메뉴 건너뛰기




Volumn 20, Issue 11, 2008, Pages 2629-2636

Deep, narrow sigmoid belief networks are universal approximators

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; HUMAN; LEARNING; NONLINEAR SYSTEM;

EID: 55749105263     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2008.12-07-661     Document Type: Article
Times cited : (123)

References (13)
  • 1
    • 84864073449 scopus 로고    scopus 로고
    • Greedy layer-wise training of deep networks
    • M. I. Jordan, Y. Le Cun, & S. A. Solla Eds, Cambridge, MA: MIT Press
    • Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise training of deep networks. In M. I. Jordan, Y. Le Cun, & S. A. Solla (Eds.), Advances in neural information processing systems, 19 (pp. 153-160). Cambridge, MA: MIT Press.
    • (2007) Advances in neural information processing systems , vol.19 , pp. 153-160
    • Bengio, Y.1    Lamblin, P.2    Popovici, D.3    Larochelle, H.4
  • 2
    • 34547975052 scopus 로고    scopus 로고
    • Scaling learning algorithms towards AI
    • L. Bottou, O. Chapelle, D. DeCoste, & J. Weston Eds, Cambridge, MA: MIT Press
    • Bengio, Y., & Le Cun, Y. (2007). Scaling learning algorithms towards AI. In L. Bottou, O. Chapelle, D. DeCoste, & J. Weston (Eds.), Large scale kernel machines (pp. 321-359). Cambridge, MA: MIT Press.
    • (2007) Large scale kernel machines , pp. 321-359
    • Bengio, Y.1    Le Cun, Y.2
  • 3
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton, G. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8), 1771-1800.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.1
  • 4
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527-1554.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.3
  • 5
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G., & Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 6
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359-366.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 7
    • 34547967782 scopus 로고    scopus 로고
    • Larochelle, H., Erhan, D., Courville, A., Bergstra, J., & Bengio, Y. (2007). An empirical evaluation of deep architectures on problems with many factors of variation. In Proceedings of the Annual International Conference on Machine Learning (ICML-2007) (pp. 473-480). N.p.: Omni Press.
    • Larochelle, H., Erhan, D., Courville, A., Bergstra, J., & Bengio, Y. (2007). An empirical evaluation of deep architectures on problems with many factors of variation. In Proceedings of the Annual International Conference on Machine Learning (ICML-2007) (pp. 473-480). N.p.: Omni Press.
  • 8
    • 55749091424 scopus 로고    scopus 로고
    • Le Roux, N., & Bengio, Y. (2007). Representational power of restricted Boltzmann machines and deep belief networks (Tech. Rep. 1294, DIRO).Montreal: University of Montreal.
    • Le Roux, N., & Bengio, Y. (2007). Representational power of restricted Boltzmann machines and deep belief networks (Tech. Rep. 1294, DIRO).Montreal: University of Montreal.
  • 9
    • 4243447828 scopus 로고
    • Learning stochastic feedforward networks
    • CRG-TR-90-7, Toronto: Department of Computer Science, University of Toronto
    • Neal, R. (1990). Learning stochastic feedforward networks (Tech. Rep. CRG-TR-90-7). Toronto: Department of Computer Science, University of Toronto.
    • (1990) Tech. Rep
    • Neal, R.1
  • 11
    • 0022471098 scopus 로고
    • Learning internal representations by back-propagating errors
    • Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning internal representations by back-propagating errors. Nature, 323(99), 533-536.
    • (1986) Nature , vol.323 , Issue.99 , pp. 533-536
    • Rumelhart, D.1    Hinton, G.2    Williams, R.3
  • 13
    • 84937442245 scopus 로고    scopus 로고
    • Using deep belief nets to learn covariance kernels for gaussian processes
    • J. C. Platt, D. Koller, Y. Singer, & S. Roweis Eds, Cambridge, MA: MIT Press
    • Salakhutdinov, R., & Hinton, G. (2007b). Using deep belief nets to learn covariance kernels for gaussian processes. In J. C. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Advances in neural information processing systems, 20. Cambridge, MA: MIT Press.
    • (2007) Advances in neural information processing systems , vol.20
    • Salakhutdinov, R.1    Hinton, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.