-
1
-
-
84886540275
-
Analysis of Thompson sampling for the multi-Armed bandit problem
-
Agrawal, S., and Goyal, N. 2012. Analysis of Thompson sampling for the multi-Armed bandit problem. In COLT-2012, 39.1-39.26.
-
(2012)
COLT-2012
, pp. 391-3926
-
-
Agrawal, S.1
Goyal, N.2
-
3
-
-
0036568025
-
Finite-Time analysis of the multiarmed bandit problem
-
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-Time analysis of the multiarmed bandit problem. Machine Learning 47(2- 3):235-256.
-
(2002)
Machine Learning
, vol.47
, Issue.2-3
, pp. 235-256
-
-
Auer, P.1
Cesa-Bianchi, N.2
Fischer, P.3
-
4
-
-
84903779279
-
Searching for exotic particles in high-energy physics with deep learning
-
Baldi, P.; Sadowski, P.; and Whiteson, D. 2014. Searching for exotic particles in high-energy physics with deep learning. Nature Communications 5.
-
(2014)
Nature Communications 5
-
-
Baldi, P.1
Sadowski, P.2
Whiteson, D.3
-
6
-
-
85162384813
-
Algorithms for hyper-parameter optimization
-
Bergstra, J.; Bardenet, R.; Bengio, Y.; and Ḱegl, B. 2011. Algorithms for hyper-parameter optimization. In NIPS, 2546-2554.
-
(2011)
NIPS
, pp. 2546-2554
-
-
Bergstra, J.1
Bardenet, R.2
Bengio, Y.3
Ḱegl, B.4
-
7
-
-
84897558007
-
Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
-
Bergstra, J.; Yamins, D.; and Cox, D. D. 2013. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In ICML-2013.
-
(2013)
ICML-2013
-
-
Bergstra, J.1
Yamins, D.2
Cox, D.D.3
-
9
-
-
84961209843
-
Towards cognitive automation of data science
-
Biem, A.; Butrico, M. A.; Feblowitz, M. D.; Klinger, T.; Malitsky, Y.; Ng, K.; Perer, A.; Reddy, C.; Riabov, A. V.; Samulowitz, H.; Sow, D.; Tesauro, G.; and Turaga, D. 2015. Towards cognitive automation of data science. In Proc. of AAAI-2015, Demonstrations Track.
-
(2015)
Proc. of AAAI-2015, Demonstrations Track
-
-
Biem, A.1
Butrico, M.A.2
Feblowitz, M.D.3
Klinger, T.4
Malitsky, Y.5
Ng, K.6
Perer, A.7
Reddy, C.8
Riabov, A.V.9
Samulowitz, H.10
Sow, D.11
Tesauro, G.12
Turaga, D.13
-
10
-
-
0033400675
-
Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables
-
Blackard, J. A., and Dean, D. J. 2000. Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables. Computers and Electronics in Agriculture 24(3):131-151.
-
(2000)
Computers and Electronics in Agriculture
, vol.24
, Issue.3
, pp. 131-151
-
-
Blackard, J.A.1
Dean, D.J.2
-
11
-
-
77958068642
-
A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning
-
University of British Columbia
-
Brochu, E.; Cora, V. M.; and de Freitas, N. 2009. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Technical Report UBC TR-2009-23, Department of Computer Science, University of British Columbia.
-
(2009)
Technical Report UBC TR-2009-23, Department of Computer Science
-
-
Brochu, E.1
Cora, V.M.2
De Freitas, N.3
-
12
-
-
34250744208
-
An empirical comparison of supervised learning algorithms
-
Caruana, R., and Niculescu-Mizil, A. 2006. An empirical comparison of supervised learning algorithms. In ICML-2006, 161-168.
-
(2006)
ICML-2006
, pp. 161-168
-
-
Caruana, R.1
Niculescu-Mizil, A.2
-
13
-
-
84949921865
-
Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves
-
Domhan, T.; Springenberg, J. T.; and Hutter, F. 2015. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. In IJCAI-2015.
-
(2015)
IJCAI-2015
-
-
Domhan, T.1
Springenberg, J.T.2
Hutter, F.3
-
15
-
-
85007221118
-
Initializing Bayesian hyperparameter optimization via meta-learning
-
Feurer, M.; Springenber, J.; and Hutter, F. 2015. Initializing Bayesian hyperparameter optimization via meta-learning. In Proc. of AAAI-2015.
