-
1
-
-
0031573117
-
Long short-term memory
-
Nov.
-
S. Hochreiter and J. Schmidhuber, "Long short-term memory, " Neural Comput., vol. 9, no. 8, pp. 1735-1780, Nov. 1997.
-
(1997)
Neural Comput.
, vol.9
, Issue.8
, pp. 1735-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
2
-
-
33645712892
-
Compressed sensing
-
Apr.
-
D. Donoho, "Compressed sensing, " IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006.
-
(2006)
IEEE Trans. Inf. Theory
, vol.52
, Issue.4
, pp. 1289-1306
-
-
Donoho, D.1
-
3
-
-
33745604236
-
Stable signal recovery from incomplete and inaccurate measurements
-
E. Candes, J. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements, " Commun. Pure Appl. Math., vol. 59, no. 8, pp. 1207-1223, 2006.
-
(2006)
Commun. Pure Appl. Math.
, vol.59
, Issue.8
, pp. 1207-1223
-
-
Candes, E.1
Romberg, J.2
Tao, T.3
-
4
-
-
85032751965
-
Compressive sensing [lecture notes]
-
Jul.
-
R. Baraniuk, "Compressive sensing [lecture notes], " IEEE Signal Process. Mag., vol. 24, no. 4, pp. 118-121, Jul. 2007.
-
(2007)
IEEE Signal Process. Mag.
, vol.24
, Issue.4
, pp. 118-121
-
-
Baraniuk, R.1
-
5
-
-
79955778301
-
Compressed sensing with coherent and redundant dictionaries
-
E. J. Candes, Y. C. Eldar, D. Needell, and P. Randall, "Compressed sensing with coherent and redundant dictionaries, " Appl. Comput. Harmon. Anal., vol. 31, no. 1, pp. 59-73, 2011.
-
(2011)
Appl. Comput. Harmon. Anal.
, vol.31
, Issue.1
, pp. 59-73
-
-
Candes, E.J.1
Eldar, Y.C.2
Needell, D.3
Randall, P.4
-
6
-
-
80051736221
-
Structured compressed sensing: From theory to applications
-
Sept.
-
M. Duarte and Y. Eldar, "Structured compressed sensing: From theory to applications, " IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4053-4085, Sept. 2011.
-
(2011)
IEEE Trans. Signal Process.
, vol.59
, Issue.9
, pp. 4053-4085
-
-
Duarte, M.1
Eldar, Y.2
-
7
-
-
84856895585
-
Rank awareness in joint sparse recovery
-
Feb.
-
M. Davies and Y. Eldar, "Rank awareness in joint sparse recovery, " IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 1135-1146, Feb. 2012.
-
(2012)
IEEE Trans. Inf. Theory
, vol.58
, Issue.2
, pp. 1135-1146
-
-
Davies, M.1
Eldar, Y.2
-
8
-
-
73849109362
-
Average case analysis of multichannel sparse recovery using convex relaxation
-
Jan.
-
Y. Eldar and H. Rauhut, "Average case analysis of multichannel sparse recovery using convex relaxation, " IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 505-519, Jan. 2010.
-
(2010)
IEEE Trans. Inf. Theory
, vol.56
, Issue.1
, pp. 505-519
-
-
Eldar, Y.1
Rauhut, H.2
-
9
-
-
30844445842
-
Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit
-
J. Tropp, A. Gilbert, andM. Strauss, "Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit, " Signal Process., vol. 86, no. 3, pp. 572-588, 2006.
-
(2006)
Signal Process.
, vol.86
, Issue.3
, pp. 572-588
-
-
Tropp, J.1
Gilbert, A.2
Strauss, M.3
-
10
-
-
30844461481
-
Algorithms for simultaneous sparse approximation. Part II: Convex relaxation
-
J. Tropp, "Algorithms for simultaneous sparse approximation. Part II: Convex relaxation, " Signal Process., vol. 86, no. 3, pp. 589-602, 2006.
-
(2006)
Signal Process.
