메뉴 건너뛰기




Volumn 42, Issue 12, 2009, Pages 3264-3270

Model selection for the LS-SVM. Application to handwriting recognition

Author keywords

Kernel machine; LS SVM; Model selection; Support vector machine

Indexed keywords

EMPIRICAL ERRORS; GENERALIZATION PERFORMANCE; HAND WRITTEN CHARACTER RECOGNITION; HANDWRITING RECOGNITION; KERNEL MACHINE; LEAST SQUARE; LINEAR PROBLEMS; LS-SVM; MODEL SELECTION; PATTERN RECOGNITION PROBLEMS; QUADRATIC PROBLEM; STRUCTURAL RISK MINIMIZATION;

EID: 68249088215     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2008.10.023     Document Type: Article
Times cited : (189)

References (40)
  • 1
    • 0040864988 scopus 로고
    • Principles of risk minimization for learning theory
    • Morgan Kaufman, San Mateo, CA
    • Vapnik V.N. Principles of risk minimization for learning theory. Advances in Neural Information Processing Systems vol. 4 (1992), Morgan Kaufman, San Mateo, CA 831-838
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 831-838
    • Vapnik, V.N.1
  • 3
    • 0026966646 scopus 로고    scopus 로고
    • B.E. Boser, I. Guyon, V. Vapnik, A training algorithm for optimal margin classifiers, Comput. Learn. Theory (1992) 144-152.
    • B.E. Boser, I. Guyon, V. Vapnik, A training algorithm for optimal margin classifiers, Comput. Learn. Theory (1992) 144-152.
  • 9
    • 0006487448 scopus 로고    scopus 로고
    • Generalized approximate cross validation for support vector machines, or, another way to look at margin-like quantities
    • Technical report, Department of Statistics, University of Wisconsin, February 25
    • G. Wahba, Y. Lin, H. Zhang, Generalized approximate cross validation for support vector machines, or, another way to look at margin-like quantities, Technical report, Department of Statistics, University of Wisconsin, February 25 1999.
    • (1999)
    • Wahba, G.1    Lin, Y.2    Zhang, H.3
  • 11
    • 0003307180 scopus 로고    scopus 로고
    • Estimating the generalization performance of a SVM efficiently
    • T. Joachims, Estimating the generalization performance of a SVM efficiently, in: International Conference on Machine Learning, 2000, pp. 431-438.
    • (2000) International Conference on Machine Learning , pp. 431-438
    • Joachims, T.1
  • 13
    • 0002755771 scopus 로고    scopus 로고
    • Gaussian processes and SVM: mean field and leave-one-out
    • Smola A.J., Bartlett P.L., Schölkopf B., and Schuurmans D. (Eds), MIT Press, Cambridge, MA
    • Opper M., and Winther O. Gaussian processes and SVM: mean field and leave-one-out. In: Smola A.J., Bartlett P.L., Schölkopf B., and Schuurmans D. (Eds). Advances in Large Margin Classifiers (2000), MIT Press, Cambridge, MA 311-326
    • (2000) Advances in Large Margin Classifiers , pp. 311-326
    • Opper, M.1    Winther, O.2
  • 15
    • 0034264380 scopus 로고    scopus 로고
    • Bounds on error expectation for support vector machines
    • Vapnik V., and Chapelle O. Bounds on error expectation for support vector machines. Neural Comput. 12 9 (2000)
    • (2000) Neural Comput. , vol.12 , Issue.9
    • Vapnik, V.1    Chapelle, O.2
  • 16
    • 33750113496 scopus 로고    scopus 로고
    • Fast Bayesian support vector machine parameter tuning with the nystrom method
    • C. Gold, P. Sollich, Fast Bayesian support vector machine parameter tuning with the nystrom method, in: IJNN'05, 2005, pp. 2820-2825.
    • (2005) IJNN'05 , pp. 2820-2825
    • Gold, C.1    Sollich, P.2
  • 17
    • 33751033588 scopus 로고    scopus 로고
    • Optimizing resources in model selection for support vector machines
    • Adankon M.M., and Cheriet M. Optimizing resources in model selection for support vector machines. Pattern Recognition 40 3 (2007) 953-963
    • (2007) Pattern Recognition , vol.40 , Issue.3 , pp. 953-963
    • Adankon, M.M.1    Cheriet, M.2
  • 18
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle O., Vapnik V., Bousquet O., and Mukherjee S. Choosing multiple parameters for support vector machines. Machine Learning 46 1 (2002) 131-159
    • (2002) Machine Learning , vol.46 , Issue.1 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 19
    • 0037382208 scopus 로고    scopus 로고
    • Evaluation of simple performance measures for tuning SVM hyperparameters
    • Duan K., Keerthi S., and Poo A.N. Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing 51 (2003) 41-59
    • (2003) Neurocomputing , vol.51 , pp. 41-59
    • Duan, K.1    Keerthi, S.2    Poo, A.N.3
  • 20
    • 0141430928 scopus 로고    scopus 로고
    • Radius margin bounds for support vector machines with the RBF kernel
    • Chung K.-M., Kao W.-C., Wang L.-L., Sun C.-L., and Lin C.-J. Radius margin bounds for support vector machines with the RBF kernel. Neural Comput. 15 (2003) 2643-2681
    • (2003) Neural Comput. , vol.15 , pp. 2643-2681
    • Chung, K.-M.1    Kao, W.-C.2    Wang, L.-L.3    Sun, C.-L.4    Lin, C.-J.5
  • 21
    • 22844442782 scopus 로고    scopus 로고
    • Automatic model selection for the optimization of the SVM kernels
    • Ayat E.N.E., Cheriet M., and Suen C.Y. Automatic model selection for the optimization of the SVM kernels. Pattern Recognition 38 10 (2005) 1733-1745
    • (2005) Pattern Recognition , vol.38 , Issue.10 , pp. 1733-1745
    • Ayat, E.N.E.1    Cheriet, M.2    Suen, C.Y.3
  • 22
    • 40649116219 scopus 로고    scopus 로고
    • Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs
    • Vancouver, Canada, July
