메뉴 건너뛰기




Volumn Part F128815, Issue , 2013, Pages 847-855

Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms

Author keywords

Hyperparameter optimization; Model selection; Weka

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); DATA MINING; EDUCATION; LEARNING SYSTEMS; OPTIMIZATION;

EID: 85018371540     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2487575.2487629     Document Type: Conference Paper
Times cited : (1358)

References (34)
  • 1
    • 68249088215 scopus 로고    scopus 로고
    • Model selection for the LS-SVM. Application to handwriting recognition
    • M. Adankon and M. Cheriet. Model selection for the LS-SVM. application to handwriting recognition. Pattern Recognition, 42(12):3264-3270, 2009.
    • (2009) Pattern Recognition , vol.42 , Issue.12 , pp. 3264-3270
    • Adankon, M.1    Cheriet, M.2
  • 3
    • 0034241361 scopus 로고    scopus 로고
    • Gradient-based optimization of hyperparameters
    • Y. Bengio. Gradient-based optimization of hyperparameters. Neural Computation, 12(8):1889-1900, 2000.
    • (2000) Neural Computation , vol.12 , Issue.8 , pp. 1889-1900
    • Bengio, Y.1
  • 5
    • 84857855190 scopus 로고    scopus 로고
    • Random search for hyper-parameter optimization
    • J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. JMLR, 13:281-305, 2012.
    • (2012) JMLR , vol.13 , pp. 281-305
    • Bergstra, J.1    Bengio, Y.2
  • 6
    • 2442594524 scopus 로고    scopus 로고
    • A model selection criterion for classification: Application to HMM topology optimization
    • IEEE
    • A. Biem. A model selection criterion for classification: Application to HMM topology optimization. In Proc. of ICDAR-03, pages 104-108. IEEE, 2003.
    • (2003) Proc. of ICDAR-03 , pp. 104-108
    • Biem, A.1
  • 7
    • 34250108028 scopus 로고
    • Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions
    • H. Bozdogan. Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52(3):345-370, 1987.
    • (1987) Psychometrika , vol.52 , Issue.3 , pp. 345-370
    • Bozdogan, H.1
  • 8
    • 0037361994 scopus 로고    scopus 로고
    • Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results
    • P. Brazdil, C. Soares, and J. Da Costa. Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results. Machine Learning, 50(3):251-277, 2003.
    • (2003) Machine Learning , vol.50 , Issue.3 , pp. 251-277
    • Brazdil, P.1    Soares, C.2    Da Costa, J.3
  • 9
    • 77958068642 scopus 로고    scopus 로고
    • A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning
    • Department of Computer Science, University of British Columbia
    • E. Brochu, V. M. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Technical Report UBC TR-2009-23 and arXiv:1012.2599v1, Department of Computer Science, University of British Columbia, 2009.
    • (2009) Technical Report UBC TR-2009-23 and ArXiv:1012.2599v1
    • Brochu, E.1    Cora, V.M.2    De Freitas, N.3
  • 11
    • 84867115523 scopus 로고    scopus 로고
    • Parallelizing exploration-exploitation tradeoffs with Gaussian process bandit optimization
    • T. Desautels, A. Krause, and J. Burdick. Parallelizing exploration-exploitation tradeoffs with gaussian process bandit optimization. In Proc. of ICML-12, 2012.
    • (2012) Proc. of ICML-12
    • Desautels, T.1    Krause, A.2    Burdick, J.3
  • 12
    • 78649934709 scopus 로고    scopus 로고
    • University of California, Irvine, School of Information and Computer Sciences
    • A. Frank and A. Asuncion. UCI machine learning repository, 2010. URL: http://archive.ics.uci.edu/ml University of California, Irvine, School of Information and Computer Sciences.
    • (2010) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2
  • 13
    • 56549111881 scopus 로고    scopus 로고
    • A novel LS-SVMs hyper-parameter selection based on particle swarm optimization
    • X. Guo, J. Yang, C. Wu, C. Wang, and Y. Liang. A novel LS-SVMs hyper-parameter selection based on particle swarm optimization. Neurocomputing, 71(16):3211-3215, 2008.
    • (2008) Neurocomputing , vol.71 , Issue.16 , pp. 3211-3215
    • Guo, X.1    Yang, J.2    Wu, C.3    Wang, C.4    Liang, Y.5
  • 15
    • 84868554032 scopus 로고    scopus 로고
    • Sequential model-based optimization for general algorithm configuration
    • F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm configuration. In Proc. of LION-5, pages 507-523, 2011.
    • (2011) Proc. of LION-5 , pp. 507-523
    • Hutter, F.1    Hoos, H.2    Leyton-Brown, K.3
  • 16
    • 73649115991 scopus 로고    scopus 로고
    • ParamILS: An automatic algorithm configuration framework
