-
1
-
-
84951047310
-
Design of the 2015 ChaLearn AutoML challenge
-
I. Guyon, K. Bennett, G. Cawley, H. Escalante, S. Escalera, T. Ho, N. Macià, B. Ray, M. Saeed, A. Statnikov, and E. Viegas. Design of the 2015 ChaLearn AutoML Challenge. In Proc. of IJCNN'15, 2015.
-
(2015)
Proc. of IJCNN'15
-
-
Guyon, I.1
Bennett, K.2
Cawley, G.3
Escalante, H.4
Escalera, S.5
Ho, T.6
Macià, N.7
Ray, B.8
Saeed, M.9
Statnikov, A.10
Viegas, E.11
-
2
-
-
85018371540
-
Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms
-
C. Thornton, F. Hutter, H. Hoos, and K. Leyton-Brown. Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. In Proc. of KDD'13, pages 847-855, 2013.
-
(2013)
Proc. of KDD'13
, pp. 847-855
-
-
Thornton, C.1
Hutter, F.2
Hoos, H.3
Leyton-Brown, K.4
-
3
-
-
77958068642
-
-
CoRR, abs/1012.2599
-
E. Brochu, V. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. CoRR, abs/1012.2599, 2010.
-
(2010)
A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning
-
-
Brochu, E.1
Cora, V.2
De Freitas, N.3
-
4
-
-
84959891641
-
Initializing Bayesian hyperparameter optimization via metalearning
-
M. Feurer, J. Springenberg, and F. Hutter. Initializing Bayesian hyperparameter optimization via metalearning. In Proc. of AAAI'15, pages 1128-1135, 2015.
-
(2015)
Proc. of AAAI'15
, pp. 1128-1135
-
-
Feurer, M.1
Springenberg, J.2
Hutter, F.3
-
5
-
-
84862009037
-
Meta-learning for evolutionary parameter optimization of classifiers
-
Reif M, F. Shafait, and A. Dengel. Meta-learning for evolutionary parameter optimization of classifiers. Machine Learning, 87:357-380, 2012.
-
(2012)
Machine Learning
, vol.87
, pp. 357-380
-
-
Reif, M.1
Shafait, F.2
Dengel, A.3
-
6
-
-
82455210873
-
Combining meta-learning and search techniques to select parameters for support vector machines
-
T. Gomes, R. Prudêncio, C. Soares, A. Rossi, and A. Carvalho. Combining meta-learning and search techniques to select parameters for support vector machines. Neurocomputing, 75(1):3-13, 2012.
-
(2012)
Neurocomputing
, vol.75
, Issue.1
, pp. 3-13
-
-
Gomes, T.1
Prudêncio, R.2
Soares, C.3
Rossi, A.4
Carvalho, A.5
-
7
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. JMLR, 12:2825-2830, 2011.
-
(2011)
JMLR
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, E.16
-
8
-
-
76749092270
-
The WEKA data mining software: An update
-
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten. The WEKA data mining software: An update. SIGKDD, 11(1):10-18, 2009.
-
(2009)
SIGKDD
, vol.11
, Issue.1
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.6
-
9
-
-
84868554032
-
Sequential model-based optimization for general algorithm configuration
-
F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm configuration. In Proc. of LION'11, pages 507-523, 2011.
-
(2011)
Proc. of LION'11
, pp. 507-523
-
-
Hutter, F.1
Hoos, H.2
Leyton-Brown, K.3
-
10
-
-
85162384813
-
Algorithms for hyper-parameter optimization
-
J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In Proc. of NIPS'11, pages 2546-2554, 2011.
-
(2011)
Proc. of NIPS'11
, pp. 2546-2554
-
-
Bergstra, J.1
Bardenet, R.2
Bengio, Y.3
Kégl, B.4
-
11
-
-
84869201485
-
Practical Bayesian optimization of machine learning algorithms
-
J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning algorithms. In Proc. of NIPS'12, pages 2960-2968, 2012.
-
(2012)
Proc. of NIPS'12
, pp. 2960-2968
-
-
Snoek, J.1
Larochelle, H.2
Adams, R.P.3
-
12
-
-
84919931099
-
Towards an empirical foundation for assessing Bayesian optimization of hyperparameters
-
K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos, and K. Leyton-Brown. Towards an empirical foundation for assessing Bayesian optimization of hyperparameters. In NIPS Workshop on Bayesian Optimization in Theory and Practice, 2013.
