-
1
-
-
0040864988
-
Principles of risk minimization for learning theory
-
Morgan Kaufman, San Mateo, CA
-
Vapnik V.N. Principles of risk minimization for learning theory. Advances in Neural Information Processing Systems vol. 4 (1992), Morgan Kaufman, San Mateo, CA 831-838
-
(1992)
Advances in Neural Information Processing Systems
, vol.4
, pp. 831-838
-
-
Vapnik, V.N.1
-
3
-
-
0026966646
-
-
B.E. Boser, I. Guyon, V. Vapnik, A training algorithm for optimal margin classifiers, Comput. Learn. Theory (1992) 144-152.
-
B.E. Boser, I. Guyon, V. Vapnik, A training algorithm for optimal margin classifiers, Comput. Learn. Theory (1992) 144-152.
-
-
-
-
7
-
-
0037695279
-
-
World Scientific, Singapore
-
Suykens J.A.K., Van Gestel T., De Brabanter J., De Moor B., and Vandewalle J. Least Squares Support Vector Machines (2002), World Scientific, Singapore
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
8
-
-
0242288903
-
Benchmarking least squares support vector machine classifiers
-
Van Gestel T., Suykens J.A.K., Baesens B., Viaene S., Vanthienen J., Dedene G., De Moor B., and Vandewalle J. Benchmarking least squares support vector machine classifiers. Machine Learning 54 1 (2004) 5-32
-
(2004)
Machine Learning
, vol.54
, Issue.1
, pp. 5-32
-
-
Van Gestel, T.1
Suykens, J.A.K.2
Baesens, B.3
Viaene, S.4
Vanthienen, J.5
Dedene, G.6
De Moor, B.7
Vandewalle, J.8
-
9
-
-
0006487448
-
Generalized approximate cross validation for support vector machines, or, another way to look at margin-like quantities
-
Technical report, Department of Statistics, University of Wisconsin, February 25
-
G. Wahba, Y. Lin, H. Zhang, Generalized approximate cross validation for support vector machines, or, another way to look at margin-like quantities, Technical report, Department of Statistics, University of Wisconsin, February 25 1999.
-
(1999)
-
-
Wahba, G.1
Lin, Y.2
Zhang, H.3
-
11
-
-
0003307180
-
Estimating the generalization performance of a SVM efficiently
-
T. Joachims, Estimating the generalization performance of a SVM efficiently, in: International Conference on Machine Learning, 2000, pp. 431-438.
-
(2000)
International Conference on Machine Learning
, pp. 431-438
-
-
Joachims, T.1
-
13
-
-
0002755771
-
Gaussian processes and SVM: mean field and leave-one-out
-
Smola A.J., Bartlett P.L., Schölkopf B., and Schuurmans D. (Eds), MIT Press, Cambridge, MA
-
Opper M., and Winther O. Gaussian processes and SVM: mean field and leave-one-out. In: Smola A.J., Bartlett P.L., Schölkopf B., and Schuurmans D. (Eds). Advances in Large Margin Classifiers (2000), MIT Press, Cambridge, MA 311-326
-
(2000)
Advances in Large Margin Classifiers
, pp. 311-326
-
-
Opper, M.1
Winther, O.2
-
15
-
-
0034264380
-
Bounds on error expectation for support vector machines
-
Vapnik V., and Chapelle O. Bounds on error expectation for support vector machines. Neural Comput. 12 9 (2000)
-
(2000)
Neural Comput.
, vol.12
, Issue.9
-
-
Vapnik, V.1
Chapelle, O.2
-
16
-
-
33750113496
-
Fast Bayesian support vector machine parameter tuning with the nystrom method
-
C. Gold, P. Sollich, Fast Bayesian support vector machine parameter tuning with the nystrom method, in: IJNN'05, 2005, pp. 2820-2825.
-
(2005)
IJNN'05
, pp. 2820-2825
-
-
Gold, C.1
Sollich, P.2
-
17
-
-
33751033588
-
Optimizing resources in model selection for support vector machines
-
Adankon M.M., and Cheriet M. Optimizing resources in model selection for support vector machines. Pattern Recognition 40 3 (2007) 953-963
-
(2007)
Pattern Recognition
, vol.40
, Issue.3
, pp. 953-963
-
-
Adankon, M.M.1
Cheriet, M.2
-
18
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
Chapelle O., Vapnik V., Bousquet O., and Mukherjee S. Choosing multiple parameters for support vector machines. Machine Learning 46 1 (2002) 131-159
-
(2002)
Machine Learning
, vol.46
, Issue.1
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
19
-
-
0037382208
-
Evaluation of simple performance measures for tuning SVM hyperparameters
-
Duan K., Keerthi S., and Poo A.N. Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing 51 (2003) 41-59
-
(2003)
Neurocomputing
, vol.51
, pp. 41-59
-
-
Duan, K.1
Keerthi, S.2
Poo, A.N.3
-
20
-
-
0141430928
-
Radius margin bounds for support vector machines with the RBF kernel
-
Chung K.-M., Kao W.-C., Wang L.-L., Sun C.-L., and Lin C.-J. Radius margin bounds for support vector machines with the RBF kernel. Neural Comput. 15 (2003) 2643-2681
-
(2003)
Neural Comput.
