-
1
-
-
56749152272
-
Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells
-
Merad, M., et al. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat. Rev. Immunol. 8 (2008), 935–947.
-
(2008)
Nat. Rev. Immunol.
, vol.8
, pp. 935-947
-
-
Merad, M.1
-
2
-
-
33748742509
-
Characterization of chicken epidermal dendritic cells
-
Igyarto, B.Z., et al. Characterization of chicken epidermal dendritic cells. Immunology 119 (2006), 278–288.
-
(2006)
Immunology
, vol.119
, pp. 278-288
-
-
Igyarto, B.Z.1
-
3
-
-
0028841479
-
Epidermal Langerhans cells in the terrestrial turtle, Kinosternum integrum
-
Perez-Torres, A., et al. Epidermal Langerhans cells in the terrestrial turtle, Kinosternum integrum. Dev. Comp. Immunol. 19 (1995), 225–236.
-
(1995)
Dev. Comp. Immunol.
, vol.19
, pp. 225-236
-
-
Perez-Torres, A.1
-
5
-
-
84981489685
-
Specification of tissue-resident macrophages during organogenesis
-
Mass, E., et al. Specification of tissue-resident macrophages during organogenesis. Science, 353, 2016, aaf4238.
-
(2016)
Science
, vol.353
, pp. aaf4238
-
-
Mass, E.1
-
6
-
-
84925465211
-
Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors
-
Gomez Perdiguero, E., et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518 (2015), 547–551.
-
(2015)
Nature
, vol.518
, pp. 547-551
-
-
Gomez Perdiguero, E.1
-
7
-
-
84859508307
-
A lineage of myeloid cells independent of Myb and hematopoietic stem cells
-
Schulz, C., et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336 (2012), 86–90.
-
(2012)
Science
, vol.336
, pp. 86-90
-
-
Schulz, C.1
-
8
-
-
84928189502
-
C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages
-
Hoeffel, G., et al. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42 (2015), 665–678.
-
(2015)
Immunity
, vol.42
, pp. 665-678
-
-
Hoeffel, G.1
-
9
-
-
84864298329
-
Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages
-
Hoeffel, G., et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 209 (2012), 1167–1181.
-
(2012)
J. Exp. Med.
, vol.209
, pp. 1167-1181
-
-
Hoeffel, G.1
-
10
-
-
84940984138
-
Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells
-
Sheng, J., et al. Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity 43 (2015), 382–393.
-
(2015)
Immunity
, vol.43
, pp. 382-393
-
-
Sheng, J.1
-
11
-
-
73949147392
-
Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network
-
Chorro, L., et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J. Exp. Med. 206 (2009), 3089–3100.
-
(2009)
J. Exp. Med.
, vol.206
, pp. 3089-3100
-
-
Chorro, L.1
-
12
-
-
84920724792
-
Environment drives selection and function of enhancers controlling tissue-specific macrophage identities
-
Gosselin, D., et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159 (2014), 1327–1340.
-
(2014)
Cell
, vol.159
, pp. 1327-1340
-
-
Gosselin, D.1
-
13
-
-
84920724791
-
Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment
-
Lavin, Y., et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159 (2014), 1312–1326.
-
(2014)
Cell
, vol.159
, pp. 1312-1326
-
-
Lavin, Y.1
-
14
-
-
84884214656
-
Multicolor fate mapping of Langerhans cell homeostasis
-
Ghigo, C., et al. Multicolor fate mapping of Langerhans cell homeostasis. J. Exp. Med. 210 (2013), 1657–1664.
-
(2013)
J. Exp. Med.
, vol.210
, pp. 1657-1664
-
-
Ghigo, C.1
-
15
-
-
84958191207
-
Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells
-
Soucie, E.L., et al. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells. Science, 351, 2016, aad5510.
