메뉴 건너뛰기




Volumn 5, Issue 1, 2016, Pages

A review of automatic selection methods for machine learning algorithms and hyper-parameter values

Author keywords

Automatic algorithm selection; Automatic hyper parameter value selection; Big biomedical data; Machine learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIOINFORMATICS; LEARNING SYSTEMS; PARAMETER ESTIMATION; SUPERVISED LEARNING;

EID: 85027464299     PISSN: 21926662     EISSN: 21926670     Source Type: Journal    
DOI: 10.1007/s13721-016-0125-6     Document Type: Article
Times cited : (302)

References (79)
  • 1
    • 68249088215 scopus 로고    scopus 로고
    • Model selection for the LS-SVM. Application to handwriting recognition
    • Adankon MM, Cheriet M (2009) Model selection for the LS-SVM. Application to handwriting recognition. Pattern Recognit 42(12):3264–3270
    • (2009) Pattern Recognit , vol.42 , Issue.12 , pp. 3264-3270
    • Adankon, M.M.1    Cheriet, M.2
  • 2
    • 84908212433 scopus 로고    scopus 로고
    • Active learning with model selection. In: Proceedings of AAAI’14
    • Ali A, Caruana R, Kapoor A (2014) Active learning with model selection. In: Proceedings of AAAI’14, pp 1673–1679
    • (2014) pp 1673–1679
    • Ali, A.1    Caruana, R.2    Kapoor, A.3
  • 4
    • 85049133194 scopus 로고    scopus 로고
    • Collaborative hyperparameter tuning. In: Proceedings of ICML’13
    • Bardenet R, Brendel M, Kégl B, Sebag M (2013) Collaborative hyperparameter tuning. In: Proceedings of ICML’13, pp 199–207
    • (2013) pp 199–207
    • Bardenet, R.1    Brendel, M.2    Kégl, B.3    Sebag, M.4
  • 5
    • 0034241361 scopus 로고    scopus 로고
    • Gradient-based optimization of hyperparameters
    • Bengio Y (2000) Gradient-based optimization of hyperparameters. Neural Comput 12(8):1889–1900
    • (2000) Neural Comput , vol.12 , Issue.8 , pp. 1889-1900
    • Bengio, Y.1
  • 6
    • 84857855190 scopus 로고    scopus 로고
    • Random search for hyper-parameter optimization
    • Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13:281–305
    • (2012) J Mach Learn Res , vol.13 , pp. 281-305
    • Bergstra, J.1    Bengio, Y.2
  • 7
    • 85047011481 scopus 로고    scopus 로고
    • Algorithms for hyper-parameter optimization. In: Proceedings of NIPS’11
    • Bergstra J, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for hyper-parameter optimization. In: Proceedings of NIPS’11, pp 2546–2554
    • (2011) pp 2546–2554
    • Bergstra, J.1    Bardenet, R.2    Bengio, Y.3    Kégl, B.4
  • 8
    • 84938384905 scopus 로고    scopus 로고
    • Hyperopt: a Python library for optimizing the hyperparameters of machine learning algorithms
    • Bergstra J, Yamins D, Cox DD (2013) Hyperopt: a Python library for optimizing the hyperparameters of machine learning algorithms. In: Proceedings of SciPy 2013, pp 13–20
    • (2013) Proceedings of SciPy , vol.2013 , pp. 13-20
    • Bergstra, J.1    Yamins, D.2    Cox, D.D.3
  • 11
    • 0037361994 scopus 로고    scopus 로고
    • Ranking learning algorithms: using IBL and meta-learning on accuracy and time results
    • Brazdil P, Soares C, da Costa JP (2003) Ranking learning algorithms: using IBL and meta-learning on accuracy and time results. Mach Learn 50(3):251–277
    • (2003) Mach Learn , vol.50 , Issue.3 , pp. 251-277
    • Brazdil, P.1    Soares, C.2    da Costa, J.P.3
  • 19
    • 85030321143 scopus 로고    scopus 로고
    • MapReduce: simplified data processing on large clusters. In: Proceedings of OSDI’04