, vol.86
, Issue.3
, pp. 589-602
-
-
Tropp, J.1
-
11
-
-
34347400802
-
An empirical Bayesian strategy for solving the simultaneous sparse approximation problem
-
D. P. Wipf and B. D. Rao, "An empirical Bayesian strategy for solving the simultaneous sparse approximation problem, " IEEE Trans. Signal Process., vol. 55, no. 7, pp. 3704-3716, 2007.
-
(2007)
IEEE Trans. Signal Process.
, vol.55
, Issue.7
, pp. 3704-3716
-
-
Wipf, D.P.1
Rao, B.D.2
-
12
-
-
58649110599
-
Multitask compressive sensing
-
S. Ji, D. Dunson, and L. Carin, "Multitask compressive sensing, " IEEE Trans. Signal Process., vol. 57, no. 1, pp. 92-106, 2009.
-
(2009)
IEEE Trans. Signal Process.
, vol.57
, Issue.1
, pp. 92-106
-
-
Ji, S.1
Dunson, D.2
Carin, L.3
-
13
-
-
84903724014
-
Deep learning: Methods and applications
-
L. Deng and D. Yu, "Deep learning: Methods and applications, " Found. Trends Signal Process., vol. 7, pp. 197-387, 2014.
-
(2014)
Found. Trends Signal Process.
, vol.7
, pp. 197-387
-
-
Deng, L.1
Yu, D.2
-
15
-
-
80051711912
-
Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning
-
Z. Zhang and B. D. Rao, "Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning, " IEEE J. Sel. Topcs Signal Process., vol. 5, no. 5, pp. 912-926, 2011.
-
(2011)
IEEE J. Sel. Topcs Signal Process.
, vol.5
, Issue.5
, pp. 912-926
-
-
Zhang, Z.1
Rao, B.D.2
-
16
-
-
77950244328
-
Model-based compressive sensing
-
Apr.
-
R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, "Model-based compressive sensing, " IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1982-2001, Apr. 2010.
-
(2010)
IEEE Trans. Inf. Theory
, vol.56
, Issue.4
, pp. 1982-2001
-
-
Baraniuk, R.1
Cevher, V.2
Duarte, M.3
Hegde, C.4
-
17
-
-
44849087307
-
Bayesian compressive sensing
-
S. Ji, Y. Xue, and L. Carin, "Bayesian compressive sensing, " IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2346-2356, 2008.
-
(2008)
IEEE Trans. Signal Process.
, vol.56
, Issue.6
, pp. 2346-2356
-
-
Ji, S.1
Xue, Y.2
Carin, L.3
-
18
-
-
80053654360
-
Embedding prior knowledge within compressed sensing by neural networks
-
Oct.
-
D. Merhej, C. Diab, M. Khalil, and R. Prost, "Embedding prior knowledge within compressed sensing by neural networks, " IEEE Trans. Neural Netw., vol. 22, no. 10, pp. 1638-1649, Oct. 2011.
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, Issue.10
, pp. 1638-1649
-
-
Merhej, D.1
Diab, C.2
Khalil, M.3
Prost, R.4
-
19
-
-
80053654360
-
Embedding prior knowledge within compressed sensing by neural networks
-
Oct.
-
D. Merhej, C. Diab, M. Khalil, and R. Prost, "Embedding prior knowledge within compressed sensing by neural networks, " IEEE Trans. Neural Netw., vol. 22, no. 10, pp. 1638-1649, Oct. 2011.
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, Issue.10
, pp. 1638-1649
-
-
Merhej, D.1
Diab, C.2
Khalil, M.3
Prost, R.4
-
20
-
-
84890502600
-
Using deep stacking network to improve structured compressed sensing with multiple measurement vectors
-
May
-
H. Palangi, R. Ward, and L. Deng, "Using deep stacking network to improve structured compressed sensing with multiple measurement vectors, " in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., May 2013, pp. 3337-3341.
-
(2013)
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
, pp. 3337-3341
-
-
Palangi, H.1
Ward, R.2
Deng, L.3
-
21
-
-
84890502600
-
Using deep stacking network to improve structured compressed sensing with multiple measurement vectors
-
H. Palangi, R. Ward, and L. Deng, "Using deep stacking network to improve structured compressed sensing with multiple measurement vectors, " in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 2013.
