-
1
-
-
85162384813
-
Algorithms for hyper-parameter optimization
-
James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter optimization. In NIPS, pages 2546-2554, 2011.
-
(2011)
NIPS
, pp. 2546-2554
-
-
Bergstra, J.1
Bardenet, R.2
Bengio, Y.3
Kégl, B.4
-
2
-
-
84868554032
-
Sequential model-based optimization for general algorithm configuration
-
Springer
-
Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for general algorithm configuration. In Learning and Intelligent Optimization, pages 507-523. Springer, 2011.
-
(2011)
Learning and Intelligent Optimization
, pp. 507-523
-
-
Hutter, F.1
Hoos, H.H.2
Leyton-Brown, K.3
-
3
-
-
84869201485
-
Practical bayesian optimization of machine learning algorithms
-
Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine learning algorithms. In NIPS, pages 2960-2968, 2012.
-
(2012)
NIPS
, pp. 2960-2968
-
-
Snoek, J.1
Larochelle, H.2
Adams, R.P.3
-
4
-
-
85018371540
-
Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms
-
Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms. In Proc. of KDD-2013, pages 847-855, 2013.
-
(2013)
Proc. of KDD-2013
, pp. 847-855
-
-
Thornton, C.1
Hutter, F.2
Hoos, H.H.3
Leyton-Brown, K.4
-
6
-
-
84923284171
-
Agnostic bayesian learning of ensembles
-
Alexandre Lacoste, Mario Marchand, Francois Laviolette, and Hugo Larochelle. Agnostic bayesian learning of ensembles. In Proceedings of The 31st International Conference on Machine Learning, pages 611-619, 2014.
-
(2014)
Proceedings of the 31st International Conference on Machine Learning
, pp. 611-619
-
-
Lacoste, A.1
Marchand, M.2
Laviolette, F.3
Larochelle, H.4
-
9
-
-
80053442167
-
From pac-bayes bounds to quadratic programs for majority votes
-
Jean-Francis Roy, Francois Laviolette, and Mario Marchand. From pac-bayes bounds to quadratic programs for majority votes. In ICML, pages 649-656, 2011.
-
(2011)
ICML
, pp. 649-656
-
-
Roy, J.1
Laviolette, F.2
Marchand, M.3
-
12
-
-
84899013173
-
Support vector regression machines
-
Harris Drucker, Chris JC Burges, Linda Kaufman, Alex Smola, and Vladimir Vapnik. Support vector regression machines. Advances in neural information processing systems, pages 155-161, 1997.
-
(1997)
Advances in Neural Information Processing Systems
, pp. 155-161
-
-
Drucker, H.1
Burges, C.J.C.2
Kaufman, L.3
Smola, A.4
Vapnik, V.5
-
13
-
-
0035478854
-
Random forests
-
L. Breiman. Random forests. Machine learning, 45(1): 5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
14
-
-
33646430006
-
Extremely randomized trees
-
Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine learning, 63(1):3-42, 2006.
-
(2006)
Machine Learning
, vol.63
, Issue.1
, pp. 3-42
-
-
Geurts, P.1
Ernst, D.2
Wehenkel, L.3
-
15
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
Jerome H Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, pages 1189-1232, 2001.
-
(2001)
Annals of Statistics
, pp. 1189-1232
-
-
Friedman, J.H.1
-
16
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Janez Demsar. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research, 7:1-30, 2006.
-
(2006)
The Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
18
-
-
60349123276
-
Incremental construction of classifier and discriminant ensembles
-
April
-
Aydn Ulas, Murat Semerci, Olcay Taner Yldz, and Ethem Alpaydn. Incremental construction of classifier and discriminant ensembles. Information Sciences, 179(9): 1298-1318, April 2009.
-
(2009)
Information Sciences
, vol.179
, Issue.9
, pp. 1298-1318
-
-
Ulas, A.1
Semerci, M.2
Taner Yldz, O.3
Alpaydn, E.4
|