    • Dean J, Ghemawat S (2004) MapReduce: simplified data processing on large clusters. In: Proceedings of OSDI’04, pp 137–150
    • (2004) pp 137–150
    • Dean, J.1    Ghemawat, S.2
  • 20
    • 84949921865 scopus 로고    scopus 로고
    • Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. In: Proceedings of IJCAI’15
    • Domhan T, Springenberg JT, Hutter F (2015) Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. In: Proceedings of IJCAI’15, pp 3460–3468
    • (2015) pp 3460–3468
    • Domhan, T.1    Springenberg, J.T.2    Hutter, F.3
  • 23
    • 84959891641 scopus 로고    scopus 로고
    • Initializing Bayesian hyperparameter optimization via meta-learning. In: Proceedings of AAAI’15
    • Feurer M, Springenberg T, Hutter F (2015b) Initializing Bayesian hyperparameter optimization via meta-learning. In: Proceedings of AAAI’15, pp 1128–1135
    • (2015) pp 1128–1135
    • Feurer, M.1    Springenberg, T.2    Hutter, F.3
  • 24
    • 0013105971 scopus 로고    scopus 로고
    • Proceedings ECML/PKDD Workshop on Integrating Aspects of Data Mining, Decision Support and Meta-Learning
    • Fürnkranz J, Petrak J (2001) An evaluation of landmarking variants. In: Proceedings ECML/PKDD Workshop on Integrating Aspects of Data Mining, Decision Support and Meta-Learning 2001, pp 57–68
    • (2001) Petrak J (2001) An evaluation of landmarking variants. In , pp. 57-68
    • Fürnkranz, J.1
  • 26
    • 85049142979 scopus 로고    scopus 로고
    • Google Prediction API homepage (2016). Accessed 20 January 2016
    • Google Prediction API homepage (2016) https://cloud.google.com/prediction/docs. Accessed 20 January 2016
  • 27
    • 33749140655 scopus 로고    scopus 로고
    • Efficiently determining the starting sample size for progressive sampling. In: Proceedings of ECML’01
    • Gu B, Liu B, Hu F, Liu H (2001) Efficiently determining the starting sample size for progressive sampling. In: Proceedings of ECML’01, pp 192–202
    • (2001) pp 192–202
    • Gu, B.1    Liu, B.2    Hu, F.3    Liu, H.4
  • 28
    • 56549111881 scopus 로고    scopus 로고
    • A novel LS-SVMs hyper-parameter selection based on particle swarm optimization
    • Guo XC, Yang JH, Wu CG, Wang CY, Liang YC (2008) A novel LS-SVMs hyper-parameter selection based on particle swarm optimization. Neurocomputing 71(16–18):3211–3215
    • (2008) Neurocomputing , vol.71 , Issue.16-18 , pp. 3211-3215
    • Guo, X.C.1    Yang, J.H.2    Wu, C.G.3    Wang, C.Y.4    Liang, Y.C.5
  • 31
    • 84955516630 scopus 로고    scopus 로고
    • On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning. In: Proceedings of AISTATS’14
    • Hoffman MD, Shahriari B, de Freitas N (2014) On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning. In: Proceedings of AISTATS’14, pp 365–374
    • (2014) pp 365–374
    • Hoffman, M.D.1    Shahriari, B.2    de Freitas, N.3
  • 33
    • 84868554032 scopus 로고    scopus 로고
    • Sequential model-based optimization for general algorithm configuration. In: Proceedings of LION’11
    • Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimization for general algorithm configuration. In: Proceedings of LION’11, pp 507–523
    • (2011) pp 507–523
    • Hutter, F.1    Hoos, H.H.2    Leyton-Brown, K.3
  • 34
    • 85049144997 scopus 로고    scopus 로고
    • An efficient approach for assessing hyperparameter importance. In: Proceedings of ICML’14
    • Hutter F, Hoos H, Leyton-Brown K (2014) An efficient approach for assessing hyperparameter importance. In: Proceedings of ICML’14, pp 754–762