-
(2013)
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP)
-
-
Palangi, H.1
Ward, R.2
Deng, L.3
-
23
-
-
84973397922
-
Exploiting correlations among channels in distributed compressive sensing with convolutional deep stacking networks
-
Mar.
-
H. Palangi, R. Ward, and L. Deng, "Exploiting correlations among channels in distributed compressive sensing with convolutional deep stacking networks, " in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Mar. 2016, pp. 2692-2696.
-
(2016)
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP)
, pp. 2692-2696
-
-
Palangi, H.1
Ward, R.2
Deng, L.3
-
24
-
-
84982833922
-
Convolutional deep stacking networks for distributed compressive sensing
-
to be published
-
H. Palangi, R. Ward, and L. Deng, "Convolutional deep stacking networks for distributed compressive sensing, " Signal Process., 2016, to be published.
-
(2016)
Signal Process.
-
-
Palangi, H.1
Ward, R.2
Deng, L.3
-
25
-
-
77954604475
-
Ls-cs-residual (ls-cs): Compressive sensing on least squares residual
-
N. Vaswani, "Ls-cs-residual (ls-cs): Compressive sensing on least squares residual, " IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4108-4120, 2010.
-
(2010)
IEEE Trans. Signal Process.
, vol.58
, Issue.8
, pp. 4108-4120
-
-
Vaswani, N.1
-
26
-
-
84940768033
-
Pattern coupled sparse Bayesian learning for recovery of time varying sparse signals
-
J. Fang, Y. Shen, and H. Li, "Pattern coupled sparse Bayesian learning for recovery of time varying sparse signals, " in Proc. 19th Int. Conf. Digit. Signal Process. (DSP), 2014, pp. 705-709.
-
(2014)
Proc. 19th Int. Conf. Digit. Signal Process. (DSP)
, pp. 705-709
-
-
Fang, J.1
Shen, Y.2
Li, H.3
-
27
-
-
70449564983
-
Compressed sensing of time-varying signals
-
D. Angelosante, G. Giannakis, and E. Grossi, "Compressed sensing of time-varying signals, " in Proc. 16th Int. Conf. Digit. Signal Process., 2009, pp. 1-8.
-
(2009)
Proc. 16th Int. Conf. Digit. Signal Process.
, pp. 1-8
-
-
Angelosante, D.1
Giannakis, G.2
Grossi, E.3
-
28
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
Sep.
-
M. E. Tipping, "Sparse Bayesian learning and the relevance vector machine, " J. Mach. Learn. Res., vol. 1, pp. 211-244, Sep. 2001.
-
(2001)
J. Mach. Learn. Res.
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
29
-
-
1242295826
-
Analysis of sparse Bayesian learning
-
Cambridge, MA, USA: MIT Press
-
A. C. Faul and M. E. Tipping, "Analysis of sparse Bayesian learning, " in Neural Inf. Process. Syst. (NIPS). Cambridge, MA, USA: MIT Press, 2001, pp. 383-389.
-
(2001)
Neural Inf. Process. Syst. (NIPS)
, pp. 383-389
-
-
Faul, A.C.1
Tipping, M.E.2
-
30
-
-
84867614591
-
Scalable stacking and learning for building deep architectures
-
Mar.
-
L. Deng, D. Yu, and J. Platt, "Scalable stacking and learning for building deep architectures, " in Proc. ICASSP, Mar. 2012, pp. 2133-2136.
-
(2012)
Proc. ICASSP
, pp. 2133-2136
-
-
Deng, L.1
Yu, D.2
Platt, J.3
-
31
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
Aug.
-
G. E. Hinton, "Training products of experts by minimizing contrastive divergence, " Neural Comput., vol. 14, no. 8, pp. 1771-1800, Aug. 2002.
-
(2002)
Neural Comput.
