-
1
-
-
0034241361
-
Gradient-based optimization of hyperparameters
-
Y. Bengio. Gradient-based optimization of hyperparameters. Neural Computation, 12(8):1889-1900, 2000.
-
(2000)
Neural Computation
, vol.12
, Issue.8
, pp. 1889-1900
-
-
Bengio, Y.1
-
2
-
-
84857855190
-
Random search for hyper-parameter optimization
-
J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. JMLR, 13(1):281-305, 2012.
-
(2012)
JMLR
, vol.13
, Issue.1
, pp. 281-305
-
-
Bergstra, J.1
Bengio, Y.2
-
3
-
-
85162384813
-
Algorithms for hyper-parameter optimization
-
J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In Proc. of NIPS, pages 2546-2554, 2011.
-
(2011)
Proc. of NIPS
, pp. 2546-2554
-
-
Bergstra, J.1
Bardenet, R.2
Bengio, Y.3
Kégl, B.4
-
4
-
-
84897558007
-
Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
-
J. Bergstra, D. Yamins, and D.D. Cox. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In Proc. of ICML, pages 115-123, 2013.
-
(2013)
Proc. of ICML
, pp. 115-123
-
-
Bergstra, J.1
Yamins, D.2
Cox, D.D.3
-
5
-
-
0035478854
-
Random forests
-
L. Breiman. Random forests. Machine learning, 45(1):5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
6
-
-
84869826137
-
A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning
-
E. Brochu, V. M. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. CoRR, abs/1012.2599, 2010.
-
(2010)
CoRR, Abs/1012.2599
-
-
Brochu, E.1
Cora, V.M.2
De Freitas, N.3
-
7
-
-
84862283411
-
An analysis of single-layer networks in unsupervised feature learning
-
A. Coates, A. Y. Ng, and H. Lee. An analysis of single-layer networks in unsupervised feature learning. In Proc. of AISTATS, pages 215-223, 2011.
-
(2011)
Proc. of AISTATS
, pp. 215-223
-
-
Coates, A.1
Ng, A.Y.2
Lee, H.3
-
8
-
-
84890527827
-
Improving deep neural networks for lvcsr using rectified linear units and dropout
-
IEEE
-
G. Dahl, T. Sainath, and G. Hinton. Improving deep neural networks for lvcsr using rectified linear units and dropout. In Proc. of ICASSP, pages 8609-8613. IEEE, 2013.
-
(2013)
Proc. of ICASSP
, pp. 8609-8613
-
-
Dahl, G.1
Sainath, T.2
Hinton, G.3
-
9
-
-
84890526837
-
New types of deep neural network learning for speech recognition and related applications: An overview
-
L. Deng, G. Hinton, and B. Kingsbury. New types of deep neural network learning for speech recognition and related applications: An overview. In Proc. of ICASSP, 2013.
-
(2013)
Proc. of ICASSP
-
-
Deng, L.1
Hinton, G.2
Kingsbury, B.3
-
10
-
-
84919881041
-
Decaf: A deep convolutional activation feature for generic visual recognition
-
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In Proc. of ICML, 2014.
-
(2014)
Proc. of ICML
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
11
-
-
84919931099
-
Towards an empirical foundation for assessing Bayesian optimization of hyperparameters
-
K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos, and K. Leyton-Brown. Towards an empirical foundation for assessing Bayesian optimization of hyperparameters. In NIPS Workshop on Bayesian Optimization in Theory and Practice (BayesOpt'13), 2013.
-
(2013)
NIPS Workshop on Bayesian Optimization in Theory and Practice (BayesOpt'13)
-
-
Eggensperger, K.1
Feurer, M.2
Hutter, F.3
Bergstra, J.4
Snoek, J.5
Hoos, H.6
Leyton-Brown, K.7
-
12
-
-
84875838326
-
Emcee: The MCMC hammer
-
D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman. emcee: The MCMC Hammer. PASP, 125:306-312, 2013.
-
(2013)
PASP
, vol.125
, pp. 306-312
-
-
Foreman-Mackey, D.1
Hogg, D.W.2
Lang, D.3
Goodman, J.4
-
13
-
-
0012330992
-
Modeling decision tree performance with the power law
-
L. Frey and D. Fisher. Modeling decision tree performance with the power law. In Proc. of AISTATS, 1999.
-
(1999)
Proc. of AISTATS
-
-
Frey, L.1
Fisher, D.2
-
14
-
-
84862277874
-
Understanding the difficulty of training deep feedforward neural networks
-
X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In Proc. of AISTATS, pages 249-256, 2010.
-
(2010)
Proc. of AISTATS
, pp. 249-256
-
-
Glorot, X.1
Bengio, Y.2
-
15
-
-
84897543523
-
Maxout networks
-
I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout networks. In Proc. of ICML, 2013.
