메뉴 건너뛰기




Volumn 33, Issue , 2014, Pages 365-374

On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BAYESIAN NETWORKS; BUDGET CONTROL; FUNCTION EVALUATION;

EID: 84955516630     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (114)

References (44)
  • 1
    • 84897563832 scopus 로고    scopus 로고
    • Thompson sampling for contextual bandits with linear payoffs
    • S. Agrawal and N. Goyal. Thompson sampling for contextual bandits with linear payoffs. In ICML, 2013.
    • (2013) ICML
    • Agrawal, S.1    Goyal, N.2
  • 2
    • 77956649096 scopus 로고    scopus 로고
    • A survey of cross-validation procedures for model selection
    • S. Arlot and A. Celisse. A survey of cross-validation procedures for model selection. Statistics Surveys, 4:40-79, 2010.
    • (2010) Statistics Surveys , vol.4 , pp. 40-79
    • Arlot, S.1    Celisse, A.2
  • 3
    • 84864970677 scopus 로고    scopus 로고
    • Best arm identification in multi-armed bandits
    • J.-Y. Audibert, S. Bubeck, and R. Munos. Best arm identification in multi-armed bandits. In CoLT, 2010.
    • (2010) CoLT
    • Audibert, J.-Y.1    Bubeck, S.2    Munos, R.3
  • 4
    • 0036568025 scopus 로고    scopus 로고
    • Finite-time analysis of the multiarmed bandit problem
    • P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem. Machine Learning, 47(2):235-256, 2002.
    • (2002) Machine Learning , vol.47 , Issue.2 , pp. 235-256
    • Auer, P.1    Cesa-Bianchi, N.2    Fischer, P.3
  • 5
    • 85162387635 scopus 로고    scopus 로고
    • Budgeted optimization with concurrent stochastic-duration experiments
    • J. Azimi, A. Fern, and X. Fern. Budgeted optimization with concurrent stochastic-duration experiments. In NIPS, pages 1098-1106, 2011.
    • (2011) NIPS , pp. 1098-1106
    • Azimi, J.1    Fern, A.2    Fern, X.3
  • 6
    • 85162384813 scopus 로고    scopus 로고
    • Algorithms for hyper-parameter optimization
    • J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In NIPS, pages 2546-2554, 2011.
    • (2011) NIPS , pp. 2546-2554
    • Bergstra, J.1    Bardenet, R.2    Bengio, Y.3    Kégl, B.4
  • 7
    • 85043560166 scopus 로고    scopus 로고
    • Active preference learning with discrete choice data
    • E. Brochu, N. de Freitas, and A. Ghosh. Active preference learning with discrete choice data. In NIPS, pages 409-416, 2007.
    • (2007) NIPS , pp. 409-416
    • Brochu, E.1    De Freitas, N.2    Ghosh, A.3
  • 11
    • 0000354976 scopus 로고
    • A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods
    • P. Burman. A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika, 76(3):pp. 503-514, 1989.
    • (1989) Biometrika , vol.76 , Issue.3 , pp. 503-514
    • Burman, P.1
  • 13
    • 84875736450 scopus 로고    scopus 로고
    • An empirical evaluation of thompson sampling
    • O. Chapelle and L. Li. An empirical evaluation of Thompson sampling. In NIPS, 2012.
    • (2012) NIPS
    • Chapelle, O.1    Li, L.2
  • 14
    • 84867124523 scopus 로고    scopus 로고
    • Exponential regret bounds for Gaussian process bandits with deterministic observations
    • N. de Freitas, A. Smola, and M. Zoghi. Exponential Regret Bounds for Gaussian Process Bandits with Deterministic Observations. In ICML, 2012.
    • (2012) ICML
    • De Freitas, N.1    Smola, A.2    Zoghi, M.3
  • 16
    • 84877730309 scopus 로고    scopus 로고
    • Best arm identification: A unified approach to fixed budget and fixed confidence
    • V. Gabillon, M. Ghavamzadeh, and A. Lazaric. Best arm identification: A unified approach to fixed budget and fixed confidence. In NIPS, 2012.
    • (2012) NIPS
    • Gabillon, V.1    Ghavamzadeh, M.2    Lazaric, A.3
  • 18
    • 84864947871 scopus 로고    scopus 로고
    • Entropy search for information-efficient global optimization
    • P. Hennig and C. Schuler. Entropy search for information-efficient global optimization. JMLR, 13:1809-1837, 2012.
    • (2012) JMLR , vol.13 , pp. 1809-1837
    • Hennig, P.1    Schuler, C.2
  • 19
    • 80053160717 scopus 로고    scopus 로고
    • Portfolio allocation for Bayesian optimization
    • M. W. Hoffman, E. Brochu, and N. de Freitas. Portfolio allocation for Bayesian optimization. In UAI, pages 327-336, 2011.
    • (2011) UAI , pp. 327-336
    • Hoffman, M.W.1    Brochu, E.2    De Freitas, N.3
  • 20
    • 84868554032 scopus 로고    scopus 로고
    • Sequential model-based optimization for general algorithm configuration
    • F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm configuration. In Proceedings of LION-5, page 507-523, 2011.
    • (2011) Proceedings of LION-5
