메뉴 건너뛰기




Volumn 22, Issue 8, 2010, Pages 2192-2207

Deep belief networks are compact universal approximators

Author keywords

[No Author keywords available]

Indexed keywords


EID: 77955997114     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2010.08-09-1081     Document Type: Letter
Times cited : (158)

References (15)
  • 2
    • 84864073449 scopus 로고    scopus 로고
    • Greedy layer-wise training of deep networks
    • B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Cambridge, MA: MIT Press
    • Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise training of deep networks. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in neural information processing systems, 19 (pp. 153-160). Cambridge, MA: MIT Press.
    • (2007) Advances in neural information processing systems , vol.19 , pp. 153-160
    • Bengio, Y.1    Lamblin, P.2    Popovici, D.3    Larochelle, H.4
  • 3
    • 0345368881 scopus 로고
    • Unsupervised learning of distributions of binary vectors using 2-layer networks
    • J. Moody, S. J. Hanson, & R. Lippmann (Eds.), San Francisco: Morgan Kaufmann
    • Freund, Y., & Haussler, D. (1991). Unsupervised learning of distributions of binary vectors using 2-layer networks. In J. Moody, S. J. Hanson, & R. Lippmann (Eds.), Advances in neural information processing systems, 4. San Francisco: Morgan Kaufmann.
    • (1991) Advances in neural information processing systems , vol.4
    • Freund, Y.1    Haussler, D.2
  • 5
    • 0001295178 scopus 로고
    • On the power of small-depth threshold circuits
    • Hastad, J., & Goldmann, M. (1991). On the power of small-depth threshold circuits. Computational Complexity, 1, 113-129.
    • (1991) Computational Complexity , vol.1 , pp. 113-129
    • Hastad, J.1    Goldmann, M.2
  • 6
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14, 1771-1800.
    • (2002) Neural Computation , vol.14 , pp. 1771-1800
    • Hinton, G.E.1
  • 7
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527-1554.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 8
    • 45749110924 scopus 로고    scopus 로고
    • Representational power of restricted Boltzmann machines and deep belief networks
    • Le Roux, N., & Bengio, Y. (2008). Representational power of restricted Boltzmann machines and deep belief networks. Neural Computation, 20(6), 1631-1649.
    • (2008) Neural Computation , vol.20 , Issue.6 , pp. 1631-1649
    • Le Roux, N.1    Bengio, Y.2
  • 9
    • 44049116681 scopus 로고
    • Connectionist learning of belief networks
    • Neal, R. (1992). Connectionist learning of belief networks. Artificial Intelligence, 56, 71-113.
    • (1992) Artificial Intelligence , vol.56 , pp. 71-113
    • Neal, R.1
  • 10
    • 84864069017 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Cambridge, MA: MIT Press
    • Ranzato, M., Poultney, C., Chopra, S., & LeCun, Y. (2007). Efficient learning of sparse representations with an energy-based model. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in neural information processing systems, 19. Cambridge, MA: MIT Press.
    • (2007) Advances in neural information processing systems , vol.19
    • Ranzato, M.1    Poultney, C.2    Chopra, S.3    LeCun, Y.4
  • 11
    • 0141814853 scopus 로고    scopus 로고
    • Networks of width one are universal classifiers
    • New York: Elsevier
    • Rojas, R. (2003). Networks of width one are universal classifiers. In International Joint Conference on Neural Networks (Vol. 4, pp. 3124-3127). New York: Elsevier.
    • (2003) International Joint Conference on Neural Networks , vol.4 , pp. 3124-3127
    • Rojas, R.1
  • 12
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: Foundations of harmony theory
    • D. E. Rumelhart & J. L. McClelland (Eds), Cambridge, MA: MIT Press
    • Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. In D. E. Rumelhart & J. L. McClelland (Eds), Parallel distributed processing (Vol. 1, pp. 194-281). Cambridge, MA: MIT Press.
    • (1986) Parallel distributed processing , vol.1 , pp. 194-281
    • Smolensky, P.1
  • 13
    • 55749105263 scopus 로고    scopus 로고
    • Deep, narrow sigmoid belief networks are universal approximators
    • Sutskever, I., & Hinton, G. E. (2008). Deep, narrow sigmoid belief networks are universal approximators. Neural Computation, 20(11), 2629-2636.
    • (2008) Neural Computation , vol.20 , Issue.11 , pp. 2629-2636
    • Sutskever, I.1    Hinton, G.E.2
  • 14
    • 56449086223 scopus 로고    scopus 로고
    • Training restricted Boltzmann machines using approximations to the likelihood gradient
    • Madison, WI: Omnipress
    • Tieleman, T. (2008). Training restricted Boltzmann machines using approximations to the likelihood gradient. In Proceedings of the International Conference on Machine Learning (Vol. 25). Madison, WI: Omnipress.
    • (2008) Proceedings of the International Conference on Machine Learning , vol.25
    • Tieleman, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.