-
1
-
-
84857855190
-
Random search for hyper-parameter optimization
-
Feb.
-
J. Bergstra and Y. Bengio, "Random search for hyper-parameter optimization," J. Mach. Learn. Res., vol. 13, pp. 281-305, Feb. 2012.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 281-305
-
-
Bergstra, J.1
Bengio, Y.2
-
2
-
-
85162384813
-
Algorithms for hyper-parameter optimization
-
J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, Eds. Curran Associates, Inc.
-
J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, "Algorithms for hyper-parameter optimization," in Advances in Neural Information Processing Systems 24, J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, Eds. Curran Associates, Inc., 2011, pp. 2546-2554.
-
(2011)
Advances in Neural Information Processing Systems 24
, pp. 2546-2554
-
-
Bergstra, J.S.1
Bardenet, R.2
Bengio, Y.3
Kégl, B.4
-
3
-
-
84862283411
-
An analysis of single-layer networks in unsupervised feature learning
-
G. Gordon, D. Dunson, and M. Dudík, Eds. jmlr w&cp
-
A. Coates, H. Lee, and A. Ng, "An analysis of single-layer networks in unsupervised feature learning," in Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, ser. jmlr Workshop and Conference Proceedings, G. Gordon, D. Dunson, and M. Dudík, Eds., vol. 15. jmlr w&cp, 2011, pp. 215-223.
-
(2011)
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Ser. Jmlr Workshop and Conference Proceedings
, vol.15
, pp. 215-223
-
-
Coates, A.1
Lee, H.2
Ng, A.3
-
4
-
-
73449129720
-
A high-throughput screening approach to discovering good forms of biologically inspired visual representation
-
pmid: 19956750
-
N. Pinto, D. Doukhan, J. J. DiCarlo, and D. D. Cox, "a high-throughput screening approach to discovering good forms of biologically inspired visual representation," PLoS Computational Biology, vol. 5, no. 11, P. e1000579, 2009, pmid: 19956750.
-
(2009)
PLoS Computational Biology
, vol.5
, Issue.11
, pp. e1000579
-
-
Pinto, N.1
Doukhan, D.2
Dicarlo, J.J.3
Cox, D.D.4
-
5
-
-
84869201485
-
Practical bayesian optimization of machine learning algorithms
-
F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds. Curran Associates, Inc.
-
J. Snoek, H. Larochelle, and R. P. Adams, "Practical bayesian optimization of machine learning algorithms," in Advances in Neural Information Processing Systems 25, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 2951-2959.
-
(2012)
Advances in Neural Information Processing Systems 25
, pp. 2951-2959
-
-
Snoek, J.1
Larochelle, H.2
Adams, R.P.3
-
6
-
-
85018371540
-
Auto-weka: Combined selection and hyperparameter optimization of classification algorithms
-
New York, ny, usa: acm
-
C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, "Auto-weka: Combined selection and hyperparameter optimization of classification algorithms," in Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. kdd '13. New York, ny, usa: acm, 2013, pp. 847-855.
-
(2013)
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Ser. Kdd '13
, pp. 847-855
-
-
Thornton, C.1
Hutter, F.2
Hoos, H.H.3
Leyton-Brown, K.4
-
7
-
-
0000561424
-
Efficient global optimization of expensive black-box functions
-
Dec.
-
D. R. Jones, M. Schonlau, and W. J. Welch, "Efficient global optimization of expensive black-box functions," J. of Global Optimization, vol. 13, no. 4, pp. 455-492, Dec. 1998.
-
(1998)
J. of Global Optimization
, vol.13
, Issue.4
, pp. 455-492
-
-
Jones, D.R.1
Schonlau, M.2
Welch, W.J.3
-
8
-
-
84908297240
-
Using meta-learning to initialize bayesian optimization of hyperparameters
-
M. Feurer, J. T. Springenberg, and F. Hutter, "Using meta-learning to initialize bayesian optimization of hyperparameters," in ECAI workshop on Metalearning and Algorithm Selection (MetaSel), 2014, pp. 3-10.