    • Hutter, F.1    Hoos, H.H.2    Leyton-Brown, K.3
  • 21
    • 0035577808 scopus 로고    scopus 로고
    • A taxonomy of global optimization methods based on response surfaces
    • D. Jones. A taxonomy of global optimization methods based on response surfaces. J. of Global Optimization, 21(4):345-383, 2001.
    • (2001) J. of Global Optimization , vol.21 , Issue.4 , pp. 345-383
    • Jones, D.1
  • 23
    • 84867888879 scopus 로고    scopus 로고
    • On Bayesian upper conf bounds for bandit problems
    • E. Kaufmann, O. Cappé, and A. Garivier. On Bayesian upper conf. bounds for bandit problems. In AIStats, 2012a.
    • (2012) AIStats
    • Kaufmann, E.1    Cappé, O.2    Garivier, A.3
  • 27
    • 68749108525 scopus 로고    scopus 로고
    • Inference and learning for active sensing, experimental design and control
    • H. Araujo, A. Mendonca, A. Pinho, and M. Torres, editors Springer Berlin Heidelberg
    • H. Kueck, M. Hoffman, A. Doucet, and N. de Freitas. Inference and learning for active sensing, experimental design and control. In H. Araujo, A. Mendonca, A. Pinho, and M. Torres, editors, Pattern Recognition and Image Analysis, Volume 5524, pages 1-10. Springer Berlin Heidelberg, 2009.
    • (2009) Pattern Recognition and Image Analysis , vol.5524 , pp. 1-10
    • Kueck, H.1    Hoffman, M.2    Doucet, A.3    De Freitas, N.4
  • 28
    • 84863783543 scopus 로고    scopus 로고
    • An experimental methodology for response surface optimization methods
    • D. J. Lizotte, R. Greiner, and D. Schuurmans. An experimental methodology for response surface optimization methods. Journal of Global Optimization, 53(4):699-736, 2012.
    • (2012) Journal of Global Optimization , vol.53 , Issue.4 , pp. 699-736
    • Lizotte, D.J.1    Greiner, R.2    Schuurmans, D.3
  • 30
    • 0001923944 scopus 로고
    • Hoeffding races: Accelerating model selection search for classification and function approximation
    • O. Maron and A. W. Moore. Hoeffding races: Accelerating model selection search for classification and function approximation. In NIPS, pages 59-66, 1994.
    • (1994) NIPS , pp. 59-66
    • Maron, O.1    Moore, A.W.2
  • 32
    • 84867137347 scopus 로고
    • The Bayesian approach to global optimization
    • Springer
    • J. Močkus. The Bayesian approach to global optimization. In Systems Modeling and Optimization, Volume 38, pages 473-481. Springer, 1982.
    • (1982) Systems Modeling and Optimization , vol.38 , pp. 473-481
    • Močkus, J.1
  • 33
    • 85162504694 scopus 로고    scopus 로고
    • Optimistic optimization of a deterministic function without the knowledge of its smoothness
    • R. Munos. Optimistic optimization of a deterministic function without the knowledge of its smoothness. In NIPS, pages 783-791, 2011.
    • (2011) NIPS , pp. 783-791
    • Munos, R.1
  • 37
    • 84869201485 scopus 로고    scopus 로고
    • Practical Bayesian optimization of machine learning algorithms
    • J. Snoek, H. Larochelle, and R. Adams. Practical Bayesian optimization of machine learning algorithms. In NIPS, pages 2960-2968, 2012.
    • (2012) NIPS , pp. 2960-2968
    • Snoek, J.1    Larochelle, H.2    Adams, R.3
  • 38
    • 77956501313 scopus 로고    scopus 로고
    • Gaussian process optimization in the bandit setting: No regret and experimental design
    • N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting: No regret and experimental design. In ICML, 2010.
    • (2010) ICML
    • Srinivas, N.1    Krause, A.2    Kakade, S.M.3    Seeger, M.4
  • 40
    • 85018371540 scopus 로고    scopus 로고
    • Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms
    • C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms. In KDD, pages 847-855, 2013.
    • (2013) KDD , pp. 847-855
    • Thornton, C.1    Hutter, F.2    Hoos, H.H.3    Leyton-Brown, K.4
  • 41
    • 84897517236 scopus 로고    scopus 로고
    • Stochastic simultaneous optimistic optimization
    • M. Valko, A. Carpentier, and R. Munos. Stochastic simultaneous optimistic optimization. In ICML, 2013.
    • (2013) ICML
    • Valko, M.1    Carpentier, A.2    Munos, R.3
  • 42
    • 67650938640 scopus 로고    scopus 로고
    • An informational approach to the global optimization of expensive-to-evaluate functions
    • J. Villemonteix, E. Vazquez, and E. Walter. An informational approach to the global optimization of expensive-to-evaluate functions. Journal of Global Optimization, 44(4):509-534, 2009.
    • (2009) Journal of Global Optimization , vol.44 , Issue.4 , pp. 509-534
    • Villemonteix, J.1    Vazquez, E.2    Walter, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.