메뉴 건너뛰기




Volumn 71, Issue 16-18, 2008, Pages 3211-3215

A novel LS-SVMs hyper-parameter selection based on particle swarm optimization

Author keywords

Classification; Least squares support vector machines; Parameter selection; Particle swarm optimization

Indexed keywords

COMPUTATIONAL FLUID DYNAMICS; IMAGE RETRIEVAL; LEARNING SYSTEMS; NEURAL NETWORKS; OPTIMIZATION; PROBABILITY DENSITY FUNCTION; SUPPORT VECTOR MACHINES; VECTORS;

EID: 56549111881     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2008.04.027     Document Type: Conference Paper
Times cited : (194)

References (43)
  • 1
    • 34147111649 scopus 로고    scopus 로고
    • Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression
    • S.J. An, W.Q. Liu, and S. Venkatesh Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression Pattern Recognition 40 2007 2154 2162
    • (2007) Pattern Recognition , vol.40 , pp. 2154-2162
    • An, S.J.1    Liu, W.Q.2    Venkatesh, S.3
  • 2
    • 22844442782 scopus 로고    scopus 로고
    • Automatic model selection for the optimization of SVM kernels
    • N.E. Ayat, M. Cheriet, and C.Y. Suen Automatic model selection for the optimization of SVM kernels Pattern Recognition 38 10 2005 1733 1745
    • (2005) Pattern Recognition , vol.38 , Issue.10 , pp. 1733-1745
    • Ayat, N.E.1    Cheriet, M.2    Suen, C.Y.3
  • 3
    • 34249816831 scopus 로고    scopus 로고
    • Semisupervised PSO-SVM regression for biophysical parameter estimation
    • Y. Bazi, and F. Melgani Semisupervised PSO-SVM regression for biophysical parameter estimation IEEE Trans. Geosci. Remote Sensing, Part 2 45 6 2007 1887 1895
    • (2007) IEEE Trans. Geosci. Remote Sensing, Part 2 , vol.45 , Issue.6 , pp. 1887-1895
    • Bazi, Y.1    Melgani, F.2
  • 4
    • 17444398555 scopus 로고    scopus 로고
    • Leave-one-out bounds for support vector regression model selection
    • M.W. Chang, and C.J. Lin Leave-one-out bounds for support vector regression model selection Neural Comput. 17 5 2005 1188 1222
    • (2005) Neural Comput. , vol.17 , Issue.5 , pp. 1188-1222
    • Chang, M.W.1    Lin, C.J.2
  • 6
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, V.N. Vapnik, O. Bousquet, and S. Mukherjee Choosing multiple parameters for support vector machines Mach. Learn. 46 1 2002 131 159
    • (2002) Mach. Learn. , vol.46 , Issue.1 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.N.2    Bousquet, O.3    Mukherjee, S.4
  • 8
    • 0037230867 scopus 로고    scopus 로고
    • Efficient computations for large least square support vector machine classifiers
    • K.S. Chua Efficient computations for large least square support vector machine classifiers Pattern Recognition Lett. 24 1-3 2003 75 80
    • (2003) Pattern Recognition Lett. , vol.24 , Issue.1-3 , pp. 75-80
    • Chua, K.S.1
  • 9
    • 0141430928 scopus 로고    scopus 로고
    • Radius margin bound for support vector machines with RBF kernel
    • K.M. Chung, W.C. Kao, C.L. Sun, and C.J. Lin Radius margin bound for support vector machines with RBF kernel Neural Comput. 15 11 2003 2643 2681
    • (2003) Neural Comput. , vol.15 , Issue.11 , pp. 2643-2681
    • Chung, K.M.1    Kao, W.C.2    Sun, C.L.3    Lin, C.J.4
  • 10
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm-explosion stability, and convergence in a multidimensional complex space
    • M. Clerc, and J. Kennedy The particle swarm-explosion stability, and convergence in a multidimensional complex space IEEE Trans. Evol. Comput. 6 1 2002 58 73
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , Issue.1 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 12
    • 15844394276 scopus 로고    scopus 로고
    • Evolutionary tuning of multiple SVM parameters
    • F. Friedrichs, and C. Igel Evolutionary tuning of multiple SVM parameters Neurocomputing 64 C 2005 107 117