-
(2015)
Proc. of AAAI-2015
-
-
Feurer, M.1
Springenber, J.2
Hutter, F.3
-
16
-
-
85007259269
-
Predicting the performance of learning algorithms using support vector machines as meta-regressors
-
Guerra, S. B.; Prudencio, R. B. C.; and Ludermir, T. B. 2008. Predicting the performance of learning algorithms using support vector machines as meta-regressors. In ICANN.
-
(2008)
ICANN
-
-
Guerra, S.B.1
Prudencio, R.B.C.2
Ludermir, T.B.3
-
17
-
-
34247558363
-
Performance prediction challenge
-
Guyon, I.; Alamdari, A. R. S. A.; Dror, G.; and Buhmann, J. M. 2006. Performance prediction challenge. In IJCNN-2006, 1649- 1656.
-
(2006)
IJCNN-2006
, pp. 1649-1656
-
-
Guyon, I.1
Alamdari, A.R.S.A.2
Dror, G.3
Buhmann, J.M.4
-
18
-
-
76749092270
-
The WEKA data mining software: An update
-
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; and Witten, I. H. 2009. The WEKA Data Mining Software: An update. SIGKDD Explorations 11(1).
-
(2009)
SIGKDD Explorations
, vol.11
, Issue.1
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
19
-
-
84955516630
-
On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning
-
Hoffman, M. D.; Shahriari, B.; and de Freitas, N. 2014. On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning. In AISTATS, 365- 374.
-
(2014)
AISTATS
, pp. 365-374
-
-
Hoffman, M.D.1
Shahriari, B.2
De Freitas, N.3
-
20
-
-
84887848457
-
Algorithm runtime prediction: Methods & evaluation
-
Hutter, F.; Xu, L.; Hoos, H. H.; and Leyton-Brown, K. 2014. Algorithm runtime prediction: Methods & evaluation. Artif. Intell. 206:79-111.
-
(2014)
Artif. Intell
, vol.206
, pp. 79-111
-
-
Hutter, F.1
Xu, L.2
Hoos, H.H.3
Leyton-Brown, K.4
-
23
-
-
84892915061
-
From bandits to Monte-Carlo Tree Search: The optimistic principle applied to optimization and planning
-
Munos, R. 2014. From bandits to Monte-Carlo Tree Search: The optimistic principle applied to optimization and planning. Foundations and Trends in Machine Learning 7(1):1-130.
-
(2014)
Foundations and Trends in Machine Learning
, vol.7
, Issue.1
, pp. 1-130
-
-
Munos, R.1
-
24
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
Pedregosa, F., et al. 2011. Scikit-learn: Machine learning in Python. JMLR 12:2825-2830.
-
(2011)
JMLR
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
-
25
-
-
0003056605
-
The algorithm selection problem
-
Rice, J. 1976. The algorithm selection problem. Advances in Computers 15:65-118.
-
(1976)
Advances in Computers
, vol.15
, pp. 65-118
-
-
Rice, J.1
-
26
-
-
77949523247
-
PyBrain
-
Schaul, T.; Bayer, J.; Wierstra, D.; Sun, Y.; Felder, M.; Sehnke, F.; Ruckstieß, T.; and Schmidhuber, J. 2010. PyBrain. JMLR.
-
(2010)
JMLR
-
-
Schaul, T.1
Bayer, J.2
Wierstra, D.3
Sun, Y.4
Felder, M.5
Sehnke, F.6
Ruckstieß, T.7
Schmidhuber, J.8
-
27
-
-
78650505735
-
A modern Bayesian look at the multi-Armed bandit
-
Scott, S. L. 2010. A modern Bayesian look at the multi-Armed bandit. Appl. Stochastic Models Bus. Ind. 26:639-658.
-
(2010)
Appl. Stochastic Models Bus. Ind
, vol.26
, pp. 639-658
-
-
Scott, S.L.1
-
29
-
-
0001395850
-
On the likelihood that one unknown probability exceeds another in view of the evidence of two samples
-
Thompson, W. R. 1933. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika 25:285-294.
-
(1933)
Biometrika
, vol.25
, pp. 285-294
-
-
Thompson, W.R.1
-
30
-
-
85018371540
-
Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms
-
Thornton, C.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2013. Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms. In Proc. of KDD-2013, 847-855.
-
(2013)
Proc. of KDD-2013
, pp. 847-855
-
-
Thornton, C.1
Hutter, F.2
Hoos, H.H.3
Leyton-Brown, K.4
|