-
(2014)
ECAI Workshop on Metalearning and Algorithm Selection (MetaSel)
, pp. 3-10
-
-
Feurer, M.1
Springenberg, J.T.2
Hutter, F.3
-
9
-
-
84882279850
-
Collaborative hyperparameter tuning
-
S. Dasgupta and D. Mcallester, Eds. May
-
R. Bardenet, M. Brendel, B. Kégl, and M. Sebag, "Collaborative hyperparameter tuning," in Proceedings of the 30th International Conference on Machine Learning (ICML-13), S. Dasgupta and D. Mcallester, Eds., vol. 28, no. 2. jmlr Workshop and Conference Proceedings, May 2013, pp. 199-207.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning (ICML-13), Jmlr Workshop and Conference Proceedings
, vol.28
, Issue.2
, pp. 199-207
-
-
Bardenet, R.1
Brendel, M.2
Kégl, B.3
Sebag, M.4
-
11
-
-
84959320758
-
Hyperparameter optimization with factorized multilayer perceptrons
-
Porto, Portugal, September 7-11, 2015. Proceedings, Part II
-
N. Schilling, M. Wistuba, L. Drumond, and L. Schmidt-Thieme, "Hyperparameter Optimization with Factorized Multilayer Perceptrons," in Machine Learning and Knowledge Discovery in Databases-European Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015. Proceedings, Part II, 2015.
-
(2015)
Machine Learning and Knowledge Discovery in Databases-European Conference, ECML PKDD 2015
-
-
Schilling, N.1
Wistuba, M.2
Drumond, L.3
Schmidt-Thieme, L.4
-
12
-
-
84944209871
-
Hyperparameter search space pruning-a new component for sequential model-based hyperparameter optimization
-
Porto, Portugal, September 7-11, 2015. Proceedings, Part II
-
M. Wistuba, N. Schilling, and L. Schmidt-Thieme, "Hyperparameter Search Space Pruning-a New Component for Sequential Model-Based Hyperparameter Optimization," in Machine Learning and Knowledge Discovery in Databases-European Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015. Proceedings, Part II, 2015.
-
(2015)
Machine Learning and Knowledge Discovery in Databases-European Conference, ECML PKDD 2015
-
-
Wistuba, M.1
Schilling, N.2
Schmidt-Thieme, L.3
-
13
-
-
84898939805
-
Multi-task bayesian optimization
-
C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, Eds. Curran Associates, Inc.
-
K. Swersky, J. Snoek, and R. P. Adams, "Multi-task bayesian optimization," in Advances in Neural Information Processing Systems 26, C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, Eds. Curran Associates, Inc., 2013, pp. 2004-2012.
-
(2013)
Advances in Neural Information Processing Systems 26
, pp. 2004-2012
-
-
Swersky, K.1
Snoek, J.2
Adams, R.P.3
-
14
-
-
82455210873
-
Combining meta-learning and search techniques to select parameters for support vector machines
-
brazilian Symposium on Neural Networks (SBRN 2010) International Conference on Hybrid Artificial Intelligence Systems (HAIS 2010)
-
T. A. Gomes, R. B. Prudêncio, C. Soares, A. L. Rossi, and A. Carvalho, "Combining meta-learning and search techniques to select parameters for support vector machines," Neurocomputing, vol. 75, no. 1, pp. 3-13, 2012, brazilian Symposium on Neural Networks (SBRN 2010) International Conference on Hybrid Artificial Intelligence Systems (HAIS 2010).
-
(2012)
Neurocomputing
, vol.75
, Issue.1
, pp. 3-13
-
-
Gomes, T.A.1
Prudêncio, R.B.2
Soares, C.3
Rossi, A.L.4
Carvalho, A.5
-
15
-
-
84862009037
-
Meta-learning for evolutionary parameter optimization of classifiers
-
M. Reif, F. Shafait, and A. Dengel, "Meta-learning for evolutionary parameter optimization of classifiers," Machine Learning, vol. 87, no. 3, pp. 357-380, 2012.
