메뉴 건너뛰기




Volumn 12, Issue 7, 2017, Pages

A deep learning framework for financial time series using stacked autoencoders and long-short term memory

Author keywords

[No Author keywords available]

Indexed keywords

DECOMPOSITION; FORECASTING; HUMAN; LEARNING; MARKET; MODEL; NOISE; SHORT TERM MEMORY; TIME SERIES ANALYSIS; ARTIFICIAL NEURAL NETWORK; ECONOMICS; FACTUAL DATABASE; INVESTMENT; LONG TERM MEMORY; WAVELET ANALYSIS;

EID: 85024502828     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0180944     Document Type: Article
Times cited : (880)

References (81)
  • 1
    • 84862784752 scopus 로고    scopus 로고
    • A novel text mining approach to financial time series forecasting
    • Wang B, Huang H, Wang X. A novel text mining approach to financial time series forecasting. Neurocomputing. 2012; 83(6):136-45.
    • (2012) Neurocomputing , vol.83 , Issue.6 , pp. 136-145
    • Wang, B.1    Huang, H.2    Wang, X.3
  • 2
    • 84903398919 scopus 로고    scopus 로고
    • A feature fusion based forecasting model for financial time series
    • Guo Z, Wang H, Liu Q, Yang J. A Feature Fusion Based Forecasting Model for Financial Time Series. PlosOne. 2014; 9(6):172-200.
    • (2014) PlosOne , vol.9 , Issue.6 , pp. 172-200
    • Guo, Z.1    Wang, H.2    Liu, Q.3    Yang, J.4
  • 4
    • 0028277023 scopus 로고
    • Stock performance modeling using neural networks: A comparative study with regression models
    • Refenes AN, Zapranis A, Francis G. Stock performance modeling using neural networks: A comparative study with regression models. Neural Networks. 1994; 7(2):375-88.
    • (1994) Neural Networks , vol.7 , Issue.2 , pp. 375-388
    • Refenes, A.N.1    Zapranis, A.2    Francis, G.3
  • 5
    • 0027239283 scopus 로고
    • A comparison of discriminant analysis versus artificial neural networks
    • Yoon Y, Margavio TM. A Comparison of Discriminant Analysis versus Artificial Neural Networks. Journal of the Operational Research Society. 1993; 44(1):51-60.
    • (1993) Journal of the Operational Research Society , vol.44 , Issue.1 , pp. 51-60
    • Yoon, Y.1    Margavio, T.M.2
  • 6
    • 84903376064 scopus 로고    scopus 로고
    • Support vector machines for prediction of futures prices in Indian stock market
    • Prasaddas S, Padhy S. Support Vector Machines for Prediction of Futures Prices in Indian Stock Market. International Journal of Computer Applications. 2012; 41(3):22-6.
    • (2012) International Journal of Computer Applications , vol.41 , Issue.3 , pp. 22-26
    • Prasaddas, S.1    Padhy, S.2
  • 7
    • 64949130686 scopus 로고    scopus 로고
    • Financial time series forecasting using independent component analysis and support vector regression
    • Lu CJ, Lee TS, Chiu CC. Financial time series forecasting using independent component analysis and support vector regression. Decision Support Systems. 2009; 47(2):115-25.
    • (2009) Decision Support Systems , vol.47 , Issue.2 , pp. 115-125
    • Lu, C.J.1    Lee, T.S.2    Chiu, C.C.3
  • 8
    • 13544267510 scopus 로고    scopus 로고
    • Forecasting stock market movement direction with support vector machine
    • Huang W, Nakamori Y, Wang SY. Forecasting stock market movement direction with support vector machine. Computers & Operations Research. 2005; 32(10):2513-22.