    • (2014) pp 754–762
    • Hutter, F.1    Hoos, H.2    Leyton-Brown, K.3
  • 35
    • 85049139321 scopus 로고    scopus 로고
    • Static versus dynamic sampling for data mining. In: Proceedings of KDD’96
    • John GH, Langley P (1996) Static versus dynamic sampling for data mining. In: Proceedings of KDD’96, pp 367–370
    • (1996) pp 367–370
    • John, G.H.1    Langley, P.2
  • 36
    • 84906902062 scopus 로고    scopus 로고
    • An overview of free software tools for general data mining. In: Proceedings of MIPRO’14
    • Jovic A, Brkic K, Bogunovic N (2014) An overview of free software tools for general data mining. In: Proceedings of MIPRO’14, pp 1112–1117
    • (2014) pp 1112–1117
    • Jovic, A.1    Brkic, K.2    Bogunovic, N.3
  • 37
    • 2142781609 scopus 로고    scopus 로고
    • Methods and criteria for model selection
    • Kadane JB, Lazar NA (2004) Methods and criteria for model selection. J Am Stat Assoc 99(465):279–290
    • (2004) J Am Stat Assoc , vol.99 , Issue.465 , pp. 279-290
    • Kadane, J.B.1    Lazar, N.A.2
  • 38
    • 84908279482 scopus 로고    scopus 로고
    • Hyperopt-sklearn: automatic hyperparameter configuration for scikit-learn
    • Komer B, Bergstra J, Eliasmith C (2014) Hyperopt-sklearn: automatic hyperparameter configuration for scikit-learn. In: Proceedings of SciPy 2014, pp 33–39
    • (2014) Proceedings of SciPy , vol.2014 , pp. 33-39
    • Komer, B.1    Bergstra, J.2    Eliasmith, C.3
  • 42
    • 31844442667 scopus 로고    scopus 로고
    • Predicting relative performance of classifiers from samples. In: Proceedings of ICML’05
    • Leite R, Brazdil P (2005) Predicting relative performance of classifiers from samples. In: Proceedings of ICML’05, pp 497–503
    • (2005) pp 497–503
    • Leite, R.1    Brazdil, P.2
  • 43
    • 77956031602 scopus 로고    scopus 로고
    • Active testing strategy to predict the best classification algorithm via sampling and metalearning. In: Proceedings of ECAI’10
    • Leite R, Brazdil P (2010) Active testing strategy to predict the best classification algorithm via sampling and metalearning. In: Proceedings of ECAI’10, pp 309–314
    • (2010) pp 309–314
    • Leite, R.1    Brazdil, P.2
  • 44
    • 84864928603 scopus 로고    scopus 로고
    • Selecting classification algorithms with active testing. In: Proceedings of MLDM’12
    • Leite R, Brazdil P, Vanschoren J (2012) Selecting classification algorithms with active testing. In: Proceedings of MLDM’12, pp 117–131
    • (2012) pp 117–131
    • Leite, R.1    Brazdil, P.2    Vanschoren, J.3
  • 46
    • 85019317965 scopus 로고    scopus 로고
    • MLBCD: a machine learning tool for big clinical data
    • Luo G (2015) MLBCD: a machine learning tool for big clinical data. Health Inf Sci Syst 3:3
    • (2015) Health Inf Sci Syst , vol.3 , pp. 3
    • Luo, G.1
  • 47
    • 85042031041 scopus 로고    scopus 로고
    • Automatically explaining machine learning prediction results: a demonstration on type 2 diabetes risk prediction
    • Luo G (2016) Automatically explaining machine learning prediction results: a demonstration on type 2 diabetes risk prediction. Health Inf Sci Syst 4:2
    • (2016) Health Inf Sci Syst , vol.4 , pp. 2
    • Luo, G.1
  • 48
    • 84963776051 scopus 로고    scopus 로고
    • Efficient execution methods of pivoting for bulk extraction of Entity–Attribute–Value-modeled data
    • Luo G, Frey LJ (2016) Efficient execution methods of pivoting for bulk extraction of Entity–Attribute–Value-modeled data. IEEE J Biomed Health Inform. 20(2):644–654