, vol.14
, Issue.8
, pp. 1771-1800
-
-
Hinton, G.E.1
-
32
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, "Extracting and composing robust features with denoising autoencoders, " in Proc. ICML, pp. 1096-1103.
-
Proc. ICML
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
33
-
-
84867614591
-
Scalable stacking and learning for building deep architectures
-
Mar.
-
L. Deng, D. Yu, and J. Platt, "Scalable stacking and learning for building deep architectures, " in Proc. ICASSP, Mar. 2012, pp. 2133. 2136.
-
(2012)
Proc. ICASSP
, pp. 2133-2136
-
-
Deng, L.1
Yu, D.2
Platt, J.3
-
34
-
-
79959575293
-
A connection between score matching and denoising autoencoders
-
Jul.
-
P. Vincent, "A connection between score matching and denoising autoencoders, " Neural Comput., vol. 23, no. 7, pp. 1661-1674, Jul. 2011.
-
(2011)
Neural Comput.
, vol.23
, Issue.7
, pp. 1661-1674
-
-
Vincent, P.1
-
35
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
Nov.
-
G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups, " IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82-97, Nov. 2012.
-
(2012)
IEEE Signal Process. Mag.
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.E.4
Mohamed, A.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.N.10
Kingsbury, B.11
-
36
-
-
84055222005
-
Context-dependent pretrained deep neural networks for large-vocabulary speech recognition
-
Jan.
-
G. Dahl, D. Yu, L. Deng, and A. Acero, "Context-dependent pretrained deep neural networks for large-vocabulary speech recognition, " IEEE Trans. Audio, Speech, Lang. Process., vol. 20, no. 1, pp. 30-42, Jan. 2012.
-
(2012)
IEEE Trans. Audio, Speech, Lang. Process.
, vol.20
, Issue.1
, pp. 30-42
-
-
Dahl, G.1
Yu, D.2
Deng, L.3
Acero, A.4
-
37
-
-
26444565569
-
Finding structure in time
-
J. L. Elman, "Finding structure in time, " Cognit. Sci., vol. 14, no. 2, pp. 179-211, 1990.
-
(1990)
Cognit. Sci.
, vol.14
, Issue.2
, pp. 179-211
-
-
Elman, J.L.1
-
38
-
-
0028392167
-
An application of recurrent nets to phone probability estimation
-
Aug.
-
A. J. Robinson, "An application of recurrent nets to phone probability estimation, " IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 298-305, Aug. 1994.
-
(1994)
IEEE Trans. Neural Netw.
, vol.5
, Issue.2
, pp. 298-305
-
-
Robinson, A.J.1
-
39
-
-
0028256706
-
Analysis of the correlation structure for a neural predictive model with application to speech recognition
-
L. Deng, K. Hassanein, and M. Elmasry, "Analysis of the correlation structure for a neural predictive model with application to speech recognition, " Neural Netw., vol. 7, no. 2, pp. 331-339, 1994.
-
(1994)
Neural Netw.
, vol.7
, Issue.2
, pp. 331-339
-
-
Deng, L.1
Hassanein, K.2
Elmasry, M.3
-
40
-
-
79959829092
-
Recurrent neural network based language model
-
Makuhari, Japan, Sep.
-
T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur, "Recurrent neural network based language model, " in Proc. INTERSPEECH, Makuhari, Japan, Sep. 2010, pp. 1045-1048.
-
(2010)
Proc. INTERSPEECH
, pp. 1045-1048
-
-
Mikolov, T.1
Karafiát, M.2
Burget, L.3
Cernockỳ, J.4
Khudanpur, S.5
-
42
-
-
84890543516
-
Advances in optimizing recurrent networks
-
Vancouver, May
-
Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, "Advances in optimizing recurrent networks, " presented at the ICASSP, Vancouver, May 2013.
-
(2013)
The ICASSP
-
-
Bengio, Y.1
Boulanger-Lewandowski, N.2
Pascanu, R.3
-
43
-
-
84906237242
-
Investigation of recurrentneural-network architectures and learning methods for spoken language understanding
-
Lyon, Aug.