    • G. Cawley, Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs, in: Proceedings IJCNN 2006, Vancouver, Canada, July 2006.
    • (2006) Proceedings IJCNN
    • Cawley, G.1
  • 23
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J.A.K., and Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 9 3 (1999) 293-300
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 24
    • 0036582564 scopus 로고    scopus 로고
    • Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel fisher discriminant analysis
    • Lanckriet G., Lambrechts A., De Moor B., Vandewalle J., Van Gestel T., and Suykens J. Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel fisher discriminant analysis. Neural Comput. 15 5 (2002) 1115-1148
    • (2002) Neural Comput. , vol.15 , Issue.5 , pp. 1115-1148
    • Lanckriet, G.1    Lambrechts, A.2    De Moor, B.3    Vandewalle, J.4    Van Gestel, T.5    Suykens, J.6
  • 25
    • 68249117595 scopus 로고    scopus 로고
    • Least square support vector machine and its Bayesian interpretation
    • Technical report, June
    • S.-F. Zheng, Least square support vector machine and its Bayesian interpretation, Technical report, June 2004.
    • (2004)
    • Zheng, S.-F.1
  • 26
    • 15344351150 scopus 로고    scopus 로고
    • An improved conjugate gradient scheme to the solution of least squares SVM
    • Ong C.J., Chu W., and Keerthi S.S. An improved conjugate gradient scheme to the solution of least squares SVM. IEEE Trans. Neural Networks 16 2 (2005) 498-501
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.2 , pp. 498-501
    • Ong, C.J.1    Chu, W.2    Keerthi, S.S.3
  • 27
    • 0037230867 scopus 로고    scopus 로고
    • Efficient computations for large least square support vector machine classifiers
    • Chua K.S. Efficient computations for large least square support vector machine classifiers. Pattern Recognition Lett. 24 (2003) 75-80
    • (2003) Pattern Recognition Lett. , vol.24 , pp. 75-80
    • Chua, K.S.1
  • 29
    • 0036825788 scopus 로고    scopus 로고
    • Improved sparse least-squares support vector machines
    • Cawley G.C., and Talbot N.L.C. Improved sparse least-squares support vector machines. Neurocomputing 48 (2002) 1025-1031
    • (2002) Neurocomputing , vol.48 , pp. 1025-1031
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 30
    • 0037507242 scopus 로고    scopus 로고
    • Pruning error minimization in least squares support vector machines
    • de Kruif B.J., and deVries T.J. Pruning error minimization in least squares support vector machines. IEEE Trans. Neural Networks 14 (2003) 696-702
    • (2003) IEEE Trans. Neural Networks , vol.14 , pp. 696-702
    • de Kruif, B.J.1    deVries, T.J.2
  • 31
    • 33745189418 scopus 로고    scopus 로고
    • Improved sparse least-squares support vector machine classifiers
    • Lin C., Li Y., and Zhang W. Improved sparse least-squares support vector machine classifiers. Neurocomputing 69 (2006) 1655-1658
    • (2006) Neurocomputing , vol.69 , pp. 1655-1658
    • Lin, C.1    Li, Y.2    Zhang, W.3
  • 32
    • 34248636293 scopus 로고    scopus 로고
    • Fast sparse approximation for least square support vector machine
    • Jiao L., Bo L., and Wang L. Fast sparse approximation for least square support vector machine. IEEE Trans. Neural Networks 18 3 (2007) 685-697
    • (2007) IEEE Trans. Neural Networks , vol.18 , Issue.3 , pp. 685-697
    • Jiao, L.1    Bo, L.2    Wang, L.3
  • 33
    • 8444241860 scopus 로고    scopus 로고
    • Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
    • Cawley G.C., and Talbot N.L.C. Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Networks 17 (2004) 1467-1475
    • (2004) Neural Networks , vol.17 , pp. 1467-1475
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 34
    • 0242383468 scopus 로고    scopus 로고
    • Feature vector selection and projection using kernels
    • Baudat G., and Anouar F. Feature vector selection and projection using kernels. Neurocomputing 55 (2003) 31-38
    • (2003) Neurocomputing , vol.55 , pp. 31-38
    • Baudat, G.1    Anouar, F.2
  • 36
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • Smola A.J., Bartlett P., Schoelkopf B., and Schuurmans D. (Eds)
    • Platt J. Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In: Smola A.J., Bartlett P., Schoelkopf B., and Schuurmans D. (Eds). Advances in Large Margin Classifiers (2000) 61-74
    • (2000) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.1
  • 37
    • 0034241361 scopus 로고    scopus 로고
    • Gradient-based optimization of hyper-parameters
    • Bengio Y. Gradient-based optimization of hyper-parameters. Neural Comput. 12 8 (2000) 1889-1900
    • (2000) Neural Comput. , vol.12 , Issue.8 , pp. 1889-1900
    • Bengio, Y.1
  • 38
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun Y., Bottom L., Bengio Y., and Haffner P. Gradient-based learning applied to document recognition. Proc. IEEE 86 (1998) 2278-2324
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottom, L.2    Bengio, Y.3    Haffner, P.4
  • 40
    • 34247558132 scopus 로고    scopus 로고
    • Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters
    • Cawley G., and Talbot N. Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters. J. Mach. Learn. Res. 8 (2007) 841-861
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 841-861
    • Cawley, G.1    Talbot, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.