메뉴 건너뛰기




Volumn 64, Issue 17, 2016, Pages 4504-4518

Distributed Compressive Sensing: A Deep Learning Approach

Author keywords

Compressive sensing; deep learning; long short term memory

Indexed keywords

BAYESIAN NETWORKS; BRAIN; COST FUNCTIONS; DECODING; PROBABILITY; SIGNAL RECONSTRUCTION; VECTORS;

EID: 84982839116     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSP.2016.2557301     Document Type: Article
Times cited : (114)

References (53)
  • 1
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • Nov.
    • S. Hochreiter and J. Schmidhuber, "Long short-term memory, " Neural Comput., vol. 9, no. 8, pp. 1735-1780, Nov. 1997.
    • (1997) Neural Comput. , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 2
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • Apr.
    • D. Donoho, "Compressed sensing, " IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006.
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.4 , pp. 1289-1306
    • Donoho, D.1
  • 3
    • 33745604236 scopus 로고    scopus 로고
    • Stable signal recovery from incomplete and inaccurate measurements
    • E. Candes, J. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements, " Commun. Pure Appl. Math., vol. 59, no. 8, pp. 1207-1223, 2006.
    • (2006) Commun. Pure Appl. Math. , vol.59 , Issue.8 , pp. 1207-1223
    • Candes, E.1    Romberg, J.2    Tao, T.3
  • 4
    • 85032751965 scopus 로고    scopus 로고
    • Compressive sensing [lecture notes]
    • Jul.
    • R. Baraniuk, "Compressive sensing [lecture notes], " IEEE Signal Process. Mag., vol. 24, no. 4, pp. 118-121, Jul. 2007.
    • (2007) IEEE Signal Process. Mag. , vol.24 , Issue.4 , pp. 118-121
    • Baraniuk, R.1
  • 5
    • 79955778301 scopus 로고    scopus 로고
    • Compressed sensing with coherent and redundant dictionaries
    • E. J. Candes, Y. C. Eldar, D. Needell, and P. Randall, "Compressed sensing with coherent and redundant dictionaries, " Appl. Comput. Harmon. Anal., vol. 31, no. 1, pp. 59-73, 2011.
    • (2011) Appl. Comput. Harmon. Anal. , vol.31 , Issue.1 , pp. 59-73
    • Candes, E.J.1    Eldar, Y.C.2    Needell, D.3    Randall, P.4
  • 6
    • 80051736221 scopus 로고    scopus 로고
    • Structured compressed sensing: From theory to applications
    • Sept.
    • M. Duarte and Y. Eldar, "Structured compressed sensing: From theory to applications, " IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4053-4085, Sept. 2011.
    • (2011) IEEE Trans. Signal Process. , vol.59 , Issue.9 , pp. 4053-4085
    • Duarte, M.1    Eldar, Y.2
  • 7
    • 84856895585 scopus 로고    scopus 로고
    • Rank awareness in joint sparse recovery
    • Feb.
    • M. Davies and Y. Eldar, "Rank awareness in joint sparse recovery, " IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 1135-1146, Feb. 2012.
    • (2012) IEEE Trans. Inf. Theory , vol.58 , Issue.2 , pp. 1135-1146
    • Davies, M.1    Eldar, Y.2
  • 8
    • 73849109362 scopus 로고    scopus 로고
    • Average case analysis of multichannel sparse recovery using convex relaxation
    • Jan.
    • Y. Eldar and H. Rauhut, "Average case analysis of multichannel sparse recovery using convex relaxation, " IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 505-519, Jan. 2010.
    • (2010) IEEE Trans. Inf. Theory , vol.56 , Issue.1 , pp. 505-519
    • Eldar, Y.1    Rauhut, H.2
  • 9
    • 30844445842 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit
    • J. Tropp, A. Gilbert, andM. Strauss, "Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit, " Signal Process., vol. 86, no. 3, pp. 572-588, 2006.
    • (2006) Signal Process. , vol.86 , Issue.3 , pp. 572-588
    • Tropp, J.1    Gilbert, A.2    Strauss, M.3
  • 10
    • 30844461481 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation. Part II: Convex relaxation
    • J. Tropp, "Algorithms for simultaneous sparse approximation. Part II: Convex relaxation, " Signal Process., vol. 86, no. 3, pp. 589-602, 2006.
    • (2006) Signal Process. , vol.86 , Issue.3 , pp. 589-602
    • Tropp, J.1
  • 11
    • 34347400802 scopus 로고    scopus 로고
    • An empirical Bayesian strategy for solving the simultaneous sparse approximation problem
