메뉴 건너뛰기




Volumn 4, Issue 1, 2016, Pages

Automatically explaining machine learning prediction results: A demonstration on type 2 diabetes risk prediction

Author keywords

Decision support techniques; Forecasting; Machine learning; Patient care management; Type 2 diabetes

Indexed keywords

DIPEPTIDYL CARBOXYPEPTIDASE INHIBITOR; LOOP DIURETIC AGENT;

EID: 85042031041     PISSN: None     EISSN: 20472501     Source Type: Journal    
DOI: 10.1186/s13755-016-0015-4     Document Type: Article
Times cited : (80)

References (30)
  • 2
    • 84948649680 scopus 로고    scopus 로고
    • Using computational approaches to improve risk-stratified patient management: rationale and methods
    • Luo G, Stone BL, Sakaguchi F, Sheng X, Murtaugh MA. Using computational approaches to improve risk-stratified patient management: rationale and methods. JMIR Res Protoc. 2015;4(4):e128.
    • (2015) JMIR Res Protoc. , vol.4 , Issue.4
    • Luo, G.1    Stone, B.L.2    Sakaguchi, F.3    Sheng, X.4    Murtaugh, M.A.5
  • 3
    • 48649092511 scopus 로고    scopus 로고
    • Diabetes Risk Calculator: a simple tool for detecting undiagnosed diabetes and pre-diabetes
    • Heikes KE, Eddy DM, Arondekar B, Schlessinger L. Diabetes Risk Calculator: a simple tool for detecting undiagnosed diabetes and pre-diabetes. Diabetes Care. 2008;31(5):1040-5.
    • (2008) Diabetes Care. , vol.31 , Issue.5 , pp. 1040-1045
    • Heikes, K.E.1    Eddy, D.M.2    Arondekar, B.3    Schlessinger, L.4
  • 4
    • 0042743790 scopus 로고    scopus 로고
    • The diabetes risk score: a practical tool to predict type 2 diabetes risk
    • Lindström J, Tuomilehto J. The diabetes risk score: a practical tool to predict type 2 diabetes risk. Diabetes Care. 2003;26(3):725-31.
    • (2003) Diabetes Care. , vol.26 , Issue.3 , pp. 725-731
    • Lindström, J.1    Tuomilehto, J.2
  • 5
    • 34447621398 scopus 로고    scopus 로고
    • Do simple questions about diet and physical activity help to identify those at risk of type 2 diabetes?
    • Simmons RK, Harding AH, Wareham NJ, Griffin SJ. Do simple questions about diet and physical activity help to identify those at risk of type 2 diabetes? Diabet Med. 2007;24(8):830-5.
    • (2007) Diabet Med. , vol.24 , Issue.8 , pp. 830-835
    • Simmons, R.K.1    Harding, A.H.2    Wareham, N.J.3    Griffin, S.J.4
  • 6
    • 0037117467 scopus 로고    scopus 로고
    • Identification of persons at high risk for type 2 diabetes mellitus: do we need the oral glucose tolerance test?
    • Stern MP, Williams K, Haffner SM. Identification of persons at high risk for type 2 diabetes mellitus: do we need the oral glucose tolerance test? Ann Intern Med. 2002;136(8):575-81.
    • (2002) Ann Intern Med. , vol.136 , Issue.8 , pp. 575-581
    • Stern, M.P.1    Williams, K.2    Haffner, S.M.3
  • 7
    • 84924674527 scopus 로고    scopus 로고
    • Rule extraction from support vector machines using ensemble learning approach: an application for diagnosis of diabetes
    • Han L, Luo S, Yu J, Pan L, Chen S. Rule extraction from support vector machines using ensemble learning approach: an application for diagnosis of diabetes. IEEE J Biomed Health Inform. 2015;19(2):728-34.
    • (2015) IEEE J Biomed Health Inform. , vol.19 , Issue.2 , pp. 728-734
    • Han, L.1    Luo, S.2    Yu, J.3    Pan, L.4    Chen, S.5
  • 9
  • 10
    • 84895809445 scopus 로고    scopus 로고
    • Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy
    • Asadi H, Dowling R, Yan B, Mitchell P. Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy. PLoS ONE. 2014;9(2):e88225.
    • (2014) PLoS ONE. , vol.9 , Issue.2
    • Asadi, H.1    Dowling, R.2    Yan, B.3    Mitchell, P.4
  • 11
    • 84906334449 scopus 로고    scopus 로고
    • Comprehensible classification models: a position paper
    • Freitas AA. Comprehensible classification models: a position paper. SIGKDD Explorations. 2013;15(1):1-10.
    • (2013) SIGKDD Explorations. , vol.15 , Issue.1 , pp. 1-10
    • Freitas, A.A.1
  • 13
    • 84906978168 scopus 로고    scopus 로고
    • Accessed 1 Jan 2016.
    • Centers for Disease Control and Prevention. National diabetes statistics report. 2014. http://www.cdc.gov/diabetes/pubs/statsreport14/nationaldiabetes- report-web.pdf. Accessed 1 Jan 2016.