-
(2016)
Science
, vol.351
, pp. aad5510
-
-
Soucie, E.L.1
-
16
-
-
0027217314
-
Loss of expression of transforming growth factor beta in skin and skin tumors is associated with hyperproliferation and a high risk for malignant conversion
-
Glick, A.B., et al. Loss of expression of transforming growth factor beta in skin and skin tumors is associated with hyperproliferation and a high risk for malignant conversion. Proc. Natl. Acad. Sci. U. S. A. 90 (1993), 6076–6080.
-
(1993)
Proc. Natl. Acad. Sci. U. S. A.
, vol.90
, pp. 6076-6080
-
-
Glick, A.B.1
-
17
-
-
35748948090
-
Autocrine/paracrine TGFbeta1 is required for the development of epidermal Langerhans cells
-
Kaplan, D.H., et al. Autocrine/paracrine TGFbeta1 is required for the development of epidermal Langerhans cells. J. Exp. Med. 204 (2007), 2545–2552.
-
(2007)
J. Exp. Med.
, vol.204
, pp. 2545-2552
-
-
Kaplan, D.H.1
-
18
-
-
84862987203
-
Autocrine/paracrine TGF-beta1 inhibits Langerhans cell migration
-
Bobr, A., et al. Autocrine/paracrine TGF-beta1 inhibits Langerhans cell migration. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 10492–10497.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 10492-10497
-
-
Bobr, A.1
-
19
-
-
78649629136
-
TGF-beta is required to maintain the pool of immature Langerhans cells in the epidermis
-
Kel, J.M., et al. TGF-beta is required to maintain the pool of immature Langerhans cells in the epidermis. J. Immunol. 185 (2010), 3248–3255.
-
(2010)
J. Immunol.
, vol.185
, pp. 3248-3255
-
-
Kel, J.M.1
-
20
-
-
0030456368
-
A role for endogenous transforming growth factor beta 1 in Langerhans cell biology: the skin of transforming growth factor beta 1 null mice is devoid of epidermal Langerhans cells
-
Borkowski, T.A., et al. A role for endogenous transforming growth factor beta 1 in Langerhans cell biology: the skin of transforming growth factor beta 1 null mice is devoid of epidermal Langerhans cells. J. Exp. Med. 184 (1996), 2417–2422.
-
(1996)
J. Exp. Med.
, vol.184
, pp. 2417-2422
-
-
Borkowski, T.A.1
-
21
-
-
84896973126
-
TGF-beta activation and function in immunity
-
Travis, M.A., Sheppard, D., TGF-beta activation and function in immunity. Annu. Rev. Immunol. 32 (2014), 51–82.
-
(2014)
Annu. Rev. Immunol.
, vol.32
, pp. 51-82
-
-
Travis, M.A.1
Sheppard, D.2
-
22
-
-
84959105586
-
Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-beta
-
Mohammed, J., et al. Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-beta. Nat. Immunol. 17 (2016), 414–421.
-
(2016)
Nat. Immunol.
, vol.17
, pp. 414-421
-
-
Mohammed, J.1
-
23
-
-
12144285752
-
Runx3 regulates mouse TGF-beta-mediated dendritic cell function and its absence results in airway inflammation
-
Fainaru, O., et al. Runx3 regulates mouse TGF-beta-mediated dendritic cell function and its absence results in airway inflammation. EMBO J. 23 (2004), 969–979.
-
(2004)
EMBO J.
, vol.23
, pp. 969-979
-
-
Fainaru, O.1
-
24
-
-
0037386339
-
Transcriptional profiling identifies Id2 function in dendritic cell development
-
Hacker, C., et al. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat. Immunol. 4 (2003), 380–386.
-
(2003)
Nat. Immunol.
, vol.4
, pp. 380-386
-
-
Hacker, C.1
-
25
-
-
84890809254
-
Langerhans cells are generated by two distinct PU.1-dependent transcriptional networks
-
Chopin, M., et al. Langerhans cells are generated by two distinct PU.1-dependent transcriptional networks. J. Exp. Med. 210 (2013), 2967–2980.