    • D. P. Wipf and B. D. Rao, "An empirical Bayesian strategy for solving the simultaneous sparse approximation problem, " IEEE Trans. Signal Process., vol. 55, no. 7, pp. 3704-3716, 2007.
    • (2007) IEEE Trans. Signal Process. , vol.55 , Issue.7 , pp. 3704-3716
    • Wipf, D.P.1    Rao, B.D.2
  • 12
    • 58649110599 scopus 로고    scopus 로고
    • Multitask compressive sensing
    • S. Ji, D. Dunson, and L. Carin, "Multitask compressive sensing, " IEEE Trans. Signal Process., vol. 57, no. 1, pp. 92-106, 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.1 , pp. 92-106
    • Ji, S.1    Dunson, D.2    Carin, L.3
  • 13
    • 84903724014 scopus 로고    scopus 로고
    • Deep learning: Methods and applications
    • L. Deng and D. Yu, "Deep learning: Methods and applications, " Found. Trends Signal Process., vol. 7, pp. 197-387, 2014.
    • (2014) Found. Trends Signal Process. , vol.7 , pp. 197-387
    • Deng, L.1    Yu, D.2
  • 15
    • 80051711912 scopus 로고    scopus 로고
    • Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning
    • Z. Zhang and B. D. Rao, "Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning, " IEEE J. Sel. Topcs Signal Process., vol. 5, no. 5, pp. 912-926, 2011.
    • (2011) IEEE J. Sel. Topcs Signal Process. , vol.5 , Issue.5 , pp. 912-926
    • Zhang, Z.1    Rao, B.D.2
  • 17
    • 44849087307 scopus 로고    scopus 로고
    • Bayesian compressive sensing
    • S. Ji, Y. Xue, and L. Carin, "Bayesian compressive sensing, " IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2346-2356, 2008.
    • (2008) IEEE Trans. Signal Process. , vol.56 , Issue.6 , pp. 2346-2356
    • Ji, S.1    Xue, Y.2    Carin, L.3
  • 18
    • 80053654360 scopus 로고    scopus 로고
    • Embedding prior knowledge within compressed sensing by neural networks
    • Oct.
    • D. Merhej, C. Diab, M. Khalil, and R. Prost, "Embedding prior knowledge within compressed sensing by neural networks, " IEEE Trans. Neural Netw., vol. 22, no. 10, pp. 1638-1649, Oct. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.10 , pp. 1638-1649
    • Merhej, D.1    Diab, C.2    Khalil, M.3    Prost, R.4
  • 19
    • 80053654360 scopus 로고    scopus 로고
    • Embedding prior knowledge within compressed sensing by neural networks
    • Oct.
    • D. Merhej, C. Diab, M. Khalil, and R. Prost, "Embedding prior knowledge within compressed sensing by neural networks, " IEEE Trans. Neural Netw., vol. 22, no. 10, pp. 1638-1649, Oct. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.10 , pp. 1638-1649
    • Merhej, D.1    Diab, C.2    Khalil, M.3    Prost, R.4
  • 20
    • 84890502600 scopus 로고    scopus 로고
    • Using deep stacking network to improve structured compressed sensing with multiple measurement vectors
    • May
    • H. Palangi, R. Ward, and L. Deng, "Using deep stacking network to improve structured compressed sensing with multiple measurement vectors, " in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., May 2013, pp. 3337-3341.
    • (2013) Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. , pp. 3337-3341
    • Palangi, H.1    Ward, R.2    Deng, L.3
  • 23
    • 84973397922 scopus 로고    scopus 로고
    • Exploiting correlations among channels in distributed compressive sensing with convolutional deep stacking networks
    • Mar.
    • H. Palangi, R. Ward, and L. Deng, "Exploiting correlations among channels in distributed compressive sensing with convolutional deep stacking networks, " in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Mar. 2016, pp. 2692-2696.
    • (2016) Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP) , pp. 2692-2696
    • Palangi, H.1    Ward, R.2    Deng, L.3
  • 24
    • 84982833922 scopus 로고    scopus 로고
    • Convolutional deep stacking networks for distributed compressive sensing
    • to be published
    • H. Palangi, R. Ward, and L. Deng, "Convolutional deep stacking networks for distributed compressive sensing, " Signal Process., 2016, to be published.
    • (2016) Signal Process.
    • Palangi, H.1    Ward, R.2    Deng, L.3
  • 25
    • 77954604475 scopus 로고    scopus 로고