-
(2012)
Machine Learning
, vol.87
, Issue.3
, pp. 357-380
-
-
Reif, M.1
Shafait, F.2
Dengel, A.3
-
16
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Jul.
-
G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, Jul. 2006.
-
(2006)
Neural Comput.
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
17
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," in Proceedings of the IEEE, vol. 86, no. 11, 1998, pp. 2278-2324.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
18
-
-
84868554032
-
Sequential model-based optimization for general algorithm configuration
-
Berlin, Heidelberg: Springer-Verlag
-
F. Hutter, H. H. Hoos, and K. Leyton-Brown, "Sequential model-based optimization for general algorithm configuration," in Proceedings of the 5th International Conference on Learning and Intelligent Optimization, ser. LION'05. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 507-523.
-
(2011)
Proceedings of the 5th International Conference on Learning and Intelligent Optimization, Ser. LION'05
, pp. 507-523
-
-
Hutter, F.1
Hoos, H.H.2
Leyton-Brown, K.3
-
19
-
-
67650938640
-
An informational approach to the global optimization of expensive-to-evaluate functions
-
J. Villemonteix, E. Vazquez, and E. Walter, "An informational approach to the global optimization of expensive-to-evaluate functions," Journal of Global Optimization, vol. 44, no. 4, pp. 509-534, 2009.
-
(2009)
Journal of Global Optimization
, vol.44
, Issue.4
, pp. 509-534
-
-
Villemonteix, J.1
Vazquez, E.2
Walter, E.3
-
20
-
-
77956501313
-
Gaussian process optimization in the bandit setting: No regret and experimental design
-
J. Frnkranz and T. Joachims, Eds. Omnipress
-
N. Srinivas, A. Krause, M. Seeger, and S. M. Kakade, "Gaussian process optimization in the bandit setting: No regret and experimental design," in Proceedings of the 27th International Conference on Machine Learning (ICML-10), J. Frnkranz and T. Joachims, Eds. Omnipress, 2010, pp. 1015-1022.
-
(2010)
Proceedings of the 27th International Conference on Machine Learning (ICML-10)
, pp. 1015-1022
-
-
Srinivas, N.1
Krause, A.2
Seeger, M.3
Kakade, S.M.4
-
22
-
-
84907021180
-
Learning time-series shapelets
-
New York, NY, USA: ACM
-
J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-Thieme, "Learning time-series shapelets," in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD '14. New York, NY, USA: ACM, 2014, pp. 392-401.
-
(2014)
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Ser. KDD '14
, pp. 392-401
-
-
Grabocka, J.1
Schilling, N.2
Wistuba, M.3
Schmidt-Thieme, L.4
-
23
-
-
0002282074
-
A new measure of rank correlation
-
Jun.
-
M. G. Kendall, "A New Measure of Rank Correlation," Biometrika, vol. 30, no. 1/2, pp. 81-93, Jun. 1938.
-
(1938)
Biometrika
, vol.30
, Issue.1-2
, pp. 81-93
-
-
Kendall, M.G.1
-
24
-
-
0003612091
-
-
Upper Saddle River, NJ USA: Ellis Horwood
-
D. Michie, D. J. Spiegelhalter, C. C. Taylor, and J. Campbell, Eds., Machine Learning, Neural and Statistical Classification. Upper Saddle River, NJ, USA: Ellis Horwood, 1994.
-
(1994)
Machine Learning, Neural and Statistical Classification
-
-
Michie, D.1
Spiegelhalter, D.J.2
Taylor, C.C.3
Campbell, J.4
-
26
-
-
84859449983
-
Multiboost: A multi-purpose boosting package
-
Mar.
-
D. Benbouzid, R. Busa-Fekete, N. Casagrande, F.-D. Collin, and B. Kégl, "Multiboost: A multi-purpose boosting package," J. Mach. Learn. Res., vol. 13, pp. 549-553, Mar. 2012.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 549-553
-
-
Benbouzid, D.1
Busa-Fekete, R.2
Casagrande, N.3
Collin, F.-D.4
Kégl, B.5
|