-
(2013)
J. Exp. Med.
, vol.210
, pp. 2967-2980
-
-
Chopin, M.1
-
26
-
-
84892655317
-
The late endosomal adaptor molecule p14 (LAMTOR2) represents a novel regulator of Langerhans cell homeostasis
-
Sparber, F., et al. The late endosomal adaptor molecule p14 (LAMTOR2) represents a novel regulator of Langerhans cell homeostasis. Blood 123 (2014), 217–227.
-
(2014)
Blood
, vol.123
, pp. 217-227
-
-
Sparber, F.1
-
27
-
-
84925938012
-
The late endosomal adaptor molecule p14 (LAMTOR2) regulates TGFbeta1-mediated homeostasis of Langerhans cells
-
Sparber, F., et al. The late endosomal adaptor molecule p14 (LAMTOR2) regulates TGFbeta1-mediated homeostasis of Langerhans cells. J. Invest. Dermatol. 135 (2015), 119–129.
-
(2015)
J. Invest. Dermatol.
, vol.135
, pp. 119-129
-
-
Sparber, F.1
-
28
-
-
84971673905
-
TGF-beta1-Smad signaling pathways are not required for epidermal LC homeostasis
-
Li, G., et al. TGF-beta1-Smad signaling pathways are not required for epidermal LC homeostasis. Oncotarget 7 (2016), 15290–15291.
-
(2016)
Oncotarget
, vol.7
, pp. 15290-15291
-
-
Li, G.1
-
29
-
-
84863984608
-
TGFbeta/Smad3 signal pathway is not required for epidermal Langerhans cell development
-
Xu, Y.P., et al. TGFbeta/Smad3 signal pathway is not required for epidermal Langerhans cell development. J. Invest. Dermatol. 132 (2012), 2106–2109.
-
(2012)
J. Invest. Dermatol.
, vol.132
, pp. 2106-2109
-
-
Xu, Y.P.1
-
30
-
-
85011591309
-
Non-Smad signaling pathways of the TGF-beta family
-
Zhang, Y.E., Non-Smad signaling pathways of the TGF-beta family. Cold Spring Harb. Perspect. Biol., 9, 2017, 10.1101/cshperspect.a022129.
-
(2017)
Cold Spring Harb. Perspect. Biol.
, vol.9
-
-
Zhang, Y.E.1
-
31
-
-
84888114656
-
Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation
-
Yasmin, N., et al. Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation. J. Exp. Med. 210 (2013), 2597–2610.
-
(2013)
J. Exp. Med.
, vol.210
, pp. 2597-2610
-
-
Yasmin, N.1
-
32
-
-
84864152036
-
IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia
-
Wang, Y., et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13 (2012), 753–760.
-
(2012)
Nat. Immunol.
, vol.13
, pp. 753-760
-
-
Wang, Y.1
-
33
-
-
84959367081
-
Nonredundant roles of keratinocyte-derived IL-34 and neutrophil-derived CSF1 in Langerhans cell renewal in the steady state and during inflammation
-
Wang, Y., et al. Nonredundant roles of keratinocyte-derived IL-34 and neutrophil-derived CSF1 in Langerhans cell renewal in the steady state and during inflammation. Eur. J. Immunol. 46 (2016), 552–559.
-
(2016)
Eur. J. Immunol.
, vol.46
, pp. 552-559
-
-
Wang, Y.1
-
34
-
-
84869229157
-
Two distinct types of Langerhans cells populate the skin during steady state and inflammation
-
Sere, K., et al. Two distinct types of Langerhans cells populate the skin during steady state and inflammation. Immunity 37 (2012), 905–916.
-
(2012)
Immunity
, vol.37
, pp. 905-916
-
-
Sere, K.1
-
35
-
-
33645953640
-
Langerhans cells arise from monocytes in vivo
-
Ginhoux, F., et al. Langerhans cells arise from monocytes in vivo. Nat. Immunol. 7 (2006), 265–273.
-
(2006)
Nat. Immunol.