    • F. Hutter, H. Hoos, K. Leyton-Brown, and T. Stützle. ParamILS: An automatic algorithm configuration framework. JAIR, 36(1):267-306, 2009.
    • (2009) JAIR , vol.36 , Issue.1 , pp. 267-306
    • Hutter, F.1    Hoos, H.2    Leyton-Brown, K.3    Stützle, T.4
  • 18
    • 0000561424 scopus 로고    scopus 로고
    • Efficient global optimization of expensive black box functions
    • D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black box functions. Journal of Global Optimization, 13:455-492, 1998.
    • (1998) Journal of Global Optimization , vol.13 , pp. 455-492
    • Jones, D.R.1    Schonlau, M.2    Welch, W.J.3
  • 19
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proc. of IJCAI-95, pages 1137-1145, 1995.
    • (1995) Proc. of IJCAI-95 , pp. 1137-1145
    • Kohavi, R.1
  • 21
    • 84864928603 scopus 로고    scopus 로고
    • Selecting classification algorithms with active testing
    • R. Leite, P. Brazdil, and J. Vanschoren. Selecting classification algorithms with active testing. In Proc. of MLDM-12, pages 117-131, 2012.
    • (2012) Proc. of MLDM-12 , pp. 117-131
    • Leite, R.1    Brazdil, P.2    Vanschoren, J.3
  • 23
    • 0001923944 scopus 로고
    • Hoeffding races: Accelerating model selection search for classification and function approximation
    • O. Maron and A. Moore. Hoeffding races: Accelerating model selection search for classification and function approximation. In Proc. of NIPS-94, pages 59-66, 1994.
    • (1994) Proc. of NIPS-94 , pp. 59-66
    • Maron, O.1    Moore, A.2
  • 24
    • 67849122925 scopus 로고    scopus 로고
    • Regression and time series model selection
    • A. McQuarrie and C. Tsai. Regression and time series model selection. World Scientific, 1998.
    • (1998) World Scientific
    • McQuarrie, A.1    Tsai, C.2
  • 25
  • 27
    • 0347131360 scopus 로고    scopus 로고
    • Global versus local search in constrained optimization of computer models
    • N. Flournoy, W. Rosenberger, and W. Wong, editors, Institute of Mathematical Statistics, Hayward, California
    • M. Schonlau, W. J. Welch, and D. R. Jones. Global versus local search in constrained optimization of computer models. In N. Flournoy, W. Rosenberger, and W. Wong, editors, New Developments and Applications in Experimental Design, volume 34, pages 11-25. Institute of Mathematical Statistics, Hayward, California, 1998.
    • (1998) New Developments and Applications in Experimental Design , vol.34 , pp. 11-25
    • Schonlau, M.1    Welch, W.J.2    Jones, D.R.3
  • 29
    • 84869201485 scopus 로고    scopus 로고
    • Practical Bayesian optimization of machine learning algorithms
    • J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine learning algorithms. In Proc. of NIPS-12, 2012.
    • (2012) Proc. of NIPS-12
    • Snoek, J.1    Larochelle, H.2    Adams, R.P.3
  • 30
    • 77956501313 scopus 로고    scopus 로고
    • Gaussian process optimization in the bandit setting: No regret and experimental design
    • N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting: No regret and experimental design. In Proc. of ICML-10, pages 1015-1022, 2010.
    • (2010) Proc. of ICML-10 , pp. 1015-1022
    • Srinivas, N.1    Krause, A.2    Kakade, S.3    Seeger, M.4
  • 31
    • 77955426712 scopus 로고    scopus 로고
    • Nonlinear regression model generation using hyperparameter optimization
    • V. Strijov and G. Weber. Nonlinear regression model generation using hyperparameter optimization. Computers & Mathematics with Applications, 60(4):981-988, 2010.
    • (2010) Computers & Mathematics with Applications , vol.60 , Issue.4 , pp. 981-988
    • Strijov, V.1    Weber, G.2
  • 32
    • 0036791948 scopus 로고    scopus 로고
    • A perspective view and survey of meta-learning
    • Oct
    • R. Vilalta and Y. Drissi. A perspective view and survey of meta-learning. Artif. Intell. Rev., 18(2):77-95, Oct. 2002.
    • (2002) Artif. Intell. Rev , vol.18 , Issue.2 , pp. 77-95
    • Vilalta, R.1    Drissi, Y.2
  • 33
    • 77958579640 scopus 로고    scopus 로고
    • Hydra: Automatically configuring algorithms for portfolio-based selection
    • L. Xu, H. H. Hoos, and K. Leyton-Brown. Hydra: Automatically configuring algorithms for portfolio-based selection. In Proc. of AAAI-10, pages 210-216, 2010.
    • (2010) Proc. of AAAI-10 , pp. 210-216
    • Xu, L.1    Hoos, H.H.2    Leyton-Brown, K.3
  • 34
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of lasso
    • Dec
    • P. Zhao and B. Yu. On model selection consistency of lasso. JMLR, 7:2541-2563, Dec. 2006.
    • (2006) JMLR , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.