-
(2013)
Proc. of ICML
-
-
Goodfellow, I.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.4
Bengio, Y.5
-
16
-
-
84974711038
-
Modelling classification performance for large data sets
-
Springer
-
B. Gu, F. Hu, and H. Liu. Modelling classification performance for large data sets. In Proc. of WAIM, pages 317-328. Springer, 2001.
-
(2001)
Proc. of WAIM
, pp. 317-328
-
-
Gu, B.1
Hu, F.2
Liu, H.3
-
17
-
-
84868554032
-
Sequential model-based optimization for general algorithm configuration
-
Springer
-
F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm configuration. In Proc. of LION, pages 507-523. Springer, 2011.
-
(2011)
Proc. of LION
, pp. 507-523
-
-
Hutter, F.1
Hoos, H.2
Leyton-Brown, K.3
-
18
-
-
84887848457
-
Algorithm runtime prediction: Methods and evaluation
-
F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown. Algorithm runtime prediction: Methods and evaluation. AIJ, 206(0):79-111, 2014.
-
(2014)
AIJ
, vol.206
, pp. 79-111
-
-
Hutter, F.1
Xu, L.2
Hoos, H.H.3
Leyton-Brown, K.4
-
20
-
-
84949870156
-
Caffe: Convolutional architecture for fast feature embedding
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.
-
(2014)
ArXiv Preprint ArXiv:1408.5093
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
21
-
-
0000561424
-
Efficient global optimization of expensive black-box functions
-
D. Jones, M. Schonlau, and W. Welch. Efficient global optimization of expensive black-box functions. Journal of Global optimization, 13(4):455-492, 1998.
-
(1998)
Journal of Global Optimization
, vol.13
, Issue.4
, pp. 455-492
-
-
Jones, D.1
Schonlau, M.2
Welch, W.3
-
22
-
-
84878208192
-
Prediction of learning curves in machine translation
-
P. Kolachina, N. Cancedda, M. Dymetman, and S. Venkatapathy. Prediction of learning curves in machine translation. In Proc. of ACL, pages 22-30, 2012.
-
(2012)
Proc. of ACL
, pp. 22-30
-
-
Kolachina, P.1
Cancedda, N.2
Dymetman, M.3
Venkatapathy, S.4
-
23
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In Proc. of NIPS, pages 1097-1105, 2012.
-
(2012)
Proc. of NIPS
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
25
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541-551, 1989.
-
(1989)
Neural Computation
, vol.1
, Issue.4
, pp. 541-551
-
-
LeCun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
26
-
-
84943645147
-
Deeply supervised nets
-
C. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply supervised nets. In Deep Learning and Representation Learning Workshop, NIPS, 2014.
-
(2014)
Deep Learning and Representation Learning Workshop, NIPS
-
-
Lee, C.1
Xie, S.2
Gallagher, P.3
Zhang, Z.4
Tu, Z.5
-
28
-
-
0001923944
-
Hoeffding races: Accelerating model selection search for classification and function approximation
-
O. Maron and A. Moore. Hoeffding races: Accelerating model selection search for classification and function approximation. In Proc. of NIPS, pages 59-66, 1994.
-
(1994)
Proc. of NIPS
, pp. 59-66
-
-
Maron, O.1
Moore, A.2
-
31
-
-
84869201485
-
Practical Bayesian optimization of machine learning algorithms
-
J. Snoek, H. Larochelle, and R.P. Adams. Practical Bayesian optimization of machine learning algorithms. In Proc. of NIPS, pages 2951-2959, 2012.
-
(2012)
Proc. of NIPS
, pp. 2951-2959
-
-
Snoek, J.1
Larochelle, H.2
Adams, R.P.3
-
33
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. JMLR, 15:1929-1958, 2014.
-
(2014)
JMLR
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
34
-
-
85053528161
-
Raiders of the lost architecture: Kernels for Bayesian optimization in conditional parameter spaces
-
K. Swersky, D. Duvenaud, J. Snoek, F. Hutter, and M. Osborne. Raiders of the lost architecture: Kernels for Bayesian optimization in conditional parameter spaces. In NIPS workshop on Bayesian Optimization in theory and practice (BayesOptâAZ13), 2013.
-
(2013)
NIPS Workshop on Bayesian Optimization in Theory and Practice (BayesOptâAZ13)
-
-
Swersky, K.1
Duvenaud, D.2
Snoek, J.3
Hutter, F.4
Osborne, M.5
-
36
-
-
34547435898
-
On early stopping in gradient descent learning
-
Y. Yao, L. Rosasco, and A. Caponnetto. On early stopping in gradient descent learning. Constructive Approximation, 26(2):289-315, 2007.
-
(2007)
Constructive Approximation
, vol.26
, Issue.2
, pp. 289-315
-
-
Yao, Y.1
Rosasco, L.2
Caponnetto, A.3
|