, vol.7
, pp. 265-273
-
-
Ginhoux, F.1
-
36
-
-
84864124259
-
Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin
-
Nagao, K., et al. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat. Immunol. 13 (2012), 744–752.
-
(2012)
Nat. Immunol.
, vol.13
, pp. 744-752
-
-
Nagao, K.1
-
37
-
-
84960920909
-
Yolk sac macrophages, fetal liver, and adult monocytes can colonize an empty niche and develop into functional tissue-resident macrophages
-
van de Laar, L., et al. Yolk sac macrophages, fetal liver, and adult monocytes can colonize an empty niche and develop into functional tissue-resident macrophages. Immunity 44 (2016), 755–768.
-
(2016)
Immunity
, vol.44
, pp. 755-768
-
-
van de Laar, L.1
-
38
-
-
84941024695
-
Distinct murine mucosal Langerhans cell subsets develop from pre-dendritic cells and monocytes
-
Capucha, T., et al. Distinct murine mucosal Langerhans cell subsets develop from pre-dendritic cells and monocytes. Immunity 43 (2015), 369–381.
-
(2015)
Immunity
, vol.43
, pp. 369-381
-
-
Capucha, T.1
-
39
-
-
84922179711
-
+ blood dendritic cells have Langerhans cell potential
-
+ blood dendritic cells have Langerhans cell potential. Blood 125 (2015), 470–473.
-
(2015)
Blood
, vol.125
, pp. 470-473
-
-
Milne, P.1
-
40
-
-
84907611125
-
Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-beta
-
Martinez-Cingolani, C., et al. Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-beta. Blood 124 (2014), 2411–2420.
-
(2014)
Blood
, vol.124
, pp. 2411-2420
-
-
Martinez-Cingolani, C.1
-
41
-
-
0027530547
-
Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin
-
Tang, A., et al. Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin. Nature 361 (1993), 82–85.
-
(1993)
Nature
, vol.361
, pp. 82-85
-
-
Tang, A.1
-
42
-
-
0021917676
-
Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro
-
Schuler, G., Steinman, R.M., Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J. Exp. Med. 161 (1985), 526–546.
-
(1985)
J. Exp. Med.
, vol.161
, pp. 526-546
-
-
Schuler, G.1
Steinman, R.M.2
-
43
-
-
0036568954
-
Matrix metalloproteinases 9 and 2 are necessary for the migration of Langerhans cells and dermal dendritic cells from human and murine skin
-
Ratzinger, G., et al. Matrix metalloproteinases 9 and 2 are necessary for the migration of Langerhans cells and dermal dendritic cells from human and murine skin. J. Immunol. 168 (2002), 4361–4371.
-
(2002)
J. Immunol.
, vol.168
, pp. 4361-4371
-
-
Ratzinger, G.1
-
44
-
-
35348901875
-
CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells
-
Kabashima, K., et al. CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. Am. J. Pathol. 171 (2007), 1249–1257.
-
(2007)
Am. J. Pathol.
, vol.171
, pp. 1249-1257
-
-
Kabashima, K.1
-
45
-
-
80555153996
-
DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling
-
Tal, O., et al. DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling. J. Exp. Med. 208 (2011), 2141–2153.
-
(2011)
J. Exp. Med.
, vol.208
, pp. 2141-2153
-
-
Tal, O.1
-
46
-
-
4143096772
-
CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions
-
Ohl, L., et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21 (2004), 279–288.
-
(2004)
Immunity
, vol.21
, pp. 279-288
-
-
Ohl, L.1
-
47
-
-
21144444056
-
Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells
-
Kissenpfennig, A., et al. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22 (2005), 643–654.
-
(2005)
Immunity
, vol.22
, pp. 643-654
-
-
Kissenpfennig, A.1
-
48
-
-
84905979569
-
Tracking and quantification of dendritic cell migration and antigen trafficking between the skin and lymph nodes
-
Tomura, M., et al. Tracking and quantification of dendritic cell migration and antigen trafficking between the skin and lymph nodes. Sci. Rep., 4, 2014, 6030.