-
(2013)
NIPS Workshop on Bayesian Optimization in Theory and Practice
-
-
Eggensperger, K.1
Feurer, M.2
Hutter, F.3
Bergstra, J.4
Snoek, J.5
Hoos, H.6
Leyton-Brown, K.7
-
13
-
-
84908279482
-
Hyperopt-sklearn: Automatic hyperparameter configuration for scikit-learn
-
B. Komer, J. Bergstra, and C. Eliasmith. Hyperopt-sklearn: Automatic hyperparameter configuration for scikit-learn. In ICML workshop on AutoML, 2014.
-
(2014)
ICML Workshop on AutoML
-
-
Komer, B.1
Bergstra, J.2
Eliasmith, C.3
-
14
-
-
0035478854
-
Random forests
-
L. Breiman. Random forests. MLJ, 45:5-32, 2001.
-
(2001)
MLJ
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
17
-
-
84955448572
-
Efficient transfer learning method for automatic hyperparameter tuning
-
D. Yogatama and G. Mann. Efficient transfer learning method for automatic hyperparameter tuning. In Proc. of AISTATS'14, pages 1077-1085, 2014.
-
(2014)
Proc. of AISTATS'14
, pp. 1077-1085
-
-
Yogatama, D.1
Mann, G.2
-
18
-
-
84944261791
-
OpenML: Networked science in machine learning
-
J. Vanschoren, J. van Rijn, B. Bischl, and L. Torgo. OpenML: Networked science in machine learning. SIGKDD Explorations, 15(2):49-60, 2013.
-
(2013)
SIGKDD Explorations
, vol.15
, Issue.2
, pp. 49-60
-
-
Vanschoren, J.1
Van Rijn, J.2
Bischl, B.3
Torgo, L.4
-
19
-
-
0003612091
-
-
Ellis Horwood
-
D. Michie, D. Spiegelhalter, C. Taylor, and J. Campbell. Machine Learning, Neural and Statistical Classification. Ellis Horwood, 1994.
-
(1994)
Machine Learning, Neural and Statistical Classification
-
-
Michie, D.1
Spiegelhalter, D.2
Taylor, C.3
Campbell, J.4
-
22
-
-
76749118521
-
Model selection: Beyond the Bayesian/Frequentist divide
-
I. Guyon, A. Saffari, G. Dror, and G. Cawley. Model selection: Beyond the Bayesian/Frequentist divide. JMLR, 11:61-87, 2010.
-
(2010)
JMLR
, vol.11
, pp. 61-87
-
-
Guyon, I.1
Saffari, A.2
Dror, G.3
Cawley, G.4
-
23
-
-
84923284171
-
Agnostic Bayesian learning of ensembles
-
A. Lacoste, M. Marchand, F. Laviolette, and H. Larochelle. Agnostic Bayesian learning of ensembles. In Proc. of ICML'14, pages 611-619, 2014.
-
(2014)
Proc. of ICML'14
, pp. 611-619
-
-
Lacoste, A.1
Marchand, M.2
Laviolette, F.3
Larochelle, H.4
-
24
-
-
33745797526
-
Ensemble selection from libraries of models
-
R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes. Ensemble selection from libraries of models. In Proc. of ICML'04, page 18, 2004.
-
(2004)
Proc. of ICML'04
, pp. 18
-
-
Caruana, R.1
Niculescu-Mizil, A.2
Crew, G.3
Ksikes, A.4
-
26
-
-
0026692226
-
Stacked generalization
-
D. Wolpert. Stacked generalization. Neural Networks, 5:241-259, 1992.
-
(1992)
Neural Networks
, vol.5
, pp. 241-259
-
-
Wolpert, D.1
-
27
-
-
9144231916
-
Learning the k in k-means
-
G. Hamerly and C. Elkan. Learning the k in k-means. In Proc. of NIPS'04, pages 281-288, 2004.
-
(2004)
Proc. of NIPS'04
, pp. 281-288
-
-
Hamerly, G.1
Elkan, C.2
|