-
1
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
R. Kohavi, "A study of cross-validation and bootstrap for accuracy estimation and model selection, " in Proc. 15th International Conference on Artificial Intelligence, 1995, pp. 1137-1143.
-
(1995)
Proc. 15th International Conference on Artificial Intelligence
, pp. 1137-1143
-
-
Kohavi, R.1
-
2
-
-
85017310179
-
Sequential MCMC for Bayesian model selection
-
C. Andrieu, N. D. Freitas, and A. Doucet, "Sequential MCMC for Bayesian model selection, " in IEEE Signal Processing Workshop on Higher-Order Statistics, 1999, pp. 130-134.
-
(1999)
IEEE Signal Processing Workshop on Higher-Order Statistics
, pp. 130-134
-
-
Andrieu, C.1
Freitas, N.D.2
Doucet, A.3
-
3
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Guyon and A. Elisseeff, "An introduction to variable and feature selection, " Journal of Machine Learning Research, vol. 3, pp. 1157-1182, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
4
-
-
14344255621
-
Ensemble selection from libraries of models
-
R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes, "Ensemble selection from libraries of models, " in Proc. 21st International Conference on Machine Learning. ACM, 2004.
-
(2004)
Proc. 21st International Conference on Machine Learning. ACM
-
-
Caruana, R.1
Niculescu-Mizil, A.2
Crew, G.3
Ksikes, A.4
-
5
-
-
76749118521
-
Model selection: Beyond the Bayesianlfrequentist divide
-
J. Guyon, A. Saffari, G. Dror, and G. Cawley, "Model selection: Beyond the Bayesianlfrequentist divide, " Journal of Machine Learning Research, vol. II, pp. 61-87, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.2
, pp. 61-87
-
-
Guyon, J.1
Saffari, A.2
Dror, G.3
Cawley, G.4
-
7
-
-
84869201485
-
Practical Bayesian optimization of machine learning algorithms
-
J. Snoek, H. Larochelle, and R. P. Adams, "Practical Bayesian optimization of machine learning algorithms, " in Advances in Neural Information Processing Systems 25, 2012, pp. 2951-2959.
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
, pp. 2951-2959
-
-
Snoek, J.1
Larochelle, H.2
Adams, R.P.3
-
8
-
-
84897558007
-
Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
-
J. Bergstra, D. Yamins, and D. D. Cox, "Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures, " in Proc. 30th International Conference on Machine Learning, vol. 28, 2013, pp. 115-123.
-
(2013)
Proc. 30th International Conference on Machine Learning
, vol.28
, pp. 115-123
-
-
Bergstra, J.1
Yamins, D.2
Cox, D.D.3
-
9
-
-
85018371540
-
Auto-weka: Combined selection and hyperparameter optimization of classification algorithms
-
C. Thornton, F. Hutter, H. H. Hoos, and K. Ley ton-Brown, "Auto-weka: Combined selection and hyperparameter optimization of classification algorithms, " in Proc. 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2013, pp. 847-855.
-
(2013)
Proc. 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM
, pp. 847-855
-
-
Thornton, C.1
Hutter, F.2
Hoos, H.H.3
Ley Ton-Brown, K.4
-
10
-
-
77955202099
-
-
Springer
-
F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Eds., Recommender Systems Handbook. Springer, 2011.
-
(2011)
Recommender Systems Handbook
-
-
Ricci, F.1
Rokach, J.2
Shapira, B.3
Kantor, P.B.4
-
11
-
-
26844565415
-
Unsupervised learning
-
Springer Berlin Heidelberg
-
Z. Ghahramani, "Unsupervised learning, " in Advanced Lectures on Machine Learning, ser. LNCS, vol. 3176. Springer Berlin Heidelberg, 2004, pp. 72-112.
-
(2004)
Advanced Lectures on Machine Learning, Ser. LNCS
, vol.3176
, pp. 72-112
-
-
Ghahramani, Z.1
-
12
-
-
0003408420
-
-
MIT Press
-
B. Schiilkopf and A. 1. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, 2001.
-
(2001)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
-
-
Schiilkopf, B.1
Smola, A.J.2
-
13
-
-
61749103238
-
Particle swarm model selection
-
H. J. Escalante, M. Montes, and L. E. Sucar, "Particle swarm model selection, " Journal of Machine Learning Research, vol. 10, pp. 405-440, 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 405-440
-
-
Escalante, H.J.1
Montes, M.2
Sucar, L.E.3
-
14
-
-
84865007056
-
Full model selection in the space of data mining operators
-
Q. Sun, B. Pfahringer, and M. Mayo, "Full model selection in the space of data mining operators, " in Genetic and Evolutionary Computation Coriference, 2012, pp. 1503-1504.
