-
2
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Cambridge, MA: MIT Press
-
Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise training of deep networks. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in neural information processing systems, 19 (pp. 153-160). Cambridge, MA: MIT Press.
-
(2007)
Advances in neural information processing systems
, vol.19
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
3
-
-
0345368881
-
Unsupervised learning of distributions of binary vectors using 2-layer networks
-
J. Moody, S. J. Hanson, & R. Lippmann (Eds.), San Francisco: Morgan Kaufmann
-
Freund, Y., & Haussler, D. (1991). Unsupervised learning of distributions of binary vectors using 2-layer networks. In J. Moody, S. J. Hanson, & R. Lippmann (Eds.), Advances in neural information processing systems, 4. San Francisco: Morgan Kaufmann.
-
(1991)
Advances in neural information processing systems
, vol.4
-
-
Freund, Y.1
Haussler, D.2
-
5
-
-
0001295178
-
On the power of small-depth threshold circuits
-
Hastad, J., & Goldmann, M. (1991). On the power of small-depth threshold circuits. Computational Complexity, 1, 113-129.
-
(1991)
Computational Complexity
, vol.1
, pp. 113-129
-
-
Hastad, J.1
Goldmann, M.2
-
6
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14, 1771-1800.
-
(2002)
Neural Computation
, vol.14
, pp. 1771-1800
-
-
Hinton, G.E.1
-
7
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527-1554.
-
(2006)
Neural Computation
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.3
-
8
-
-
45749110924
-
Representational power of restricted Boltzmann machines and deep belief networks
-
Le Roux, N., & Bengio, Y. (2008). Representational power of restricted Boltzmann machines and deep belief networks. Neural Computation, 20(6), 1631-1649.
-
(2008)
Neural Computation
, vol.20
, Issue.6
, pp. 1631-1649
-
-
Le Roux, N.1
Bengio, Y.2
-
9
-
-
44049116681
-
Connectionist learning of belief networks
-
Neal, R. (1992). Connectionist learning of belief networks. Artificial Intelligence, 56, 71-113.
-
(1992)
Artificial Intelligence
, vol.56
, pp. 71-113
-
-
Neal, R.1
-
10
-
-
84864069017
-
Efficient learning of sparse representations with an energy-based model
-
B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Cambridge, MA: MIT Press
-
Ranzato, M., Poultney, C., Chopra, S., & LeCun, Y. (2007). Efficient learning of sparse representations with an energy-based model. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in neural information processing systems, 19. Cambridge, MA: MIT Press.
-
(2007)
Advances in neural information processing systems
, vol.19
-
-
Ranzato, M.1
Poultney, C.2
Chopra, S.3
LeCun, Y.4
-
11
-
-
0141814853
-
Networks of width one are universal classifiers
-
New York: Elsevier
-
Rojas, R. (2003). Networks of width one are universal classifiers. In International Joint Conference on Neural Networks (Vol. 4, pp. 3124-3127). New York: Elsevier.
-
(2003)
International Joint Conference on Neural Networks
, vol.4
, pp. 3124-3127
-
-
Rojas, R.1
-
12
-
-
0000329993
-
Information processing in dynamical systems: Foundations of harmony theory
-
D. E. Rumelhart & J. L. McClelland (Eds), Cambridge, MA: MIT Press
-
Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. In D. E. Rumelhart & J. L. McClelland (Eds), Parallel distributed processing (Vol. 1, pp. 194-281). Cambridge, MA: MIT Press.
-
(1986)
Parallel distributed processing
, vol.1
, pp. 194-281
-
-
Smolensky, P.1
-
13
-
-
55749105263
-
Deep, narrow sigmoid belief networks are universal approximators
-
Sutskever, I., & Hinton, G. E. (2008). Deep, narrow sigmoid belief networks are universal approximators. Neural Computation, 20(11), 2629-2636.
-
(2008)
Neural Computation
, vol.20
, Issue.11
, pp. 2629-2636
-
-
Sutskever, I.1
Hinton, G.E.2
-
14
-
-
56449086223
-
Training restricted Boltzmann machines using approximations to the likelihood gradient
-
Madison, WI: Omnipress
-
Tieleman, T. (2008). Training restricted Boltzmann machines using approximations to the likelihood gradient. In Proceedings of the International Conference on Machine Learning (Vol. 25). Madison, WI: Omnipress.
-
(2008)
Proceedings of the International Conference on Machine Learning
, vol.25
-
-
Tieleman, T.1
-
15
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
Madison, WI: Omnipress
-
Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and composing robust features with denoising autoencoders. In Proceedings of the Twenty-Fifth International Conference on Machine Learning (ICML'2008). Madison, WI: Omnipress.
-
(2008)
Proceedings of the Twenty-Fifth International Conference on Machine Learning (ICML'2008)
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
|