    • Ls-cs-residual (ls-cs): Compressive sensing on least squares residual
    • N. Vaswani, "Ls-cs-residual (ls-cs): Compressive sensing on least squares residual, " IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4108-4120, 2010.
    • (2010) IEEE Trans. Signal Process. , vol.58 , Issue.8 , pp. 4108-4120
    • Vaswani, N.1
  • 26
    • 84940768033 scopus 로고    scopus 로고
    • Pattern coupled sparse Bayesian learning for recovery of time varying sparse signals
    • J. Fang, Y. Shen, and H. Li, "Pattern coupled sparse Bayesian learning for recovery of time varying sparse signals, " in Proc. 19th Int. Conf. Digit. Signal Process. (DSP), 2014, pp. 705-709.
    • (2014) Proc. 19th Int. Conf. Digit. Signal Process. (DSP) , pp. 705-709
    • Fang, J.1    Shen, Y.2    Li, H.3
  • 28
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Sep.
    • M. E. Tipping, "Sparse Bayesian learning and the relevance vector machine, " J. Mach. Learn. Res., vol. 1, pp. 211-244, Sep. 2001.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 29
    • 1242295826 scopus 로고    scopus 로고
    • Analysis of sparse Bayesian learning
    • Cambridge, MA, USA: MIT Press
    • A. C. Faul and M. E. Tipping, "Analysis of sparse Bayesian learning, " in Neural Inf. Process. Syst. (NIPS). Cambridge, MA, USA: MIT Press, 2001, pp. 383-389.
    • (2001) Neural Inf. Process. Syst. (NIPS) , pp. 383-389
    • Faul, A.C.1    Tipping, M.E.2
  • 30
    • 84867614591 scopus 로고    scopus 로고
    • Scalable stacking and learning for building deep architectures
    • Mar.
    • L. Deng, D. Yu, and J. Platt, "Scalable stacking and learning for building deep architectures, " in Proc. ICASSP, Mar. 2012, pp. 2133-2136.
    • (2012) Proc. ICASSP , pp. 2133-2136
    • Deng, L.1    Yu, D.2    Platt, J.3
  • 31
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Aug.
    • G. E. Hinton, "Training products of experts by minimizing contrastive divergence, " Neural Comput., vol. 14, no. 8, pp. 1771-1800, Aug. 2002.
    • (2002) Neural Comput. , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 32
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, "Extracting and composing robust features with denoising autoencoders, " in Proc. ICML, pp. 1096-1103.
    • Proc. ICML , pp. 1096-1103
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 33
    • 84867614591 scopus 로고    scopus 로고
    • Scalable stacking and learning for building deep architectures
    • Mar.
    • L. Deng, D. Yu, and J. Platt, "Scalable stacking and learning for building deep architectures, " in Proc. ICASSP, Mar. 2012, pp. 2133. 2136.
    • (2012) Proc. ICASSP , pp. 2133-2136
    • Deng, L.1    Yu, D.2    Platt, J.3
  • 34
    • 79959575293 scopus 로고    scopus 로고
    • A connection between score matching and denoising autoencoders
    • Jul.
    • P. Vincent, "A connection between score matching and denoising autoencoders, " Neural Comput., vol. 23, no. 7, pp. 1661-1674, Jul. 2011.
    • (2011) Neural Comput. , vol.23 , Issue.7 , pp. 1661-1674
    • Vincent, P.1
  • 36
    • 84055222005 scopus 로고    scopus 로고
    • Context-dependent pretrained deep neural networks for large-vocabulary speech recognition
    • Jan.
    • G. Dahl, D. Yu, L. Deng, and A. Acero, "Context-dependent pretrained deep neural networks for large-vocabulary speech recognition, " IEEE Trans. Audio, Speech, Lang. Process., vol. 20, no. 1, pp. 30-42, Jan. 2012.
    • (2012) IEEE Trans. Audio, Speech, Lang. Process. , vol.20 , Issue.1 , pp. 30-42
    • Dahl, G.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 37
    • 26444565569 scopus 로고
    • Finding structure in time
    • J. L. Elman, "Finding structure in time, " Cognit. Sci., vol. 14, no. 2, pp. 179-211, 1990.
    • (1990) Cognit. Sci. , vol.14 , Issue.2 , pp. 179-211
    • Elman, J.L.1
  • 38
    • 0028392167 scopus 로고
    • An application of recurrent nets to phone probability estimation
    • Aug.
    • A. J. Robinson, "An application of recurrent nets to phone probability estimation, " IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 298-305, Aug. 1994.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.2 , pp. 298-305
