메뉴 건너뛰기




Volumn 2015-September, Issue , 2015, Pages

Design of the 2015 ChaLearn AutoML challenge

Author keywords

Measurement; Reactive power

Indexed keywords

ARTIFICIAL INTELLIGENCE; MEASUREMENTS; REACTIVE POWER;

EID: 84951047310     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2015.7280767     Document Type: Conference Paper
Times cited : (101)

References (43)
  • 1
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • R. Kohavi, "A study of cross-validation and bootstrap for accuracy estimation and model selection, " in Proc. 15th International Conference on Artificial Intelligence, 1995, pp. 1137-1143.
    • (1995) Proc. 15th International Conference on Artificial Intelligence , pp. 1137-1143
    • Kohavi, R.1
  • 3
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection, " Journal of Machine Learning Research, vol. 3, pp. 1157-1182, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 8
    • 84897558007 scopus 로고    scopus 로고
    • Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
    • J. Bergstra, D. Yamins, and D. D. Cox, "Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures, " in Proc. 30th International Conference on Machine Learning, vol. 28, 2013, pp. 115-123.
    • (2013) Proc. 30th International Conference on Machine Learning , vol.28 , pp. 115-123
    • Bergstra, J.1    Yamins, D.2    Cox, D.D.3
  • 17
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random forests, " Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 18
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J. H. Friedman, "Greedy function approximation: A gradient boosting machine, " The Annals of Statistics, vol. 29, no. 5, pp. 1189-1232, 2001.
    • (2001) The Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 22
    • 33846563409 scopus 로고    scopus 로고
    • Why most published research findings are false
    • J. P. A. loannidis, "Why most published research findings are false, " PLoS Medicine, vol. 2, no. 8, pp. 696-701, 2005.
    • (2005) PLoS Medicine , vol.2 , Issue.8 , pp. 696-701
    • Loannidis, J.P.A.1
  • 24
    • 84885041315 scopus 로고    scopus 로고
    • On statistics, computation and scalability
    • M. I. Jordan, "On statistics, computation and scalability, " Bernoulli, vol. 19, no. 4, pp. 1378-1390, 2013.
    • (2013) Bernoulli , vol.19 , Issue.4 , pp. 1378-1390
    • Jordan, M.I.1
  • 27
    • 34247558132 scopus 로고    scopus 로고
    • Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters
    • G. C. Cawley and N. L. C. Talbot, "Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters, " Journal of Machine Learning Research, vol. 8, pp. 841-861, 2007.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 841-861
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 32
    • 48549094895 scopus 로고    scopus 로고
    • A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
    • A. Statnikov, L. Wang, and C. F. Aliferis, "A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification, " BMC Bioiriformatics, vol. 9, no. 1, 2008.
    • (2008) BMC Bioiriformatics , vol.9 , Issue.1
    • Statnikov, A.1    Wang, J.2    Aliferis, C.F.3
  • 37
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvement on cross-validation
    • B. Efron, "Estimating the error rate of a prediction rule: Improvement on cross-validation, " Journal of the American Statistical Association, vol. 78, no. 382, pp. 316-331, 1983.
    • (1983) Journal of the American Statistical Association , vol.78 , Issue.382 , pp. 316-331
    • Efron, B.1
  • 38
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature selection
    • R. Kohavi and G. H. John, "Wrappers for feature selection, " Artificial Intelligence, vol. 97, no. 1-2, pp. 273-324, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 39
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • A. L. Blum and P. Langley, "Selection of relevant features and examples in machine learning, " Artificial Intelligence, vol. 97, no. 1-2, pp. 245-271, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.L.1    Langley, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.