    • (2005) Neurocomputing , vol.64 , Issue.C , pp. 107-117
    • Friedrichs, F.1    Igel, C.2
  • 13
    • 0344235442 scopus 로고    scopus 로고
    • Feature selection for support vector machines by means of genetic algorithms
    • IEEE Computer Society Institute of Electrical and Electronics Engineers Inc. USA
    • H. Frohlich, O. Chapelle, and B. Scholkopf Feature selection for support vector machines by means of genetic algorithms Proceedings of the 15th IEEE International Conference on Tools with AI (ICTAI 2003) 2003 IEEE Computer Society Institute of Electrical and Electronics Engineers Inc. USA 142 148
    • (2003) Proceedings of the 15th IEEE International Conference on Tools with AI (ICTAI 2003) , pp. 142-148
    • Frohlich, H.1    Chapelle, O.2    Scholkopf, B.3
  • 14
    • 33750728125 scopus 로고    scopus 로고
    • A particle swarm optimization-based algorithm for job-shop scheduling problem
    • H.W. Ge, Y.C. Liang, Y. Zhou, and X.C. Guo A particle swarm optimization-based algorithm for job-shop scheduling problem Int. J. Comput. Methods 2 3 2005 419 430
    • (2005) Int. J. Comput. Methods , vol.2 , Issue.3 , pp. 419-430
    • Ge, H.W.1    Liang, Y.C.2    Zhou, Y.3    Guo, X.C.4
  • 16
    • 23944487822 scopus 로고    scopus 로고
    • Gradient-based adaptation of general gaussian kernels
    • T. Glasmachers, and C. Igel Gradient-based adaptation of general gaussian kernels Neural Comput. 17 10 2005 2099 2105
    • (2005) Neural Comput. , vol.17 , Issue.10 , pp. 2099-2105
    • Glasmachers, T.1    Igel, C.2
  • 17
    • 0242288807 scopus 로고    scopus 로고
    • Model selection for support vector classification
    • C. Gold, and P. Sollich Model selection for support vector classification Neurocomputing 55 1-2 2003 221 249
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 221-249
    • Gold, C.1    Sollich, P.2
  • 18
    • 35048820555 scopus 로고    scopus 로고
    • Analysis of proteomic pattern data for cancer detection
    • G.R. Raidl S. Cagnoni J. Branke D.W. Corne R. Drechsler Y. Jin C.G. Johnson P. Machado E. Marchiori F. Rothlauf G.D. Smith G. Squillero Springer Berlin, Heidelberg
    • K. Jong, E. Marchiori, and A. van der Vaart Analysis of proteomic pattern data for cancer detection G.R. Raidl S. Cagnoni J. Branke D.W. Corne R. Drechsler Y. Jin C.G. Johnson P. Machado E. Marchiori F. Rothlauf G.D. Smith G. Squillero Applications of Evolutionary Computing, Lecture Notes in Computer Science vol. 3005 2004 Springer Berlin, Heidelberg 41 51
    • (2004) Applications of Evolutionary Computing, Lecture Notes in Computer Science , vol.3005 , pp. 41-51
    • Jong, K.1    Marchiori, E.2    Van Der Vaart, A.3
  • 19
    • 0036738840 scopus 로고    scopus 로고
    • Efficient tuning of SVM hyper-parameters using radius/margin bound and iterative algorithms
    • S.S. Keerthi Efficient tuning of SVM hyper-parameters using radius/margin bound and iterative algorithms IEEE Trans. Neural Network 13 5 2002 1225 1229
    • (2002) IEEE Trans. Neural Network , vol.13 , Issue.5 , pp. 1225-1229
    • Keerthi, S.S.1
  • 21
    • 34248590967 scopus 로고    scopus 로고
    • Quantitative structure-activity relationship study of acyl ureas as inhibitors of human liver glycogen phosphorylase using least squares support vector machines
    • J.H. Li, H.X. Liu, X.J. Yao, M.C. Liu, Z.D. Hu, and B.T. Fan Quantitative structure-activity relationship study of acyl ureas as inhibitors of human liver glycogen phosphorylase using least squares support vector machines Chemometrics Intell. Lab. Syst. 87 2007 139 146
    • (2007) Chemometrics Intell. Lab. Syst. , vol.87 , pp. 139-146
    • Li, J.H.1    Liu, H.X.2    Yao, X.J.3    Liu, M.C.4    Hu, Z.D.5    Fan, B.T.6
  • 22
    • 36149001400 scopus 로고    scopus 로고
