메뉴 건너뛰기




Volumn , Issue , 2013, Pages 8624-8628

Advances in optimizing recurrent networks

Author keywords

deep learning; long term dependencies; Recurrent networks; representation learning

Indexed keywords

CREDIT ASSIGNMENT; DEEP LEARNING; LONG-TERM DEPENDENCIES; PROBABILITY MODELS; RECURRENT NETWORKS; REPRESENTATION LEARNING; RESEARCH ACTIVITIES; TECHNICAL SOLUTIONS;

EID: 84890543516     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2013.6639349     Document Type: Conference Paper
Times cited : (419)

References (32)
  • 2
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient descent is difficult," IEEE T. Neural Nets, 1994.
    • (1994) IEEE T. Neural Nets
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 3
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D.E. Rumelhart, G.E. Hinton, and R.J. Williams, "Learning representations by back-propagating errors," Nature, vol. 323, pp. 533-536, 1986.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 4
    • 80053451847 scopus 로고    scopus 로고
    • Learning recurrent neural networks with Hessian-free optimization
    • J. Martens and I. Sutskever, "Learning recurrent neural networks with Hessian-free optimization," in ICML2011, 2011.
    • (2011) ICML2011
    • Martens, J.1    Sutskever, I.2
  • 9
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Computation, vol. 18, pp. 1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 11
    • 84864069017 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun, "Efficient learning of sparse representations with an energy-based model," in NIPS2006, 2007.
    • (2007) NIPS2006
    • Ranzato, M.1    Poultney, C.2    Chopra, S.3    Lecun, Y.4
  • 13
    • 77956541496 scopus 로고    scopus 로고
    • Deep learning via Hessian-free optimization
    • J. Martens, "Deep learning via Hessian-free optimization," in ICML2010, 2010, pp. 735-742.
    • (2010) ICML2010 , pp. 735-742
    • Martens, J.1
  • 18
    • 0003331189 scopus 로고    scopus 로고
    • Hierarchical recurrent neural networks for long-term dependencies
    • S. ElHihi and Y. Bengio, "Hierarchical recurrent neural networks for long-term dependencies," in NIPS1995, 1996.
    • (1996) NIPS1995
    • Elhihi, S.1    Bengio, Y.2
  • 19
    • 34249938474 scopus 로고    scopus 로고
    • Optimization and applications of echo state networks with leaky-integrator neurons
    • Herbert Jaeger, Mantas Lukosevicius, Dan Popovici, and Udo Siewert, "Optimization and applications of echo state networks with leaky-integrator neurons," Neural Networks, vol. 20, no. 3, pp. 335-352, 2007.
    • (2007) Neural Networks , vol.20 , Issue.3 , pp. 335-352
    • Jaeger, H.1    Lukosevicius, M.2    Popovici, D.3    Siewert, U.4
  • 20
    • 73949127981 scopus 로고    scopus 로고
    • Temporal kernel recurrent neural networks
    • 2
    • I. Sutskever and G. Hinton, "Temporal kernel recurrent neural networks," Neural Networks, vol. 23, no. 2, (23) 2, 2010.
    • (2010) Neural Networks , vol.23 , Issue.23 , pp. 2
    • Sutskever, I.1    Hinton, G.2
  • 21
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997.
    • (1997) Neural Computation , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 22
    • 70350583515 scopus 로고    scopus 로고
    • Echo-state networks with band-pass neurons: Towards generic time-scale-independent reservoir structures
    • October
    • Udo Siewert and Welf Wustlich, "Echo-state networks with band-pass neurons: Towards generic time-scale-independent reservoir structures," ¡p¿Preliminary Report¡/p¿, October 2007.
    • (2007) ¡P¿Preliminary Report¡/p¿
    • Siewert, U.1    Wustlich, W.2
  • 24
    • 84858768256 scopus 로고    scopus 로고
    • The recurrent temporal restricted Boltzmann machine
    • I. Sutskever, G. Hinton, and G. Taylor, "The recurrent temporal restricted Boltzmann machine," in NIPS2008. 2009.
    • (2009) NIPS2008
    • Sutskever, I.1    Hinton, G.2    Taylor, G.3
  • 25
    • 84867129058 scopus 로고    scopus 로고
    • Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription
    • N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, "Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription," in ICML2012, 2012.
    • (2012) ICML2012
    • Boulanger-Lewandowski, N.1    Bengio, Y.2    Vincent, P.3
  • 26
    • 84862524901 scopus 로고    scopus 로고
    • The neural autoregressive distribution estimator
    • H. Larochelle and I. Murray, "The Neural Autoregressive Distribution Estimator," in AISTATS2011, 2011.
    • (2011) AISTATS2011
    • Larochelle, H.1    Murray, I.2
  • 28
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted Boltzmann machines
    • V. Nair and G.E. Hinton, "Rectified linear units improve restricted Boltzmann machines," in ICML2010, 2010.
    • (2010) ICML2010
    • Nair, V.1    Hinton, G.E.2
  • 29
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton, "ImageNet classification with deep convolutional neural networks," in NIPS2012. 2012.
    • (2012) NIPS2012
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 30
    • 34548480020 scopus 로고
    • A method for unconstrained convex minimization problem with the rate of convergence o(1=k2)
    • Yu Nesterov, "A method for unconstrained convex minimization problem with the rate of convergence o(1=k2)," Doklady AN SSSR (translated as Soviet. Math. Docl.), vol. 269, pp. 543-547, 1983.
    • (1983) Doklady AN SSSR (Translated As Soviet. Math. Docl.) , vol.269 , pp. 543-547
    • Yu, N.1
  • 31
    • 84857855190 scopus 로고    scopus 로고
    • Random search for hyper-parameter optimization
    • James Bergstra and Yoshua Bengio, "Random search for hyper-parameter optimization," J. Machine Learning Res., vol. 13, pp. 281-305, 2012.
    • (2012) J. Machine Learning Res. , vol.13 , pp. 281-305
    • Bergstra, J.1    Bengio, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.