    • (2016) IEEE J Biomed Health Inform. , vol.20 , Issue.2 , pp. 644-654
    • Luo, G.1    Frey, L.J.2
  • 51
    • 84948649680 scopus 로고    scopus 로고
    • Using computational approaches to improve risk-stratified patient management: rationale and methods
    • Luo G, Stone BL, Sakaguchi F, Sheng X, Murtaugh MA (2015b) Using computational approaches to improve risk-stratified patient management: rationale and methods. JMIR Res Protoc. 4(4):e128
    • (2015) JMIR Res Protoc. , vol.4 , Issue.4 , pp. 128
    • Luo, G.1    Stone, B.L.2    Sakaguchi, F.3    Sheng, X.4    Murtaugh, M.A.5
  • 52
    • 85044687837 scopus 로고    scopus 로고
    • Predicting appropriate admission of bronchiolitis patients in the emergency room: rationale and methods
    • Luo G, Stone BL, Johnson MD, Nkoy FL (2016) Predicting appropriate admission of bronchiolitis patients in the emergency room: rationale and methods. JMIR Res Protoc. 5(1):e41
    • (2016) JMIR Res Protoc. , vol.5 , Issue.1 , pp. 41
    • Luo, G.1    Stone, B.L.2    Johnson, M.D.3    Nkoy, F.L.4
  • 53
    • 85049143756 scopus 로고
    • Hoeffding races: accelerating model selection search for classification and function approximation. In: Proceedings of NIPS’93
    • Maron O, Moore AW (1993) Hoeffding races: accelerating model selection search for classification and function approximation. In: Proceedings of NIPS’93, pp 59–66
    • (1993) pp 59–66
    • Maron, O.1    Moore, A.W.2
  • 57
    • 84867832606 scopus 로고    scopus 로고
    • Proceedings of the ECML Workshop on Meta-Learning: Building Automatic Advice Strategies for Model Selection and Method Combination
    • Petrak J (2000) Fast subsampling performance estimates for classification algorithm selection. In: Proceedings of the ECML Workshop on Meta-Learning: Building Automatic Advice Strategies for Model Selection and Method Combination 2000, pp 3–14
    • (2000) (2000) Fast subsampling performance estimates for classification algorithm selection. In , pp. 3-14
    • Petrak, J.1
  • 58
    • 0013146682 scopus 로고    scopus 로고
    • Meta-learning by landmarking various learning algorithms. In: Proceedings of ICML’00
    • Pfahringer B, Bensusan H, Giraud-Carrier CG (2000) Meta-learning by landmarking various learning algorithms. In: Proceedings of ICML’00, pp 743–750
    • (2000) pp 743–750
    • Pfahringer, B.1    Bensusan, H.2    Giraud-Carrier, C.G.3
  • 59
    • 85049138595 scopus 로고    scopus 로고
    • Efficient progressive sampling. In: Proceedings of KDD’99
    • Provost FJ, Jensen D, Oates T (1999) Efficient progressive sampling. In: Proceedings of KDD’99, pp 23–32
    • (1999) pp 23–32
    • Provost, F.J.1    Jensen, D.2    Oates, T.3
  • 60
    • 84905981088 scopus 로고    scopus 로고
    • Creating value in health care through big data: opportunities and policy implications
    • Roski J, Bo-Linn GW, Andrews TA (2014) Creating value in health care through big data: opportunities and policy implications. Health Aff (Millwood) 33(7):1115–1122
    • (2014) Health Aff (Millwood) , vol.33 , Issue.7 , pp. 1115-1122
    • Roski, J.1    Bo-Linn, G.W.2    Andrews, T.A.3
  • 62
    • 84949985138 scopus 로고    scopus 로고
    • Taking the human out of the loop: a review of Bayesian optimization
    • Shahriari B, Swersky K, Wang Z, Adams RP, de Freitas N (2015) Taking the human out of the loop: a review of Bayesian optimization. Proc IEEE 104(1):148–175
    • (2015) Proc IEEE , vol.104 , Issue.1 , pp. 148-175
