메뉴 건너뛰기




Volumn , Issue , 2016, Pages 2007-2015

Selecting near-optimal learners via incremental data allocation

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; LEARNING ALGORITHMS; LEARNING SYSTEMS;

EID: 85007162574     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (50)

References (30)
  • 1
    • 84886540275 scopus 로고    scopus 로고
    • Analysis of Thompson sampling for the multi-Armed bandit problem
    • Agrawal, S., and Goyal, N. 2012. Analysis of Thompson sampling for the multi-Armed bandit problem. In COLT-2012, 39.1-39.26.
    • (2012) COLT-2012 , pp. 391-3926
    • Agrawal, S.1    Goyal, N.2
  • 3
    • 0036568025 scopus 로고    scopus 로고
    • Finite-Time analysis of the multiarmed bandit problem
    • Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-Time analysis of the multiarmed bandit problem. Machine Learning 47(2- 3):235-256.
    • (2002) Machine Learning , vol.47 , Issue.2-3 , pp. 235-256
    • Auer, P.1    Cesa-Bianchi, N.2    Fischer, P.3
  • 4
    • 84903779279 scopus 로고    scopus 로고
    • Searching for exotic particles in high-energy physics with deep learning
    • Baldi, P.; Sadowski, P.; and Whiteson, D. 2014. Searching for exotic particles in high-energy physics with deep learning. Nature Communications 5.
    • (2014) Nature Communications 5
    • Baldi, P.1    Sadowski, P.2    Whiteson, D.3
  • 6
    • 85162384813 scopus 로고    scopus 로고
    • Algorithms for hyper-parameter optimization
    • Bergstra, J.; Bardenet, R.; Bengio, Y.; and Ḱegl, B. 2011. Algorithms for hyper-parameter optimization. In NIPS, 2546-2554.
    • (2011) NIPS , pp. 2546-2554
    • Bergstra, J.1    Bardenet, R.2    Bengio, Y.3    Ḱegl, B.4
  • 7
    • 84897558007 scopus 로고    scopus 로고
    • Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
    • Bergstra, J.; Yamins, D.; and Cox, D. D. 2013. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In ICML-2013.
    • (2013) ICML-2013
    • Bergstra, J.1    Yamins, D.2    Cox, D.D.3
  • 10
    • 0033400675 scopus 로고    scopus 로고
    • Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables
    • Blackard, J. A., and Dean, D. J. 2000. Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables. Computers and Electronics in Agriculture 24(3):131-151.
    • (2000) Computers and Electronics in Agriculture , vol.24 , Issue.3 , pp. 131-151
    • Blackard, J.A.1    Dean, D.J.2
  • 11
    • 77958068642 scopus 로고    scopus 로고
    • A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning
    • University of British Columbia
    • Brochu, E.; Cora, V. M.; and de Freitas, N. 2009. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Technical Report UBC TR-2009-23, Department of Computer Science, University of British Columbia.
    • (2009) Technical Report UBC TR-2009-23, Department of Computer Science
    • Brochu, E.1    Cora, V.M.2    De Freitas, N.3
  • 12
    • 34250744208 scopus 로고    scopus 로고
    • An empirical comparison of supervised learning algorithms
    • Caruana, R., and Niculescu-Mizil, A. 2006. An empirical comparison of supervised learning algorithms. In ICML-2006, 161-168.
    • (2006) ICML-2006 , pp. 161-168
    • Caruana, R.1    Niculescu-Mizil, A.2
  • 13
    • 84949921865 scopus 로고    scopus 로고
    • Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves
    • Domhan, T.; Springenberg, J. T.; and Hutter, F. 2015. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. In IJCAI-2015.
    • (2015) IJCAI-2015
    • Domhan, T.1    Springenberg, J.T.2    Hutter, F.3
  • 15
    • 85007221118 scopus 로고    scopus 로고
    • Initializing Bayesian hyperparameter optimization via meta-learning
    • Feurer, M.; Springenber, J.; and Hutter, F. 2015. Initializing Bayesian hyperparameter optimization via meta-learning. In Proc. of AAAI-2015.
    • (2015) Proc. of AAAI-2015
    • Feurer, M.1    Springenber, J.2    Hutter, F.3
  • 16
    • 85007259269 scopus 로고    scopus 로고
    • Predicting the performance of learning algorithms using support vector machines as meta-regressors
    • Guerra, S. B.; Prudencio, R. B. C.; and Ludermir, T. B. 2008. Predicting the performance of learning algorithms using support vector machines as meta-regressors. In ICANN.
    • (2008) ICANN
    • Guerra, S.B.1    Prudencio, R.B.C.2    Ludermir, T.B.3
  • 19
    • 84955516630 scopus 로고    scopus 로고
    • On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning
    • Hoffman, M. D.; Shahriari, B.; and de Freitas, N. 2014. On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning. In AISTATS, 365- 374.
    • (2014) AISTATS , pp. 365-374
    • Hoffman, M.D.1    Shahriari, B.2    De Freitas, N.3
  • 20
    • 84887848457 scopus 로고    scopus 로고
    • Algorithm runtime prediction: Methods & evaluation
    • Hutter, F.; Xu, L.; Hoos, H. H.; and Leyton-Brown, K. 2014. Algorithm runtime prediction: Methods & evaluation. Artif. Intell. 206:79-111.
    • (2014) Artif. Intell , vol.206 , pp. 79-111
    • Hutter, F.1    Xu, L.2    Hoos, H.H.3    Leyton-Brown, K.4
  • 23
    • 84892915061 scopus 로고    scopus 로고
    • From bandits to Monte-Carlo Tree Search: The optimistic principle applied to optimization and planning
    • Munos, R. 2014. From bandits to Monte-Carlo Tree Search: The optimistic principle applied to optimization and planning. Foundations and Trends in Machine Learning 7(1):1-130.
    • (2014) Foundations and Trends in Machine Learning , vol.7 , Issue.1 , pp. 1-130
    • Munos, R.1
  • 24
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: Machine learning in Python
    • Pedregosa, F., et al. 2011. Scikit-learn: Machine learning in Python. JMLR 12:2825-2830.
    • (2011) JMLR , vol.12 , pp. 2825-2830
    • Pedregosa, F.1
  • 25
    • 0003056605 scopus 로고
    • The algorithm selection problem
    • Rice, J. 1976. The algorithm selection problem. Advances in Computers 15:65-118.
    • (1976) Advances in Computers , vol.15 , pp. 65-118
    • Rice, J.1
  • 27
    • 78650505735 scopus 로고    scopus 로고
    • A modern Bayesian look at the multi-Armed bandit
    • Scott, S. L. 2010. A modern Bayesian look at the multi-Armed bandit. Appl. Stochastic Models Bus. Ind. 26:639-658.
    • (2010) Appl. Stochastic Models Bus. Ind , vol.26 , pp. 639-658
    • Scott, S.L.1
  • 29
    • 0001395850 scopus 로고
    • On the likelihood that one unknown probability exceeds another in view of the evidence of two samples
    • Thompson, W. R. 1933. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika 25:285-294.
    • (1933) Biometrika , vol.25 , pp. 285-294
    • Thompson, W.R.1
  • 30
    • 85018371540 scopus 로고    scopus 로고
    • Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms
    • Thornton, C.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2013. Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms. In Proc. of KDD-2013, 847-855.
    • (2013) Proc. of KDD-2013 , pp. 847-855
    • Thornton, C.1    Hutter, F.2    Hoos, H.H.3    Leyton-Brown, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.