메뉴 건너뛰기




Volumn 83, Issue , 2012, Pages 136-145

A novel text mining approach to financial time series forecasting

Author keywords

ARIMA; Financial time series forecasting; Market sentiment; Support vector regression

Indexed keywords

ARIMA; FEATURE VECTORS; FINANCIAL TIME SERIES FORECASTING; FINANCIAL TIME SERIES PREDICTIONS; FORECASTING MODELS; MARKET SENTIMENT; MODEL-BASED OPC; NONSTATIONARY; SECURITY COMPANY; SUPPORT VECTOR REGRESSION; SUPPORT VECTOR REGRESSIONS; TEXT MINING; TEXTUAL DATA; TEXTUAL INFORMATION;

EID: 84862784752     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.12.013     Document Type: Article
Times cited : (107)

References (33)
  • 1
    • 0030193984 scopus 로고    scopus 로고
    • Introduction to financial forecasting
    • Abu-Mostafa Y., Atiya A. Introduction to financial forecasting. Appl. Intell. 1996, 6(3):205-213.
    • (1996) Appl. Intell. , vol.6 , Issue.3 , pp. 205-213
    • Abu-Mostafa, Y.1    Atiya, A.2
  • 3
    • 58149468814 scopus 로고    scopus 로고
    • Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs)
    • Khashei M., Bijari M., Raissi Ardali G. Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs). Neurocomputing 2009, 72(4-6):956-967.
    • (2009) Neurocomputing , vol.72 , Issue.4-6 , pp. 956-967
    • Khashei, M.1    Bijari, M.2    Raissi Ardali, G.3
  • 4
    • 20344388265 scopus 로고    scopus 로고
    • A hybrid ARIMA and support vector machines model in stock price forecasting
    • Pai P., Lin C. A hybrid ARIMA and support vector machines model in stock price forecasting. Omega 2005, 33(6):497-505.
    • (2005) Omega , vol.33 , Issue.6 , pp. 497-505
    • Pai, P.1    Lin, C.2
  • 5
    • 33748133361 scopus 로고    scopus 로고
    • A hybrid SARIMA and support vector machines in forecasting the production values of the machinery industry in Taiwan
    • Chen K., Wang C. A hybrid SARIMA and support vector machines in forecasting the production values of the machinery industry in Taiwan. Expert Syst. Appl. 2007, 32(1):254-264.
    • (2007) Expert Syst. Appl. , vol.32 , Issue.1 , pp. 254-264
    • Chen, K.1    Wang, C.2
  • 6
    • 84979340104 scopus 로고
    • To combine or not to combine? Issues of combining forecasts
    • Palm F., Zellner A. To combine or not to combine? Issues of combining forecasts. J. Forecast. 1992, 11(8):687-701.
    • (1992) J. Forecast. , vol.11 , Issue.8 , pp. 687-701
    • Palm, F.1    Zellner, A.2
  • 7
    • 0030110883 scopus 로고    scopus 로고
    • Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model
    • Wedding D., et al. Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model. Neurocomputing 1996, 10(2):149-168.
    • (1996) Neurocomputing , vol.10 , Issue.2 , pp. 149-168
    • Wedding, D.1
  • 8
    • 58449101822 scopus 로고    scopus 로고
    • Self-organising mixture autoregressive model for non-stationary time series modelling
    • Ni H., Yin H. Self-organising mixture autoregressive model for non-stationary time series modelling. Int. J. Neural Syst. 2008, 18(6):469-480.
    • (2008) Int. J. Neural Syst. , vol.18 , Issue.6 , pp. 469-480
    • Ni, H.1    Yin, H.2
  • 9
    • 34548273631 scopus 로고    scopus 로고
    • Testing Gaussianity and linearity of Japanese stock returns
    • Terui N., Kariya T. Testing Gaussianity and linearity of Japanese stock returns. Finan. Eng. Jpn. Markets 1997, 4(3):203-232.
    • (1997) Finan. Eng. Jpn. Markets , vol.4 , Issue.3 , pp. 203-232
    • Terui, N.1    Kariya, T.2
  • 10
    • 0036074753 scopus 로고    scopus 로고
    • Combined forecasts from linear and nonlinear time series models
    • Terui N., Van Dijk H. Combined forecasts from linear and nonlinear time series models. Int. J. Forecast. 2002, 18(3):421-438.
    • (2002) Int. J. Forecast. , vol.18 , Issue.3 , pp. 421-438