    • (2014) National diabetes statistics report
  • 14
    • 84882959753 scopus 로고    scopus 로고
    • Lifetime direct medical costs of treating type 2 diabetes and diabetic complications
    • Zhuo X, Zhang P, Hoerger TJ. Lifetime direct medical costs of treating type 2 diabetes and diabetic complications. Am J Prev Med. 2013;45(3):253-61.
    • (2013) Am J Prev Med. , vol.45 , Issue.3 , pp. 253-261
    • Zhuo, X.1    Zhang, P.2    Hoerger, T.J.3
  • 16
    • 0035799806 scopus 로고    scopus 로고
    • Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance
    • Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne- Parikka P, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343-50.
    • (2001) N Engl J Med. , vol.344 , Issue.18 , pp. 1343-1350
    • Tuomilehto, J.1    Lindström, J.2    Eriksson, J.G.3    Valle, T.T.4    Hämäläinen, H.5    Ilanne-Parikka, P.6
  • 18
    • 0037097039 scopus 로고    scopus 로고
    • Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial
    • Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet. 2002;359(9323):2072-7.
    • (2002) Lancet. , vol.359 , Issue.9323 , pp. 2072-2077
    • Chiasson, J.L.1    Josse, R.G.2    Gomis, R.3    Hanefeld, M.4    Karasik, A.5    Laakso, M.6
  • 19
    • 84948104699 scopus 로고    scopus 로고
    • Integrating classification and association rule mining.
    • Liu B, Hsu W, Ma Y. Integrating classification and association rule mining. Proc KDD. 1998:80-6.
    • (1998) Proc KDD. , pp. 80-86
    • Liu, B.1    Hsu, W.2    Ma, Y.3
  • 20
    • 78149313084 scopus 로고    scopus 로고
    • CMAR: accurate and efficient classification based on multiple class-association rules.
    • Li W, Han J, Pei J. CMAR: accurate and efficient classification based on multiple class-association rules. Proc ICDM. 2001: 369-76.
    • (2001) Proc ICDM. , pp. 369-376
    • Li, W.1    Han, J.2    Pei, J.3
  • 21
    • 11344262990 scopus 로고    scopus 로고
    • CPAR: classification based on predictive association rules.
    • Yin X, Han J. CPAR: classification based on predictive association rules. Proc SDM. 2003: 331-5.
    • (2003) Proc SDM. , pp. 331-335
    • Yin, X.1    Han, J.2
  • 22
    • 34249687044 scopus 로고    scopus 로고
    • A review of associative classification mining
    • Thabtah FA. A review of associative classification mining. Knowl Eng. Rev. 2007;22(1):37-65.
    • (2007) Knowl Eng. Rev. , vol.22 , Issue.1 , pp. 37-65
    • Thabtah, F.A.1
  • 23
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning.
    • Fayyad UM, Irani KB. Multi-interval discretization of continuous-valued attributes for classification learning. Proc IJCAI. 1993:1022-9.
    • (1993) Proc IJCAI. , pp. 1022-1029
    • Fayyad, U.M.1    Irani, K.B.2
  • 25
    • 0035210113 scopus 로고    scopus 로고
    • Acceptance of rules generated by machine learning among medical experts
    • Pazzani MJ, Mani S, Shankle WR. Acceptance of rules generated by machine learning among medical experts. Methods Inf Med. 2001;40(5):380-5.
    • (2001) Methods Inf Med. , vol.40 , Issue.5 , pp. 380-385
    • Pazzani, M.J.1    Mani, S.2    Shankle, W.R.3
  • 26
    • 84863184589 scopus 로고    scopus 로고
    • Automatic home medical product recommendation
    • Luo G, Thomas SB, Tang C. Automatic home medical product recommendation. J Med Syst. 2012;36(2):383-98.
    • (2012) J Med Syst. , vol.36 , Issue.2 , pp. 383-398
    • Luo, G.1    Thomas, S.B.2    Tang, C.3
  • 27
    • 70349234652 scopus 로고    scopus 로고
    • Med Search: a specialized search engine for medical information retrieval.
    • Luo G, Tang C, Yang H, Wei X. Med Search: a specialized search engine for medical information retrieval. Proc CIKM. 2008: 143-52.
    • (2008) Proc CIKM. , pp. 143-152
    • Luo, G.1    Tang, C.2    Yang, H.3    Wei, X.4
  • 29
    • 85043623639 scopus 로고    scopus 로고
    • Practice Fusion diabetes classification homepage. 2016. https://www. kaggle.com/c/pf2012-diabetes.
    • (2016)
  • 30
    • 85043622122 scopus 로고    scopus 로고
    • Youden's J statistic. 2016. https://en.wikipedia.org/wiki/ Youden%27s_J_statistic.
    • (2016)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.