    • (2005) Computers & Operations Research , vol.32 , Issue.10 , pp. 2513-2522
    • Huang, W.1    Nakamori, Y.2    Wang, S.Y.3
  • 9
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • PMID: 16873662
    • Hinton GE, Salakhutdinov RR. Reducing the Dimensionality of Data with Neural Networks. Science. 2006; 313(5786):504-7. https://doi.org/10.1126/science.1127647 PMID: 16873662
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 13
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • T Yw PMID: 16764513
    • Hinton GE, Osindero S, T Yw. A Fast Learning Algorithm for Deep Belief Nets. Neural Computation. 2006; 18(7):1527-54. https://doi.org/10.1162/neco.2006.18.7.1527 PMID: 16764513
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2
  • 17
    • 84952629849 scopus 로고    scopus 로고
    • Forecasting exchange rate using deep belief networks and conjugate gradient method
    • Shen F, Chao J, Zhao J. Forecasting exchange rate using deep belief networks and conjugate gradient method. Neurocomputing. 2015; 167(C):243-53.
    • (2015) Neurocomputing , vol.167 , Issue.C , pp. 243-253
    • Shen, F.1    Chao, J.2    Zhao, J.3
  • 18
    • 84899568094 scopus 로고    scopus 로고
    • Time series forecasting using a deep belief network with restricted boltzmann machines
    • Kuremoto T, Kimura S, Kobayashi K, Obayashi M. Time series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing. 2014; 137(15):47-56.
    • (2014) Neurocomputing , vol.137 , Issue.15 , pp. 47-56
    • Kuremoto, T.1    Kimura, S.2    Kobayashi, K.3    Obayashi, M.4
  • 21
    • 84962921456 scopus 로고    scopus 로고
    • Deep sentence embedding using long short-term memory networks: Analysis and application to information retrieval
    • Palangi H, Deng L, Shen YL, Gao JF, He XD, Chen JS, et al. Deep Sentence Embedding Using Long Short-Term Memory Networks: Analysis and Application to Information Retrieval. IEEE-ACM Trans Audio Speech Lang. 2016; 24(4):694-707. https://doi.org/10.1109/taslp.2016.2520371
    • (2016) IEEE-ACM Trans Audio Speech Lang , vol.24 , Issue.4 , pp. 694-707
    • Palangi, H.1    Deng, L.2    Shen, Y.L.3    Gao, J.F.4    He, X.D.5    Chen, J.S.6
  • 22
    • 84982839116 scopus 로고    scopus 로고
    • Distributed compressive sensing: A deep learning approach
    • Palangi H, Ward R, Deng L. Distributed Compressive Sensing: A Deep Learning Approach. IEEE Transactions on Signal Processing. 2016; 64(17):4504-18.
    • (2016) IEEE Transactions on Signal Processing , vol.64 , Issue.17 , pp. 4504-4518
    • Palangi, H.1    Ward, R.2    Deng, L.3
  • 23
    • 78751613501 scopus 로고    scopus 로고
    • Forecasting stock markets using wavelet transforms and recurrent neural networks: An integrated system based on artificial bee colony algorithm
    • Hsieh TJ, Hsiao HF, Yeh WC. Forecasting stock markets using wavelet transforms and recurrent neural networks: An integrated system based on artificial bee colony algorithm. Applied Soft Computing. 2011; 11(2):2510-25.
    • (2011) Applied Soft Computing , vol.11 , Issue.2 , pp. 2510-2525
    • Hsieh, T.J.1    Hsiao, H.F.2    Yeh, W.C.3
  • 26
    • 24644515811 scopus 로고    scopus 로고
    • An investigation of the hybrid forecasting models for stock price variation in Taiwan
    • Chang P, Wang Y, Yang W. An investigation of the hybrid forecasting models for stock price variation in taiwan. Journal of the Chinese Institute of Industrial Engineers. 2004; 21(4):358-68.
    • (2004) Journal of the Chinese Institute of Industrial Engineers , vol.21 , Issue.4 , pp. 358-368
    • Chang, P.1    Wang, Y.2    Yang, W.3
  • 27
    • 0037404567 scopus 로고    scopus 로고
    • Application of neural networks to an emerging financial market: Forecasting and trading the Taiwan stock index
    • Chen AS, Leung MT, Daouk H. Application of neural networks to an emerging financial market: forecasting and trading the Taiwan Stock Index. Computers & Operations Research. 2003; 30(6):901-23.
    • (2003) Computers & Operations Research , vol.30 , Issue.6 , pp. 901-923
    • Chen, A.S.1    Leung, M.T.2    Daouk, H.3
  • 30
    • 84930423638 scopus 로고    scopus 로고
    • Spectral - Spatial classification of hyperspectral images using deep convolutional neural networks
    • Yue J, Zhao W, Mao S, Liu H. Spectral - spatial classification of hyperspectral images using deep convolutional neural networks. Remote Sensing Letters. 2015; 6(6):468-77.