    • Terui, N.1    Van Dijk, H.2
  • 11
    • 0030170159 scopus 로고    scopus 로고
    • A hybrid econometric-neural network modeling approach for sales forecasting
    • Luxhoj J., Riis J., Stensballe B. A hybrid econometric-neural network modeling approach for sales forecasting. Int. J. Product. Econ. 1996, 43(2-3):175-192.
    • (1996) Int. J. Product. Econ. , vol.43 , Issue.2-3 , pp. 175-192
    • Luxhoj, J.1    Riis, J.2    Stensballe, B.3
  • 12
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang G. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003, 50:159-175.
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.1
  • 14
    • 0003634015 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • in: Advances in Neural Information Processing Systems 9, Citeseer
    • V. Vapnik, S. Golowich, A. Smola, Support vector method for function approximation, regression estimation, and signal processing, in: Advances in Neural Information Processing Systems 9, Citeseer, 1996.
    • (1996)
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 15
    • 0036825901 scopus 로고    scopus 로고
    • Modified support vector machines in financial time series forecasting
    • Tay F., Cao L. Modified support vector machines in financial time series forecasting. Neurocomputing 2002, 48(1-4):847-861.
    • (2002) Neurocomputing , vol.48 , Issue.1-4 , pp. 847-861
    • Tay, F.1    Cao, L.2
  • 16
    • 0242351905 scopus 로고    scopus 로고
    • Financial time series forecasting using support vector machines
    • Kim K. Financial time series forecasting using support vector machines. Neurocomputing 2003, 55(1-2):307-319.
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 307-319
    • Kim, K.1
  • 17
    • 0742268991 scopus 로고    scopus 로고
    • Support vector machine with adaptive parameters in financial time series forecasting
    • Cao L., Tay F. Support vector machine with adaptive parameters in financial time series forecasting. IEEE Trans. Neural Networks 2004, 14(6):1506-1518.
    • (2004) IEEE Trans. Neural Networks , vol.14 , Issue.6 , pp. 1506-1518
    • Cao, L.1    Tay, F.2
  • 18
    • 84945797974 scopus 로고
    • What is the best method of forecasting?
    • Chatfield C. What is the best method of forecasting?. J. Appl. Statist. 1988, 15(1):19-38.
    • (1988) J. Appl. Statist. , vol.15 , Issue.1 , pp. 19-38
    • Chatfield, C.1
  • 19
    • 64949130686 scopus 로고    scopus 로고
    • Financial time series forecasting using independent component analysis and support vector regression
    • Lu C., Lee T., Chiu C. Financial time series forecasting using independent component analysis and support vector regression. Decis. Support Syst. 2009, 47(2):115-125.
    • (2009) Decis. Support Syst. , vol.47 , Issue.2 , pp. 115-125
    • Lu, C.1    Lee, T.2    Chiu, C.3
  • 20
    • 0001023715 scopus 로고    scopus 로고
    • Application of support vector machines in financial time series forecasting
    • Tay F., Cao L. Application of support vector machines in financial time series forecasting. Omega 2001, 29(4):309-317.
    • (2001) Omega , vol.29 , Issue.4 , pp. 309-317
    • Tay, F.1    Cao, L.2
  • 21
    • 0031375732 scopus 로고    scopus 로고
    • Nonlinear prediction of chaotic time series using support vector machines
    • in: Neural Networks for Signal Processing [1997] VII. Proceedings of the 1997 IEEE Workshop, IEEE
    • S. Mukherjee, E. Osuna, F. Girosi, Nonlinear prediction of chaotic time series using support vector machines, in: Neural Networks for Signal Processing [1997] VII. Proceedings of the 1997 IEEE Workshop, IEEE, 2002, pp. 511-520.
    • (2002) , pp. 511-520
    • Mukherjee, S.1    Osuna, E.2    Girosi, F.3
  • 22
    • 77958504152 scopus 로고    scopus 로고