    • Use of visible and near infrared spectroscopy and least squares - Support vector machine to determine soluble solids content and pH of cola beverage
    • F. Liu, and Y. He Use of visible and near infrared spectroscopy and least squares - support vector machine to determine soluble solids content and pH of cola beverage J. Agric. Food Chem. 55 2007 8883 8888
    • (2007) J. Agric. Food Chem. , vol.55 , pp. 8883-8888
    • Liu, F.1    He, Y.2
  • 23
    • 85156245140 scopus 로고    scopus 로고
    • Discriminative densities from maximum contrast estimation
    • S. Becker S. Thrun K. Obermayer MIT Press Cambridge
    • P. Meinicke, T. Twellmann, and H. Ritter Discriminative densities from maximum contrast estimation S. Becker S. Thrun K. Obermayer Advances in Neural Information Processing Systems vol. 15 2002 MIT Press Cambridge 985 992
    • (2002) Advances in Neural Information Processing Systems , vol.15 , pp. 985-992
    • Meinicke, P.1    Twellmann, T.2    Ritter, H.3
  • 24
    • 0041780746 scopus 로고    scopus 로고
    • A.V. Clough, A.A. Amini, (Eds.), Feature Selection for Computer-aided Polyp Detection Using Genetic Algorithms, Medical Imaging 2003: Physiology and Function: Methods, Systems, and Applications
    • M.T. Miller, A.K. Jerebko, J.D. Malley, R.M. Summers, in: A.V. Clough, A.A. Amini, (Eds.), Feature Selection for Computer-aided Polyp Detection Using Genetic Algorithms, Medical Imaging 2003: Physiology and Function: Methods, Systems, and Applications, Proceedings of the SPIE, vol. 5031, 2003, pp. 102-110.
    • (2003) Proceedings of the SPIE , vol.5031 , pp. 102-110
    • Miller, M.T.1    Jerebko, A.K.2    Malley, J.D.3    Summers, R.M.4
  • 25
    • 34047266673 scopus 로고    scopus 로고
    • Text classification: A least square support vector machine approach
    • V. Mitra, C.J. Wang, and S. Banerjee Text classification: a least square support vector machine approach Appl. Soft Comput. 7 2007 908 914
    • (2007) Appl. Soft Comput. , vol.7 , pp. 908-914
    • Mitra, V.1    Wang, C.J.2    Banerjee, S.3
  • 26
    • 27744453578 scopus 로고    scopus 로고
    • Classification of ECG Beats by using a fast least square support vector machines with a dynamic programming feature selection algorithm
    • A. Nurettin Classification of ECG Beats by using a fast least square support vector machines with a dynamic programming feature selection algorithm Neural Comput. Appl. 14 4 2005 299 309
    • (2005) Neural Comput. Appl. , vol.14 , Issue.4 , pp. 299-309
    • Nurettin, A.1
  • 27
    • 18544377981 scopus 로고    scopus 로고
    • Support vector machines with simulated annealing algorithms in electricity load forecasting
    • P.F. Pai, and W.C. Hong Support vector machines with simulated annealing algorithms in electricity load forecasting Energy Convers. Manage. 46 17 2005 2669 2688
    • (2005) Energy Convers. Manage. , vol.46 , Issue.17 , pp. 2669-2688
    • Pai, P.F.1    Hong, W.C.2
  • 28
    • 34250618313 scopus 로고    scopus 로고
    • A novel approach to estimation of E. Coli promoter gene sequences: Combining feature selection and least square support vector machine (FS_LSSVM)
    • K. Polat, and S. Gunes A novel approach to estimation of E. Coli promoter gene sequences: combining feature selection and least square support vector machine (FS_LSSVM) Appl. Math. Comput. 190 2007 1574 1582
    • (2007) Appl. Math. Comput. , vol.190 , pp. 1574-1582
    • Polat, K.1    Gunes, S.2
  • 29
    • 33947248058 scopus 로고    scopus 로고
    • Detection of ECG Arrhythmia using a differential expert system approach based on principal component analysis and least square support vector machine
    • K. Polat, and S. Gunes Detection of ECG Arrhythmia using a differential expert system approach based on principal component analysis and least square support vector machine Appl. Math. Comput. 186 2007 898 906