    • (2015) Remote Sensing Letters , vol.6 , Issue.6 , pp. 468-477
    • Yue, J.1    Zhao, W.2    Mao, S.3    Liu, H.4
  • 31
    • 84976347344 scopus 로고    scopus 로고
    • A deep learning framework for hyperspectral image classification using spatial pyramid pooling
    • Yue J, Mao S, Li M. A deep learning framework for hyperspectral image classification using spatial pyramid pooling. Remote Sensing Letters. 2016; 7(9):875-84.
    • (2016) Remote Sensing Letters , vol.7 , Issue.9 , pp. 875-884
    • Yue, J.1    Mao, S.2    Li, M.3
  • 32
    • 84973861061 scopus 로고    scopus 로고
    • Forecasting East asian indices futures via a novel hybrid of wavelet-PCA denoising and artificial neural network models
    • Chan PMJ, Mehralizadeh M. Forecasting East Asian Indices Futures via a Novel Hybrid of Wavelet-PCA Denoising and Artificial Neural Network Models. Plos One. 2016; 11(6).
    • (2016) Plos One , vol.11 , Issue.6
    • Chan, P.M.J.1    Mehralizadeh, M.2
  • 33
    • 58349090371 scopus 로고    scopus 로고
    • Stock market forecasting: Artificial neural network and linear regression comparison in an emerging market
    • Altay E, Satman MH. Stock Market Forecasting: Artificial Neural Network and Linear Regression Comparison in An Emerging Market. Journal of Financial Management & Analysis. 2005; 18(2):18-33.
    • (2005) Journal of Financial Management & Analysis , vol.18 , Issue.2 , pp. 18-33
    • Altay, E.1    Satman, M.H.2
  • 34
    • 85024489028 scopus 로고    scopus 로고
    • Forecasting Nigerian stock exchange returns: Evidence from autoregressive integrated moving average (ARIMA) model
    • EK O
    • EK O. Forecasting Nigerian Stock Exchange Returns: Evidence from Autoregressive Integrated Moving Average (ARIMA) Model. Ssrn Electronic Journal. 2010.
    • (2010) Ssrn Electronic Journal
  • 36
    • 84990205163 scopus 로고    scopus 로고
    • Assessing the efficacy of adjustable moving averages using ASEAN-5 currencies
    • PMID: 27574972
    • Chan PMJ, Rozaimah Z. Assessing the Efficacy of Adjustable Moving Averages Using ASEAN-5 Currencies. Plos One. 2016; 11(8):e0160931. https://doi.org/10.1371/journal.pone.0160931 PMID: 27574972
    • (2016) Plos One , vol.11 , Issue.8 , pp. e0160931
    • Chan, P.M.J.1    Rozaimah, Z.2
  • 37
  • 38
    • 84921061965 scopus 로고    scopus 로고
    • Recurrent neural network and a hybrid model for prediction of stock returns
    • Rather AM, Agarwal A, Sastry VN. Recurrent neural network and a hybrid model for prediction of stock returns. Expert Systems with Applications. 2015; 42(6):3234-41.
    • (2015) Expert Systems with Applications , vol.42 , Issue.6 , pp. 3234-3241
    • Rather, A.M.1    Agarwal, A.2    Sastry, V.N.3
  • 40
    • 84930634156 scopus 로고    scopus 로고
    • Joint training of a convolutional network and a graphical model for human pose estimation
    • Tompson J, Jain A, Lecun Y, Bregler C. Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation. Eprint Arxiv. 2014:1799-807.
    • (2014) Eprint Arxiv. , pp. 1799-1807
    • Tompson, J.1    Jain, A.2    Lecun, Y.3    Bregler, C.4
  • 45
    • 85004188721 scopus 로고    scopus 로고
    • On using very large target vocabulary for neural machine translation
    • Jean S, Cho K, Memisevic R, Bengio Y. On Using Very Large Target Vocabulary for Neural Machine Translation. Computer Science. 2014.
