메뉴 건너뛰기




Volumn 30, Issue 12, 2014, Pages

Deep learning of the tissue-regulated splicing code

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ALTERNATIVE RNA SPLICING; ANIMAL; ARTICLE; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; BAYES THEOREM; GENOMICS; HUMAN; METHODOLOGY; MOUSE; SEQUENCE ANALYSIS;

EID: 84902462761     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btu277     Document Type: Article
Times cited : (409)

References (26)
  • 2
    • 77952029221 scopus 로고    scopus 로고
    • Deciphering the splicing code
    • Barash, Y. et al. (2010) Deciphering the splicing code. Nature, 465, 53-59.
    • (2010) Nature , vol.465 , pp. 53-59
    • Barash, Y.1
  • 3
    • 84886029445 scopus 로고    scopus 로고
    • AVISPA: A web tool for the prediction and analysis of alternative splicing
    • Barash, Y. et al. (2013) AVISPA: a web tool for the prediction and analysis of alternative splicing. Genome Biol., 14, R114.
    • (2013) Genome Biol. , vol.14
    • Barash, Y.1
  • 4
    • 84871410405 scopus 로고    scopus 로고
    • The evolutionary landscape of alternative splicing in vertebrate species
    • Barbosa-Morais, N.L. et al. (2012) The evolutionary landscape of alternative splicing in vertebrate species. Science, 338, 1587-1593.
    • (2012) Science , vol.338 , pp. 1587-1593
    • Barbosa-Morais, N.L.1
  • 6
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Bengio, Y. et al. (2013) Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35, 1798-1828.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , pp. 1798-1828
    • Bengio, Y.1
  • 7
    • 80054976678 scopus 로고    scopus 로고
    • The evolution of gene expression levels in mammalian organs
    • Brawand, D. et al. (2011) The evolution of gene expression levels in mammalian organs. Nature, 478, 343-348.
    • (2011) Nature , vol.478 , pp. 343-348
    • Brawand, D.1
  • 9
    • 84870415234 scopus 로고    scopus 로고
    • Predicting protein residue-residue contacts using deep networks and boosting
    • Eickholt, J. and Cheng, J. (2012) Predicting protein residue-residue contacts using deep networks and boosting. Bioinformatics, 28, 3066-3072.
    • (2012) Bioinformatics , vol.28 , pp. 3066-3072
    • Eickholt, J.1    Cheng, J.2
  • 10
    • 77949522811 scopus 로고    scopus 로고
    • Why does unsupervised pre-training help deep learning?
    • Erhan, D. et al. (2010) Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res., 11, 625-660.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 625-660
    • Erhan, D.1
  • 11
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett, T. (2006) An introduction to ROC analysis. Pattern Recognit. Lett., 27, 861-874.
    • (2006) Pattern Recognit. Lett. , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 14
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G.E. and Salakhutdinov, R.R. (2006) Reducing the dimensionality of data with neural networks. Science, 313, 504-507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 15
    • 84867845610 scopus 로고    scopus 로고
    • Challenges in estimating percent inclusion of alternatively spliced junctions from RNA-seq data
    • Kakaradov, B. et al. (2012) Challenges in estimating percent inclusion of alternatively spliced junctions from RNA-seq data. BMC Bioinformatics, 13 (Suppl 6), S11.
    • (2012) BMC Bioinformatics , vol.13 , Issue.SUPPL. 6
    • Kakaradov, B.1
  • 16
    • 78649714014 scopus 로고    scopus 로고
    • Analysis and design of RNA sequencing experiments for identifying isoform regulation
    • Katz, Y. et al. (2010) Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat. Methods, 7, 1009-1015.
    • (2010) Nat. Methods , vol.7 , pp. 1009-1015
    • Katz, Y.1
  • 17
    • 84867316765 scopus 로고    scopus 로고
    • Deep architectures for protein contact map prediction
    • Di Lena, P. et al. (2012) Deep architectures for protein contact map prediction. Bioinformatics, 28, 2449-2457.
    • (2012) Bioinformatics , vol.28 , pp. 2449-2457
    • Di Lena, P.1
  • 18
    • 56749098074 scopus 로고    scopus 로고
    • Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing
    • Pan, Q. et al. (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet., 40, 1413-1415.
    • (2008) Nat. Genet. , vol.40 , pp. 1413-1415
    • Pan, Q.1
  • 19
    • 0030491431 scopus 로고    scopus 로고
    • The parallel transfer of task knowledge using dynamic learning rates based on a measure of relatedness
    • Silver, D. and Mercer, R. (1996) The parallel transfer of task knowledge using dynamic learning rates based on a measure of relatedness. Connect. Sci. Spec. Issue Transf. Inductive Syst., 8, 277-294.
    • (1996) Connect. Sci. Spec. Issue Transf. Inductive Syst. , vol.8 , pp. 277-294
    • Silver, D.1    Mercer, R.2
  • 22
    • 79955040218 scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1994) Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B, 73, 273-282.
    • (1994) J. R. Stat. Soc. B , vol.73 , pp. 273-282
    • Tibshirani, R.1
  • 24
    • 84871787691 scopus 로고    scopus 로고
    • Data mining in the Life Sciences with Random Forest: A walk in the park or lost in the jungle?
    • Touw, W.G. et al. (2013) Data mining in the Life Sciences with Random Forest: a walk in the park or lost in the jungle? Brief. Bioinform., 14, 315-326.
    • (2013) Brief. Bioinform. , vol.14 , pp. 315-326
    • Touw, W.G.1
  • 25
    • 42449098125 scopus 로고    scopus 로고
    • Splicing regulation: From a parts list of regulatory elements to an integrated splicing code
    • Wang, Z. and Burge, C.B. (2008) Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA, 14, 802-813.
    • (2008) RNA , vol.14 , pp. 802-813
    • Wang, Z.1    Burge, C.B.2
  • 26
    • 80052766045 scopus 로고    scopus 로고
    • Bayesian prediction of tissue-regulated splicing using RNA sequence and cellular context
    • Xiong, H. et al. (2011) Bayesian prediction of tissue-regulated splicing using RNA sequence and cellular context. Bioinformatics, 27, 2554-2562.
    • (2011) Bioinformatics , vol.27 , pp. 2554-2562
    • Xiong, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.