-
(2012)
Genetic and Evolutionary Computation Coriference
, pp. 1503-1504
-
-
Sun, Q.1
Pfahringer, B.2
Mayo, M.3
-
16
-
-
46049118447
-
Bilevel optimization and machine learning
-
Springer
-
K. P. Bennett, G. Kunapuli, and J.-S. P. Jing Hu, "Bilevel optimization and machine learning, " in Computational Intelligence: Research Frontiers, ser. LNCS. Springer, 2008, vol. 5050, pp. 25-47.
-
(2008)
Computational Intelligence: Research Frontiers, Ser. LNCS
, vol.5050
, pp. 25-47
-
-
Bennett, K.P.1
Kunapuli, G.2
Jing Hu, J.-S.P.3
-
17
-
-
0035478854
-
Random forests
-
L. Breiman, "Random forests, " Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
18
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
J. H. Friedman, "Greedy function approximation: A gradient boosting machine, " The Annals of Statistics, vol. 29, no. 5, pp. 1189-1232, 2001.
-
(2001)
The Annals of Statistics
, vol.29
, Issue.5
, pp. 1189-1232
-
-
Friedman, J.H.1
-
19
-
-
0003684449
-
-
2nd ed. Springer
-
T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning: Data mining, iriference, and prediction, 2nd ed. Springer, 2001.
-
(2001)
The Elements of Statistical Learning: Data Mining, Iriference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
21
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives, " IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1798-1828, 2013.
-
(2013)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
22
-
-
33846563409
-
Why most published research findings are false
-
J. P. A. loannidis, "Why most published research findings are false, " PLoS Medicine, vol. 2, no. 8, pp. 696-701, 2005.
-
(2005)
PLoS Medicine
, vol.2
, Issue.8
, pp. 696-701
-
-
Loannidis, J.P.A.1
-
24
-
-
84885041315
-
On statistics, computation and scalability
-
M. I. Jordan, "On statistics, computation and scalability, " Bernoulli, vol. 19, no. 4, pp. 1378-1390, 2013.
-
(2013)
Bernoulli
, vol.19
, Issue.4
, pp. 1378-1390
-
-
Jordan, M.I.1
-
25
-
-
80053050901
-
Model selection for primal SVM
-
G. Moore, C. Bergeron, and K. P. Bennett, "Model selection for primal SVM, " Machine Learning, vol. 85, no. 1-2, 2011.
-
(2011)
Machine Learning
, vol.85
, Issue.1-2
-
-
Moore, G.1
Bergeron, C.2
Bennett, K.P.3
-
26
-
-
38149003435
-
Feature extraction: Foundations and applications, ser
-
Springer-Verlag
-
J. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, Eds., Feature extraction: Foundations and applications, ser. Studies in Fuzziness and Soft Computing. Springer-Verlag, 2006.
-
(2006)
Studies in Fuzziness and Soft Computing
-
-
Guyon, J.1
Gunn, S.2
Nikravesh, M.3
Zadeh, L.4
-
27
-
-
34247558132
-
Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters
-
G. C. Cawley and N. L. C. Talbot, "Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters, " Journal of Machine Learning Research, vol. 8, pp. 841-861, 2007.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 841-861
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
29
-
-
84925605946
-
The entire regularization path for the support vector machine
-
T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, "The entire regularization path for the support vector machine, " Journal of Machine Learning Research, vol. 5, pp. 1391-1415, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1391-1415
-
-
Hastie, T.1
Rosset, S.2
Tibshirani, R.3
Zhu, J.4
-
30
-
-
34547849507
-
Ll-regularization path algorithm for generalized linear models
-
M. Y. Park and T. Hastie, "Ll-regularization path algorithm for generalized linear models, " Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 69, no. 4, pp. 659-677, 2007.