    • Exchange rate prediction using hybrid neural networks and trading indicators
    • Ni H., Yin H. Exchange rate prediction using hybrid neural networks and trading indicators. Neurocomputing 2009, 72(13-15):2815-2823.
    • (2009) Neurocomputing , vol.72 , Issue.13-15 , pp. 2815-2823
    • Ni, H.1    Yin, H.2
  • 24
    • 84862786132 scopus 로고    scopus 로고
    • Using News Articles to Predict Stock Price Movements, Department of Computer Science and Engineering, University of California, San Diego
    • G. Gidófalvi, C. Elkan, Using News Articles to Predict Stock Price Movements, Department of Computer Science and Engineering, University of California, San Diego, 2001.
    • (2001)
    • Gidófalvi, G.1    Elkan, C.2
  • 26
    • 33745892712 scopus 로고    scopus 로고
    • Stock prediction: integrating text mining approach using real-time news
    • in: 2003 IEEE International Conference on Computational Intelligence for Financial Engineering: Proceedings
    • G. Pui Cheong Fung, J. Xu Yu, W. Lam, Stock prediction: integrating text mining approach using real-time news, in: 2003 IEEE International Conference on Computational Intelligence for Financial Engineering: Proceedings, 2003, pp. 395-402.
    • (2003) , pp. 395-402
    • Pui Cheong Fung, G.1    Xu Yu, J.2    Lam, W.3
  • 27
    • 67649304832 scopus 로고    scopus 로고
    • Textual analysis of stock market prediction using breaking financial news: the AZFin text system
    • Schumaker R., Chen H. Textual analysis of stock market prediction using breaking financial news: the AZFin text system. ACM Trans. Inf. Syst. (TOIS) 2009, 27(2):1-19.
    • (2009) ACM Trans. Inf. Syst. (TOIS) , vol.27 , Issue.2 , pp. 1-19
    • Schumaker, R.1    Chen, H.2
  • 28
    • 0010836411 scopus 로고    scopus 로고
    • Feature engineering for text classification
    • in: MACHINE LEARNING-INTERNATIONAL WORKSHOP THEN CONFERENCE, Citeseer
    • S. Scott, S. Matwin, Feature engineering for text classification, in: MACHINE LEARNING-INTERNATIONAL WORKSHOP THEN CONFERENCE, Citeseer, 1999, pp. 379-388.
    • (1999) , pp. 379-388
    • Scott, S.1    Matwin, S.2
  • 29
    • 0000636553 scopus 로고    scopus 로고
    • Text categorization with support vector machines: learning with many relevant features
    • Joachims T. Text categorization with support vector machines: learning with many relevant features. Mach. Learn.: ECML 1998, 98:137-142.
    • (1998) Mach. Learn.: ECML , vol.98 , pp. 137-142
    • Joachims, T.1
  • 30
    • 0003882234 scopus 로고
    • Automatic text processing: the transformation, analysis, and retrieval of information by computer
    • in: Addison-Wesley Series in Computer Science
    • G. Salton, Automatic text processing: the transformation, analysis, and retrieval of information by computer, in: Addison-Wesley Series in Computer Science, 1989, pp. 530.
    • (1989) , pp. 530
    • Salton, G.1
  • 31
    • 33644844105 scopus 로고    scopus 로고
    • HHMM-based Chinese lexical analyzer ICTCLAS
    • in: Proceedings of the Second SIGHAN Workshop on Chinese Language Processing, Association for Computational Linguistics
    • H. Zhang, H. Yu, D. Xiong, Q. Liu, HHMM-based Chinese lexical analyzer ICTCLAS, in: Proceedings of the Second SIGHAN Workshop on Chinese Language Processing, vol. 17, Association for Computational Linguistics, 2003, pp. 184-187.
    • (2003) , vol.17 , pp. 184-187
    • Zhang, H.1    Yu, H.2    Xiong, D.3    Liu, Q.4
  • 33
    • 0003710380 scopus 로고    scopus 로고
    • LIBSVM: A Library for Support Vector Machines
    • available at
    • C. Chang, C. Lin, LIBSVM: A Library for Support Vector Machines, available at (2001). http://www.csie.ntu.edu.tw/cjlin/libsvm.
    • (2001)
    • Chang, C.1    Lin, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.