-
(2014)
Sci. Rep.
, vol.4
, pp. 6030
-
-
Tomura, M.1
-
49
-
-
84869411578
-
Control of RelB during dendritic cell activation integrates canonical and noncanonical NF-kappaB pathways
-
Shih, V.F., et al. Control of RelB during dendritic cell activation integrates canonical and noncanonical NF-kappaB pathways. Nat. Immunol. 13 (2012), 1162–1170.
-
(2012)
Nat. Immunol.
, vol.13
, pp. 1162-1170
-
-
Shih, V.F.1
-
50
-
-
84928206908
-
Homeostatic NF-kappaB signaling in steady-state migratory dendritic cells regulates immune homeostasis and tolerance
-
Baratin, M., et al. Homeostatic NF-kappaB signaling in steady-state migratory dendritic cells regulates immune homeostasis and tolerance. Immunity 42 (2015), 627–639.
-
(2015)
Immunity
, vol.42
, pp. 627-639
-
-
Baratin, M.1
-
51
-
-
81055141487
-
Langerhans cells are precommitted to immune tolerance induction
-
Shklovskaya, E., et al. Langerhans cells are precommitted to immune tolerance induction. Proc. Natl. Acad. Sci. U. S. A. 108 (2011), 18049–18054.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 18049-18054
-
-
Shklovskaya, E.1
-
52
-
-
0030725852
-
Langerhans cells require signals from both tumour necrosis factor-alpha and interleukin-1 beta for migration
-
Cumberbatch, M., et al. Langerhans cells require signals from both tumour necrosis factor-alpha and interleukin-1 beta for migration. Immunology 92 (1997), 388–395.
-
(1997)
Immunology
, vol.92
, pp. 388-395
-
-
Cumberbatch, M.1
-
53
-
-
0035067261
-
Interleukin (IL)-18 induces Langerhans cell migration by a tumour necrosis factor-alpha- and IL-1beta-dependent mechanism
-
Cumberbatch, M., et al. Interleukin (IL)-18 induces Langerhans cell migration by a tumour necrosis factor-alpha- and IL-1beta-dependent mechanism. Immunology 102 (2001), 323–330.
-
(2001)
Immunology
, vol.102
, pp. 323-330
-
-
Cumberbatch, M.1
-
54
-
-
0036351436
-
Differential regulation of epidermal Langerhans cell migration by interleukins (IL)-1alpha and IL-1beta during irritant- and allergen-induced cutaneous immune responses
-
Cumberbatch, M., et al. Differential regulation of epidermal Langerhans cell migration by interleukins (IL)-1alpha and IL-1beta during irritant- and allergen-induced cutaneous immune responses. Toxicol. Appl. Pharmacol. 182 (2002), 126–135.
-
(2002)
Toxicol. Appl. Pharmacol.
, vol.182
, pp. 126-135
-
-
Cumberbatch, M.1
-
55
-
-
84860318542
-
Langerhans cells require MyD88-dependent signals for Candida albicans response but not for contact hypersensitivity or migration
-
Haley, K., et al. Langerhans cells require MyD88-dependent signals for Candida albicans response but not for contact hypersensitivity or migration. J. Immunol. 188 (2012), 4334–4339.
-
(2012)
J. Immunol.
, vol.188
, pp. 4334-4339
-
-
Haley, K.1
-
56
-
-
1642379407
-
Lymphoid organ dendritic cells: beyond the Langerhans cells paradigm
-
Wilson, N.S., Villadangos, J.A., Lymphoid organ dendritic cells: beyond the Langerhans cells paradigm. Immunol. Cell Biol. 82 (2004), 91–98.
-
(2004)
Immunol. Cell Biol.
, vol.82
, pp. 91-98
-
-
Wilson, N.S.1
Villadangos, J.A.2
-
57
-
-
65249099085
-
+ dendritic cells
-
+ dendritic cells. Nat. Immunol. 10 (2009), 488–495.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 488-495
-
-
Bedoui, S.1
-
58
-
-
28844492624
-
Epidermal Langerhans cell-deficient mice develop enhanced contact hypersensitivity
-
Kaplan, D.H., et al. Epidermal Langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 23 (2005), 611–620.