    • (2007) Appl. Math. Comput. , vol.186 , pp. 898-906
    • Polat, K.1    Gunes, S.2
  • 30
    • 34247278767 scopus 로고    scopus 로고
    • Pattern detection of atherosclerosis from carotid artery doppler signals using fuzzy weighted pre-processing and least square support vector machine (LSSVM)
    • K. Polat, S. Kara, F. Latifoglu, and S. Gunes Pattern detection of atherosclerosis from carotid artery doppler signals using fuzzy weighted pre-processing and least square support vector machine (LSSVM) Ann. Biomed. Eng. 35 5 2007 724 732
    • (2007) Ann. Biomed. Eng. , vol.35 , Issue.5 , pp. 724-732
    • Polat, K.1    Kara, S.2    Latifoglu, F.3    Gunes, S.4
  • 31
  • 33
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • J.A.K. Suykens, and J. Vandewalle Least squares support vector machine classifiers Neural Process. Lett. 9 3 1999 293 300
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 35
    • 36448969399 scopus 로고    scopus 로고
    • Prediction of mitochondrial proteins based on genetic algorithm - Partial least squares and support vector machine
    • F. Tan, X. Feng, Z. Fang, M. Li, Y. Guo, and L. Jiang Prediction of mitochondrial proteins based on genetic algorithm - partial least squares and support vector machine Amino Acids 33 2007 669 675
    • (2007) Amino Acids , vol.33 , pp. 669-675
    • Tan, F.1    Feng, X.2    Fang, Z.3    Li, M.4    Guo, Y.5    Jiang, L.6
  • 36
    • 34547692849 scopus 로고    scopus 로고
    • Radial basis function network-based transform for a nonlinear support vector machine as optimized by a particle swarm optimization algorithm with application to QSAR studies
    • L.J. Tang, Y.P. Zhou, and J.H. Jiang Radial basis function network-based transform for a nonlinear support vector machine as optimized by a particle swarm optimization algorithm with application to QSAR studies J. Chem. Inf. Modeling 47 4 2007 1438 1445
    • (2007) J. Chem. Inf. Modeling , vol.47 , Issue.4 , pp. 1438-1445
    • Tang, L.J.1    Zhou, Y.P.2    Jiang, J.H.3
  • 37
    • 33845372382 scopus 로고    scopus 로고
    • SVD-LSSVM and its application in chemical pattern classification
    • S.H. Tao, D.Z. Chen, and W.M. Hu SVD-LSSVM and its application in chemical pattern classification J. Zhejiang Univ. Sci. A 7 11 2006 1942 1947
    • (2006) J. Zhejiang Univ. Sci. a , vol.7 , Issue.11 , pp. 1942-1947
    • Tao, S.H.1    Chen, D.Z.2    Hu, W.M.3
  • 40
    • 0034264380 scopus 로고    scopus 로고
    • Bounds on error expectation for support vector machines
    • V.N. Vapnik, and O. Chapelle Bounds on error expectation for support vector machines Neural Comput. 12 9 2000 2013 2036
    • (2000) Neural Comput. , vol.12 , Issue.9 , pp. 2013-2036
    • Vapnik, V.N.1    Chapelle, O.2
  • 42
    • 27144433809 scopus 로고    scopus 로고
    • QSAR and classification study of 14-dihydropyridine calcium channel antagonists based on least squares support vector machines
    • X. Yao, H. Liu, R. Zhang, M. Liu, Z. Hu, A. Panaye, J.P. Doucet, and B. Fan QSAR and classification study of 14-dihydropyridine calcium channel antagonists based on least squares support vector machines Mol. Pharmacol. 2 5 2005 348 356
    • (2005) Mol. Pharmacol. , vol.2 , Issue.5 , pp. 348-356
    • Yao, X.1    Liu, H.2    Zhang, R.3    Liu, M.4    Hu, Z.5    Panaye, A.6    Doucet, J.P.7    Fan, B.8
  • 43
    • 2542598464 scopus 로고    scopus 로고
    • Novel algorithm for image interpolation
    • S. Zheng, J. Tian, J. Liu, and C. Xiong Novel algorithm for image interpolation Opt. Eng. 43 4 2004 856 865
    • (2004) Opt. Eng. , vol.43 , Issue.4 , pp. 856-865
    • Zheng, S.1    Tian, J.2    Liu, J.3    Xiong, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.