    • (2014) Computer Science
    • Jean, S.1    Cho, K.2    Memisevic, R.3    Bengio, Y.4
  • 48
    • 84902462761 scopus 로고    scopus 로고
    • Deep learning of the tissue-regulated splicing code
    • Leung MK, Xiong HY, Lee LJ, Frey BJ. Deep learning of the tissue-regulated splicing code. Bioinformatics. 2014; 30(12):121-9.
    • (2014) Bioinformatics , vol.30 , Issue.12 , pp. 121-129
    • Leung, M.K.1    Xiong, H.Y.2    Lee, L.J.3    Frey, B.J.4
  • 49
    • 84923276179 scopus 로고    scopus 로고
    • The human splicing code reveals new insights into the genetic determinants of disease
    • PMID: 25525159
    • Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, Yuen RKC, et al. The human splicing code reveals new insights into the genetic determinants of disease. Science. 2015; 347(6218):1254806-. https://doi.org/10.1126/science.1254806 PMID: 25525159
    • (2015) Science , vol.347 , Issue.6218 , pp. 1254806
    • Xiong, H.Y.1    Alipanahi, B.2    Lee, L.J.3    Bretschneider, H.4    Merico, D.5    Yuen, R.K.C.6
  • 54
    • 0024700097 scopus 로고    scopus 로고
    • A theory of multiresolution signal decomposition: The wavelet representation
    • IEEE Transactions on Pattern Analysis & Machine Intelligence. 1989; 11(7):674-93
    • Mallat SG. Mallat S.G.: A Theory of Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Trans. Pattern Anal. Machine Intell. 11, 674-693. IEEE Transactions on Pattern Analysis & Machine Intelligence. 1989; 11(7):674-93.
    • IEEE Trans. Pattern Anal. Machine Intell. , vol.11 , pp. 674-693
    • Mallat, S.G.1    Mallat, S.G.2
  • 55
    • 84904657970 scopus 로고    scopus 로고
    • A study of stationarity in time series by using wavelet transform
    • Dghais AAA, Ismail MT. A study of stationarity in time series by using wavelet transform. AIP Conference Proceedings. 2014:798-804.
    • (2014) AIP Conference Proceedings , pp. 798-804
    • Dghais, A.A.A.1    Ismail, M.T.2
  • 57
    • 55749105263 scopus 로고    scopus 로고
    • Deep, narrow sigmoid belief networks are universal approximators
    • PMID: 18533819
    • Sutskever I, Hinton GE. Deep, narrow sigmoid belief networks are universal approximators. Neural Computation. 2008; 20(11):2629-36. https://doi.org/10.1162/neco.2008.12-07-661 PMID: 18533819
    • (2008) Neural Computation , vol.20 , Issue.11 , pp. 2629-2636
    • Sutskever, I.1    Hinton, G.E.2
  • 58
    • 77955997114 scopus 로고    scopus 로고
    • Deep belief networks are compact universal approximators
    • Roux NL, Bengio Y. Deep Belief Networks Are Compact Universal Approximators. Neural Computation. 2010; 22(8):2192-207.
    • (2010) Neural Computation , vol.22 , Issue.8 , pp. 2192-2207
    • Roux, N.L.1    Bengio, Y.2
  • 60
    • 84861125212 scopus 로고    scopus 로고
    • A practical guide to training restricted boltzmann machines
    • Hinton GE. A Practical Guide to Training Restricted Boltzmann Machines. Momentum. 2010; 9(1):599-619.
    • (2010) Momentum. , vol.9 , Issue.1 , pp. 599-619
    • Hinton, G.E.1
  • 61
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • PMID: 7370364
    • Fukushima K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics. 1980; 36(4):193-202. PMID: 7370364
    • (1980) Biological Cybernetics , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 62
    • 84921034003 scopus 로고    scopus 로고
    • Scene classification based on single-layer SAE and SVM
    • Yin H, Jiao X, Chai Y, Fang B. Scene classification based on single-layer SAE and SVM. Expert Systems with Applications. 2015; 42(7):3368-80.
    • (2015) Expert Systems with Applications , vol.42 , Issue.7 , pp. 3368-3380
    • Yin, H.1    Jiao, X.2    Chai, Y.3    Fang, B.4
  • 64
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman JL. Finding structure in time. Cognitive Science. 1990; 14(2):179-211.