-
(2007)
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
, vol.69
, Issue.4
, pp. 659-677
-
-
Park, M.Y.1
Hastie, T.2
-
32
-
-
48549094895
-
A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
-
A. Statnikov, L. Wang, and C. F. Aliferis, "A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification, " BMC Bioiriformatics, vol. 9, no. 1, 2008.
-
(2008)
BMC Bioiriformatics
, vol.9
, Issue.1
-
-
Statnikov, A.1
Wang, J.2
Aliferis, C.F.3
-
33
-
-
84898939805
-
Multi-task Bayesian optimization
-
K. Swersky, J. Snoek, and R. P. Adams, "Multi-task Bayesian optimization, " in Advances in Neural Iriformation Processing Systems 26, 2013, pp. 2004-2012.
-
(2013)
Advances in Neural Iriformation Processing Systems
, vol.26
, pp. 2004-2012
-
-
Swersky, K.1
Snoek, J.2
Adams, R.P.3
-
34
-
-
85162384813
-
Algorithms for hyper-parameter optimization
-
J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl, "Algorithms for hyper-parameter optimization, " in Advances in Neural Information Processing Systems, 2011, pp. 2546-2554.
-
(2011)
Advances in Neural Information Processing Systems
, pp. 2546-2554
-
-
Bergstra, J.S.1
Bardenet, R.2
Bengio, Y.3
Kegl, B.4
-
35
-
-
84919931099
-
Towards an empirical foundation for assessing Bayesian optimization of hyperparameters
-
K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos, and K. Ley ton-Brown, "Towards an empirical foundation for assessing Bayesian optimization of hyperparameters, " in NIPS workshop on Bayesian Optimization in Theory and Practice, 2013.
-
(2013)
NIPS Workshop on Bayesian Optimization in Theory and Practice
-
-
Eggensperger, K.1
Feurer, M.2
Hutter, F.3
Bergstra, J.4
Snoek, J.5
Hoos, H.6
Ley Ton-Brown, K.7
-
36
-
-
84868554032
-
Sequential model-based optimization for general algorithm configuration
-
F. Hutter, H. H. Hoos, and K. Ley ton-Brown, "Sequential model-based optimization for general algorithm configuration, " in Proc. Conference on Learning and Intelligent Optimization, 2011, pp. 507-523.
-
(2011)
Proc. Conference on Learning and Intelligent Optimization
, pp. 507-523
-
-
Hutter, F.1
Hoos, H.H.2
Ley Ton-Brown, K.3
-
37
-
-
84950461478
-
Estimating the error rate of a prediction rule: Improvement on cross-validation
-
B. Efron, "Estimating the error rate of a prediction rule: Improvement on cross-validation, " Journal of the American Statistical Association, vol. 78, no. 382, pp. 316-331, 1983.
-
(1983)
Journal of the American Statistical Association
, vol.78
, Issue.382
, pp. 316-331
-
-
Efron, B.1
-
38
-
-
0031381525
-
Wrappers for feature selection
-
R. Kohavi and G. H. John, "Wrappers for feature selection, " Artificial Intelligence, vol. 97, no. 1-2, pp. 273-324, 1997.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
39
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
A. L. Blum and P. Langley, "Selection of relevant features and examples in machine learning, " Artificial Intelligence, vol. 97, no. 1-2, pp. 245-271, 1997.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 245-271
-
-
Blum, A.L.1
Langley, P.2
-
40
-
-
84882279850
-
Collaborative hyperparameter tuning
-
R. Bardenet, M. Brendel, B. Kegl, and M. Sebag, "Collaborative hyperparameter tuning, " in Proc. 30th International Coriference on Machine Learning, vol. 28, 2013, pp. 199-207.
-
(2013)
Proc. 30th International Coriference on Machine Learning
, vol.28
, pp. 199-207
-
-
Bardenet, R.1
Brendel, M.2
Kegl, B.3
Sebag, M.4
-
42
-
-
80555140075
-
Scikit-iearn: Machine learning in python
-
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and Edouard Duchesnay, "Scikit-Iearn: Machine learning in Python, " Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, E.16
-
43
-
-
0036522441
-
Complexity measures of supervised classification problems
-
T. K. Ho and M. Basu, "Complexity measures of supervised classification problems, " IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 3, pp. 289-300, 2002.
-
(2002)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.24
, Issue.3
, pp. 289-300
-
-
Ho, T.K.1
Basu, M.2
|