    • Robinson, A.J.1
  • 39
    • 0028256706 scopus 로고
    • Analysis of the correlation structure for a neural predictive model with application to speech recognition
    • L. Deng, K. Hassanein, and M. Elmasry, "Analysis of the correlation structure for a neural predictive model with application to speech recognition, " Neural Netw., vol. 7, no. 2, pp. 331-339, 1994.
    • (1994) Neural Netw. , vol.7 , Issue.2 , pp. 331-339
    • Deng, L.1    Hassanein, K.2    Elmasry, M.3
  • 43
    • 84906237242 scopus 로고    scopus 로고
    • Investigation of recurrentneural-network architectures and learning methods for spoken language understanding
    • Lyon, Aug.
    • G. Mesnil, X. He, L. Deng, and Y. Bengio, "Investigation of recurrentneural-network architectures and learning methods for spoken language understanding, " presented at the INTERSPEECH, Lyon, Aug. 2013.
    • (2013) The INTERSPEECH
    • Mesnil, G.1    He, X.2    Deng, L.3    Bengio, Y.4
  • 45
    • 84982839648 scopus 로고    scopus 로고
    • Learning input and recurrent weight matrices in echo state networks
    • Dec.
    • H. Palangi, L. Deng, and R. K. Ward, "Learning input and recurrent weight matrices in echo state networks, " in Proc. NIPS Workshop Deep Learn., Dec. 2013, http://research. microsoft. com/apps/pubs/ default. Aspx?id=204701
    • (2013) Proc. NIPS Workshop Deep Learn.
    • Palangi, H.1    Deng, L.2    Ward, R.K.3
  • 46
    • 0034293152 scopus 로고    scopus 로고
    • Learning to forget: Continual prediction with LSTM
    • F. A. Gers, J. Schmidhuber, and F. Cummins, "Learning to forget: Continual prediction with LSTM, " Neural Comput., vol. 12, pp. 2451-2471, 1999.
    • (1999) Neural Comput. , vol.12 , pp. 2451-2471
    • Gers, F.A.1    Schmidhuber, J.2    Cummins, F.3
  • 47
    • 0041965934 scopus 로고    scopus 로고
    • Learning precise timing with LSTM recurrent networks
    • Mar.
    • F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, "Learning precise timing with LSTM recurrent networks, " J. Mach. Learn. Res., vol. 3, pp. 115-143, Mar. 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 115-143
    • Gers, F.A.1    Schraudolph, N.N.2    Schmidhuber, J.3
  • 48
    • 84965175140 scopus 로고
    • A method of solving a convex programming problem with convergence rate o (1/k2)
    • Y. Nesterov, "A method of solving a convex programming problem with convergence rate o (1/k2), " Sov. Math. Doklady, vol. 27, pp. 372-376, 1983.
    • (1983) Sov. Math. Doklady , vol.27 , pp. 372-376
    • Nesterov, Y.1
  • 49
    • 84962921456 scopus 로고    scopus 로고
    • Deep sentence embedding using long shorttermmemory networks: Analysis and application to information retrieval
    • Apr.
    • H. Palangi, L. Deng, Y. Shen, J. Gao, X. He, J. Chen, X. Song, andR. Ward, "Deep sentence embedding using long shorttermmemory networks: Analysis and application to information retrieval, " IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 24, no. 4, pp. 694-707, Apr. 2016.
    • (2016) IEEE/ACM Trans. Audio, Speech, Lang. Process. , vol.24 , Issue.4 , pp. 694-707
    • Palangi, H.1    Deng, L.2    Shen, Y.3    Gao, J.4    He, X.5    Chen, J.6    Song, X.7    Ward, R.8
  • 50
    • 84897510162 scopus 로고    scopus 로고
    • On the importance of initialization and momentum in deep learning
    • I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton, "On the importance of initialization and momentum in deep learning, " in Proc. ICML, 2013, pp. 1139-1147.
    • (2013) Proc. ICML , pp. 1139-1147
    • Sutskever, I.1    Martens, J.2    Dahl, G.E.3    Hinton, G.E.4
  • 51
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Nov.
    • Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition, " Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998, http://yann. lecun. com/exdb/mnist/
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 52
    • 84982806665 scopus 로고    scopus 로고
    • "Microsoft image dataset. " [Online]. Available: http://research. microsoft. com/en-us/projects/objectclassrecognition/
    • Microsoft Image Dataset.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.