-
G. Mesnil, X. He, L. Deng, and Y. Bengio, "Investigation of recurrentneural-network architectures and learning methods for spoken language understanding, " presented at the INTERSPEECH, Lyon, Aug. 2013.
-
(2013)
The INTERSPEECH
-
-
Mesnil, G.1
He, X.2
Deng, L.3
Bengio, Y.4
-
44
-
-
84929407345
-
Recurrent deep-stacking networks for sequence classification
-
Jul.
-
H. Palangi, L. Deng, and R. Ward, "Recurrent deep-stacking networks for sequence classification, " in Proc. IEEE China Summit Int. Conf. Signal Inf. Process. (ChinaSIP), Jul. 2014, pp. 510-514.
-
(2014)
Proc. IEEE China Summit Int. Conf. Signal Inf. Process. (ChinaSIP)
, pp. 510-514
-
-
Palangi, H.1
Deng, L.2
Ward, R.3
-
45
-
-
84982839648
-
Learning input and recurrent weight matrices in echo state networks
-
Dec.
-
H. Palangi, L. Deng, and R. K. Ward, "Learning input and recurrent weight matrices in echo state networks, " in Proc. NIPS Workshop Deep Learn., Dec. 2013, http://research. microsoft. com/apps/pubs/ default. Aspx?id=204701
-
(2013)
Proc. NIPS Workshop Deep Learn.
-
-
Palangi, H.1
Deng, L.2
Ward, R.K.3
-
46
-
-
0034293152
-
Learning to forget: Continual prediction with LSTM
-
F. A. Gers, J. Schmidhuber, and F. Cummins, "Learning to forget: Continual prediction with LSTM, " Neural Comput., vol. 12, pp. 2451-2471, 1999.
-
(1999)
Neural Comput.
, vol.12
, pp. 2451-2471
-
-
Gers, F.A.1
Schmidhuber, J.2
Cummins, F.3
-
47
-
-
0041965934
-
Learning precise timing with LSTM recurrent networks
-
Mar.
-
F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, "Learning precise timing with LSTM recurrent networks, " J. Mach. Learn. Res., vol. 3, pp. 115-143, Mar. 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 115-143
-
-
Gers, F.A.1
Schraudolph, N.N.2
Schmidhuber, J.3
-
48
-
-
84965175140
-
A method of solving a convex programming problem with convergence rate o (1/k2)
-
Y. Nesterov, "A method of solving a convex programming problem with convergence rate o (1/k2), " Sov. Math. Doklady, vol. 27, pp. 372-376, 1983.
-
(1983)
Sov. Math. Doklady
, vol.27
, pp. 372-376
-
-
Nesterov, Y.1
-
49
-
-
84962921456
-
Deep sentence embedding using long shorttermmemory networks: Analysis and application to information retrieval
-
Apr.
-
H. Palangi, L. Deng, Y. Shen, J. Gao, X. He, J. Chen, X. Song, andR. Ward, "Deep sentence embedding using long shorttermmemory networks: Analysis and application to information retrieval, " IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 24, no. 4, pp. 694-707, Apr. 2016.
-
(2016)
IEEE/ACM Trans. Audio, Speech, Lang. Process.
, vol.24
, Issue.4
, pp. 694-707
-
-
Palangi, H.1
Deng, L.2
Shen, Y.3
Gao, J.4
He, X.5
Chen, J.6
Song, X.7
Ward, R.8
-
50
-
-
84897510162
-
On the importance of initialization and momentum in deep learning
-
I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton, "On the importance of initialization and momentum in deep learning, " in Proc. ICML, 2013, pp. 1139-1147.
-
(2013)
Proc. ICML
, pp. 1139-1147
-
-
Sutskever, I.1
Martens, J.2
Dahl, G.E.3
Hinton, G.E.4
-
51
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Nov.
-
Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition, " Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998, http://yann. lecun. com/exdb/mnist/
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
52
-
-
84982806665
-
-
"Microsoft image dataset. " [Online]. Available: http://research. microsoft. com/en-us/projects/objectclassrecognition/
-
Microsoft Image Dataset.
-
-
|