
Natividad, J.M.1
Hayes, C.L.2
Motta, J.P.3
|