메뉴 건너뛰기




Volumn , Issue , 2013, Pages 3771-3775

Investigation of recurrent-neural-network architectures and learning methods for spoken language understanding

Author keywords

Recurrent neural network; Slot filling; Spoken language understanding; Word embeddings

Indexed keywords

FILLING; NETWORK ARCHITECTURE;

EID: 84906237242     PISSN: 2308457X     EISSN: 19909772     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (422)

References (28)
  • 2
    • 0009577944 scopus 로고    scopus 로고
    • A neural probabilistic language model
    • Y. Bengio, R. Ducharme and P. Vincent, "A Neural Probabilistic Language Model", in NIPS 2000.
    • (2000) NIPS
    • Bengio, Y.1    Ducharme, R.2    Vincent, P.3
  • 3
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • R. Collobert and J. Weston, "A unified architecture for natural language processing: deep neural networks with multitask learning, " in ICML 2008.
    • (2008) ICML
    • Collobert, R.1    Weston, J.2
  • 5
    • 84906278108 scopus 로고    scopus 로고
    • CRPpp: http://crfpp.googlecode.com/svn/trunk/doc/index.
    • CRPpp
  • 6
    • 84055222005 scopus 로고    scopus 로고
    • Context- dependent pre-trained deep neural networks for large vocabulary speech recognition
    • January
    • G. Dahl, D. Yu, L. Deng, and A. Acero, "Context- Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition, in IEEE Transactions on Audio, Speech, and Language Processing, " vol. 20, no. 1, pp. 30-42, January 2012.
    • (2012) IEEE Transactions on Audio, Speech, and Language Processing , vol.20 , Issue.1 , pp. 30-42
    • Dahl, G.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 7
    • 84874256530 scopus 로고    scopus 로고
    • Use of kernel deep convex networks and end-to-end learning for spoken language understanding
    • December
    • L. Deng, G. Tur, X. He, and D. Hakkani-Tur, "Use of Kernel Deep Convex Networks and End-To-End Learning for Spoken Language Understanding, " IEEE Workshop on Spoken Language Technologies, December 2012.
    • (2012) IEEE Workshop on Spoken Language Technologies
    • Deng, L.1    Tur, G.2    He, X.3    Hakkani-Tur, D.4
  • 8
    • 26444565569 scopus 로고
    • Finding structure in time
    • J. Elman, "Finding structure in time, " in Cognitive Science, 14 (2), 1990.
    • (1990) Cognitive Science , vol.14 , Issue.2
    • Elman, J.1
  • 9
    • 84906237364 scopus 로고    scopus 로고
    • A data-driven spoken language understanding system
    • Y. He and S. Young, "A data-driven spoken language understanding system, " in IEEE ASRU 2003.
    • (2003) IEEE ASRU
    • He, Y.1    Young, S.2
  • 13
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data, " in ICML 2001.
    • (2001) ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 14
    • 84906216696 scopus 로고    scopus 로고
    • T. Mikolov, http://www.fit.vutbr.cz/imikolov/rnnlm/.
    • Mikolov, T.1
  • 16
    • 84858779990 scopus 로고    scopus 로고
    • A scalable hierarchical distributed language model
    • A. Mnih and G. Hinton, "A scalable hierarchical distributed language model" in NIPS, 2008, pp. 1081- 1088.
    • (2008) NIPS , pp. 1081-1088
    • Mnih, A.1    Hinton, G.2
  • 17
    • 56149099128 scopus 로고    scopus 로고
    • Generative and discriminative algorithms for spoken language understanding
    • C. Raymond and G. Riccardi, "Generative and discriminative algorithms for spoken language understanding, " in Interspeech 2007.
    • (2007) Interspeech
    • Raymond, C.1    Riccardi, G.2
  • 19
    • 34547973194 scopus 로고    scopus 로고
    • Training neural network language models on very large corpora
    • H. Schwenk and J-L. Gauvain, "Training neural network language models on very large corpora, " in HLT/EMNLP 2005.
    • (2005) HLT/EMNLP
    • Schwenk, H.1    Gauvain, J.-L.2
  • 21
    • 84866842186 scopus 로고    scopus 로고
    • Learning continuous phrase representations and syntactic parsing with recursive neural networks
    • Socher, R., Lin, C., Ng, A., and Manning, C. "Learning continuous phrase representations and syntactic parsing with recursive neural networks, " Proc. ICML, 2011.
    • (2011) Proc. ICML
    • Socher, R.1    Lin, C.2    Ng, A.3    Manning, C.4
  • 22
    • 84906229845 scopus 로고    scopus 로고
    • What is left to be understood in ATIS?
    • G. Tur, D. Hakkani-Tur, and L. Heck, "What is left to be understood in ATIS?" in IEEE SLT, 2010.
    • (2010) IEEE SLT
    • Tur, G.1    Hakkani-Tur, D.2    Heck, L.3
  • 24
    • 84867605416 scopus 로고    scopus 로고
    • Towards deeper understanding deep convex networks for semantic utterance classification
    • G. Tur, L. Deng, D. Hakkani-Tur, and X. He, "Towards Deeper Understanding Deep Convex Networks for Semantic Utterance Classification, " in ICASSP, 2012.
    • (2012) ICASSP
    • Tur, G.1    Deng, L.2    Hakkani-Tur, D.3    He, X.4
  • 25
    • 85032753932 scopus 로고    scopus 로고
    • Spoken language understanding - An introduction to the statistical framework
    • Y. Wang, L. Deng, and A. Acero, "Spoken Language Understanding - An Introduction to the Statistical Framework, " IEEE Signal Processing Magazine, vol. 22, no. 5, pp. 16-31, 2005.
    • (2005) IEEE Signal Processing Magazine , vol.22 , Issue.5 , pp. 16-31
    • Wang, Y.1    Deng, L.2    Acero, A.3
  • 27
  • 28
    • 84904483474 scopus 로고    scopus 로고
    • Recurrent neural networks for language understanding
    • submitted to
    • K. Yao, G. Zweig, M-Y. Hwang, Y. Shi, D. Yu, "Recurrent neural networks for language understanding", submitted to Interspeech 2013.
    • (2013) Interspeech
    • Yao, K.1    Zweig, G.2    Hwang, M.-Y.3    Shi, Y.4    Yu, D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.