    • Shahriari, B.1    Swersky, K.2    Wang, Z.3    Adams, R.P.4    de Freitas, N.5
  • 63
    • 84869201485 scopus 로고    scopus 로고
    • Practical Bayesian optimization of machine learning algorithms. In: Proceedings of NIPS’12
    • Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian optimization of machine learning algorithms. In: Proceedings of NIPS’12, pp 2960–2968
    • (2012) pp 2960–2968
    • Snoek, J.1    Larochelle, H.2    Adams, R.P.3
  • 64
    • 84867773113 scopus 로고    scopus 로고
    • Sampling-based relative landmarks: systematically test-driving algorithms before choosing. In: Proceedings of EPIA’01
    • Soares C, Petrak J, Brazdil P (2001) Sampling-based relative landmarks: systematically test-driving algorithms before choosing. In: Proceedings of EPIA’01, pp 88–95
    • (2001) pp 88–95
    • Soares, C.1    Petrak, J.2    Brazdil, P.3
  • 68
    • 84898939805 scopus 로고    scopus 로고
    • Multi-task Bayesian optimization. In: Proceedings of NIPS’13
    • Swersky K, Snoek J, Adams RP (2013) Multi-task Bayesian optimization. In: Proceedings of NIPS’13, 2004–2012
    • (2013) 2004–2012
    • Swersky, K.1    Snoek, J.2    Adams, R.P.3
  • 69
    • 85049152780 scopus 로고    scopus 로고
    • Adams RP: Freeze-thaw Bayesian optimization
    • Swersky K, Snoek J, Adams RP (2014) Freeze-thaw Bayesian optimization. http://arxiv.org/abs/1406.3896. Accessed 20 January 2016
    • (2014) Snoek J
    • Swersky, K.1
  • 70
    • 85018371540 scopus 로고    scopus 로고
    • Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of KDD’13
    • Thornton C, Hutter F, Hoos HH, Leyton-Brown K (2013) Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of KDD’13, pp 847–855
    • (2013) pp 847–855
    • Thornton, C.1    Hutter, F.2    Hoos, H.H.3    Leyton-Brown, K.4
  • 72
    • 84959907672 scopus 로고    scopus 로고
    • Efficient hyper-parameter optimization for NLP applications. In: Proceedings of EMNLP’15
    • Wang L, Feng M, Zhou B, Xiang B, Mahadevan S (2015) Efficient hyper-parameter optimization for NLP applications. In: Proceedings of EMNLP’15, 2112–2117
    • (2015) 2112–2117
    • Wang, L.1    Feng, M.2    Zhou, B.3    Xiang, B.4    Mahadevan, S.5
  • 74
    • 84959419350 scopus 로고    scopus 로고
    • Hyperparameter search space pruning—a new component for sequential model-based hyperparameter optimization
    • Wistuba M, Schilling N, Schmidt-Thieme L (2015a) Hyperparameter search space pruning—a new component for sequential model-based hyperparameter optimization. In: Proceedings of ECML/PKDD (2) 2015, pp 104–119
    • (2015) Proceedings of ECML/PKDD , vol.2 , Issue.2015 , pp. 104-119
    • Wistuba, M.1    Schilling, N.2    Schmidt-Thieme, L.3
  • 75
    • 84962911782 scopus 로고    scopus 로고
    • Learning hyperparameter optimization initializations. In: Proceedings of DSAA’15
    • Wistuba M, Schilling N, Schmidt-Thieme L (2015b) Learning hyperparameter optimization initializations. In: Proceedings of DSAA’15, pp 1–10
    • (2015) pp 1–10
    • Wistuba, M.1    Schilling, N.2    Schmidt-Thieme, L.3
  • 77
    • 84955448572 scopus 로고    scopus 로고
    • Efficient transfer learning method for automatic hyperparameter tuning. In: Proceedings of AISTATS’14
    • Yogatama D, Mann G (2014) Efficient transfer learning method for automatic hyperparameter tuning. In: Proceedings of AISTATS’14, pp 1077–1085
    • (2014) pp 1077–1085
    • Yogatama, D.1    Mann, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.