    • (1990) Cognitive Science , vol.14 , Issue.2 , pp. 179-211
    • Elman, J.L.1
  • 65
    • 0028392167 scopus 로고
    • An application of recurrent nets to phone probability estimation
    • PMID: 18267798
    • Robinson AJ. An application of recurrent nets to phone probability estimation. IEEE Transactions on Neural Networks. 1994; 5(2):298-305. https://doi.org/10.1109/72.279192 PMID: 18267798
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 298-305
    • Robinson, A.J.1
  • 67
    • 85024502067 scopus 로고    scopus 로고
    • Sequence transduction with recurrent neural networks
    • Graves A. Sequence Transduction with Recurrent Neural Networks. Computer Science. 2012; 58(3):235-42.
    • (2012) Computer Science , vol.58 , Issue.3 , pp. 235-242
    • Graves, A.1
  • 69
    • 84906237242 scopus 로고    scopus 로고
    • Investigation of recurrent-neural-network architectures and learning methods for spoken language understanding
    • Mesnil G, He X, Deng L, Bengio Y. Investigation of recurrent-neural-network architectures and learning methods for spoken language understanding. Interspeech. 2013.
    • (2013) Interspeech
    • Mesnil, G.1    He, X.2    Deng, L.3    Bengio, Y.4
  • 70
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • PMID: 9377276
    • Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Computation. 1997; 9(8):1735-80. PMID: 9377276
    • (1997) Neural Computation , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 71
    • 77649337602 scopus 로고    scopus 로고
    • Dynamic relationship between exchange rate and stock price: Evidence from China
    • Zhao H. Dynamic relationship between exchange rate and stock price: Evidence from China. Research in International Business & Finance. 2010; 24(2):103-12.
    • (2010) Research in International Business & Finance , vol.24 , Issue.2 , pp. 103-112
    • Zhao, H.1
  • 72
    • 33748942805 scopus 로고    scopus 로고
    • Neural network approach to forecasting of quasiperiodic financial time series
    • Bodyanskiy Y, Popov S. Neural network approach to forecasting of quasiperiodic financial time series. Eur J Oper Res. 2006; 175(3):1357-66.
    • (2006) Eur J Oper Res. , vol.175 , Issue.3 , pp. 1357-1366
    • Bodyanskiy, Y.1    Popov, S.2
  • 74
    • 70350337875 scopus 로고    scopus 로고
    • A multivariate ANN-wavelet approach for rainfall-runoff modeling
    • Nourani V, Komasi M, Mano A. A multivariate ANN-wavelet approach for rainfall-runoff modeling. Water Resources Management. 2009; 23(14):2877.
    • (2009) Water Resources Management , vol.23 , Issue.14 , pp. 2877
    • Nourani, V.1    Komasi, M.2    Mano, A.3
  • 75
    • 10244222718 scopus 로고    scopus 로고
    • Artificial neural networks for non-stationary time series
    • Kim TY, Oh KJ, Kim C, Do JD. Artificial neural networks for non-stationary time series. Neurocomputing. 2004; 61(C):439-47.
    • (2004) Neurocomputing , vol.61 , Issue.C , pp. 439-447
    • Kim, T.Y.1    Oh, K.J.2    Kim, C.3    Do, J.D.4
  • 76
    • 0001623736 scopus 로고
    • Theil's forecast accuracy coefficient: A clarification
    • Bliemel F. Theil's Forecast Accuracy Coefficient: A Clarification. Journal of Marketing Research. 1973; 10(4):444.
    • (1973) Journal of Marketing Research , vol.10 , Issue.4 , pp. 444
    • Bliemel, F.1
  • 77
    • 84977712229 scopus 로고
    • The temporal price relationship between S&P 500 futures and the S&P500 index
    • Kawaller IG, Koch PD, Koch TW. The Temporal Price Relationship between S&P 500 Futures and the S&P500 Index. The Journal of Finance. 1987; 42(5):1309-29.
    • (1987) The Journal of Finance , vol.42 , Issue.5 , pp. 1309-1329
    • Kawaller, I.G.1    Koch, P.D.2    Koch, T.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.