, vol.15
, pp. 2643-2681
-
-
Chung, K.-M.1
Kao, W.-C.2
Wang, L.-L.3
Sun, C.-L.4
Lin, C.-J.5
-
21
-
-
22844442782
-
Automatic model selection for the optimization of the SVM kernels
-
Ayat E.N.E., Cheriet M., and Suen C.Y. Automatic model selection for the optimization of the SVM kernels. Pattern Recognition 38 10 (2005) 1733-1745
-
(2005)
Pattern Recognition
, vol.38
, Issue.10
, pp. 1733-1745
-
-
Ayat, E.N.E.1
Cheriet, M.2
Suen, C.Y.3
-
22
-
-
40649116219
-
Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs
-
Vancouver, Canada, July
-
G. Cawley, Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs, in: Proceedings IJCNN 2006, Vancouver, Canada, July 2006.
-
(2006)
Proceedings IJCNN
-
-
Cawley, G.1
-
23
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens J.A.K., and Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 9 3 (1999) 293-300
-
(1999)
Neural Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
24
-
-
0036582564
-
Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel fisher discriminant analysis
-
Lanckriet G., Lambrechts A., De Moor B., Vandewalle J., Van Gestel T., and Suykens J. Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel fisher discriminant analysis. Neural Comput. 15 5 (2002) 1115-1148
-
(2002)
Neural Comput.
, vol.15
, Issue.5
, pp. 1115-1148
-
-
Lanckriet, G.1
Lambrechts, A.2
De Moor, B.3
Vandewalle, J.4
Van Gestel, T.5
Suykens, J.6
-
25
-
-
68249117595
-
Least square support vector machine and its Bayesian interpretation
-
Technical report, June
-
S.-F. Zheng, Least square support vector machine and its Bayesian interpretation, Technical report, June 2004.
-
(2004)
-
-
Zheng, S.-F.1
-
26
-
-
15344351150
-
An improved conjugate gradient scheme to the solution of least squares SVM
-
Ong C.J., Chu W., and Keerthi S.S. An improved conjugate gradient scheme to the solution of least squares SVM. IEEE Trans. Neural Networks 16 2 (2005) 498-501
-
(2005)
IEEE Trans. Neural Networks
, vol.16
, Issue.2
, pp. 498-501
-
-
Ong, C.J.1
Chu, W.2
Keerthi, S.S.3
-
27
-
-
0037230867
-
Efficient computations for large least square support vector machine classifiers
-
Chua K.S. Efficient computations for large least square support vector machine classifiers. Pattern Recognition Lett. 24 (2003) 75-80
-
(2003)
Pattern Recognition Lett.
, vol.24
, pp. 75-80
-
-
Chua, K.S.1
-
29
-
-
0036825788
-
Improved sparse least-squares support vector machines
-
Cawley G.C., and Talbot N.L.C. Improved sparse least-squares support vector machines. Neurocomputing 48 (2002) 1025-1031
-
(2002)
Neurocomputing
, vol.48
, pp. 1025-1031
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
30
-
-
0037507242
-
Pruning error minimization in least squares support vector machines
-
de Kruif B.J., and deVries T.J. Pruning error minimization in least squares support vector machines. IEEE Trans. Neural Networks 14 (2003) 696-702
-
(2003)
IEEE Trans. Neural Networks
, vol.14
, pp. 696-702
-
-
de Kruif, B.J.1
deVries, T.J.2
-
31
-
-
33745189418
-
Improved sparse least-squares support vector machine classifiers
-
Lin C., Li Y., and Zhang W. Improved sparse least-squares support vector machine classifiers. Neurocomputing 69 (2006) 1655-1658
-
(2006)
Neurocomputing
, vol.69
, pp. 1655-1658
-
-
Lin, C.1
Li, Y.2
Zhang, W.3
-
32
-
-
34248636293
-
Fast sparse approximation for least square support vector machine
-
Jiao L., Bo L., and Wang L. Fast sparse approximation for least square support vector machine. IEEE Trans. Neural Networks 18 3 (2007) 685-697
-
(2007)
IEEE Trans. Neural Networks
, vol.18
, Issue.3
, pp. 685-697
-
-
Jiao, L.1
Bo, L.2
Wang, L.3
-
33
-
-
8444241860
-
Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
-
Cawley G.C., and Talbot N.L.C. Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Networks 17 (2004) 1467-1475
-
(2004)
Neural Networks
, vol.17
, pp. 1467-1475
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
34
-
-
0242383468
-
Feature vector selection and projection using kernels
-
Baudat G., and Anouar F. Feature vector selection and projection using kernels. Neurocomputing 55 (2003) 31-38
-
(2003)
Neurocomputing
, vol.55
, pp. 31-38
-
-
Baudat, G.1
Anouar, F.2
-
36
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
-
Smola A.J., Bartlett P., Schoelkopf B., and Schuurmans D. (Eds)
-
Platt J. Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In: Smola A.J., Bartlett P., Schoelkopf B., and Schuurmans D. (Eds). Advances in Large Margin Classifiers (2000) 61-74
-
(2000)
Advances in Large Margin Classifiers
, pp. 61-74
-
-
Platt, J.1
-
37
-
-
0034241361
-
Gradient-based optimization of hyper-parameters
-
Bengio Y. Gradient-based optimization of hyper-parameters. Neural Comput. 12 8 (2000) 1889-1900
-
(2000)
Neural Comput.
, vol.12
, Issue.8
, pp. 1889-1900
-
-
Bengio, Y.1
-
38
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun Y., Bottom L., Bengio Y., and Haffner P. Gradient-based learning applied to document recognition. Proc. IEEE 86 (1998) 2278-2324
-
(1998)
Proc. IEEE
, vol.86
, pp. 2278-2324
-
-
LeCun, Y.1
Bottom, L.2
Bengio, Y.3
Haffner, P.4
-
40
-
-
34247558132
-
Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters
-
Cawley G., and Talbot N. Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters. J. Mach. Learn. Res. 8 (2007) 841-861
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 841-861
-
-
Cawley, G.1
Talbot, N.2
|