-
(2005)
Immunity
, vol.23
, pp. 611-620
-
-
Kaplan, D.H.1
-
59
-
-
22344443257
-
Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity
-
Bennett, C.L., et al. Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J. Cell Biol. 169 (2005), 569–576.
-
(2005)
J. Cell Biol.
, vol.169
, pp. 569-576
-
-
Bennett, C.L.1
-
60
-
-
55249092998
-
Insights into Langerhans cell function from Langerhans cell ablation models
-
Kaplan, D.H., et al. Insights into Langerhans cell function from Langerhans cell ablation models. Eur. J. Immunol. 38 (2008), 2369–2376.
-
(2008)
Eur. J. Immunol.
, vol.38
, pp. 2369-2376
-
-
Kaplan, D.H.1
-
61
-
-
84859158015
-
Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling
-
1048–1055 e1046
-
Nakajima, S., et al. Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling. J. Allergy Clin. Immunol., 129, 2012 1048–1055 e1046.
-
(2012)
J. Allergy Clin. Immunol.
, vol.129
-
-
Nakajima, S.1
-
62
-
-
78649630548
-
In vivo function of Langerhans cells and dermal dendritic cells
-
Kaplan, D.H., In vivo function of Langerhans cells and dermal dendritic cells. Trends Immunol. 31 (2010), 446–451.
-
(2010)
Trends Immunol.
, vol.31
, pp. 446-451
-
-
Kaplan, D.H.1
-
63
-
-
66149111441
-
MGL2 Dermal dendritic cells are sufficient to initiate contact hypersensitivity in vivo
-
Kumamoto, Y., et al. MGL2 Dermal dendritic cells are sufficient to initiate contact hypersensitivity in vivo. PLoS One, 4, 2009, e5619.
-
(2009)
PLoS One
, vol.4
, pp. e5619
-
-
Kumamoto, Y.1
-
64
-
-
24344448276
-
Stratum corneum defensive functions: an integrated view
-
Elias, P.M., Stratum corneum defensive functions: an integrated view. J. Invest. Dermatol. 125 (2005), 183–200.
-
(2005)
J. Invest. Dermatol.
, vol.125
, pp. 183-200
-
-
Elias, P.M.1
-
65
-
-
0037128938
-
Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice
-
Furuse, M., et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J. Cell Biol. 156 (2002), 1099–1111.
-
(2002)
J. Cell Biol.
, vol.156
, pp. 1099-1111
-
-
Furuse, M.1
-
66
-
-
84877746703
-
The stratum corneum comprises three layers with distinct metal-ion barrier properties
-
Kubo, A., et al. The stratum corneum comprises three layers with distinct metal-ion barrier properties. Sci. Rep., 3, 2013, 1731.
-
(2013)
Sci. Rep.
, vol.3
, pp. 1731
-
-
Kubo, A.1
-
67
-
-
73949120263
-
External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers
-
Kubo, A., et al. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J. Exp. Med. 206 (2009), 2937–2946.
-
(2009)
J. Exp. Med.
, vol.206
, pp. 2937-2946
-
-
Kubo, A.1
-
68
-
-
84862908998
-
Langerhans cell antigen capture through tight junctions confers preemptive immunity in experimental staphylococcal scalded skin syndrome
-
Ouchi, T., et al. Langerhans cell antigen capture through tight junctions confers preemptive immunity in experimental staphylococcal scalded skin syndrome. J. Exp. Med. 208 (2011), 2607–2613.
-
(2011)
J. Exp. Med.
, vol.208
, pp. 2607-2613
-
-
Ouchi, T.1
-
69
-
-
0017684607
-
Staphylococcal scalded skin syndrome. II. Serum level of anti exfoliatin and anti alpha-toxin in patients with staphylococcal scalded skin syndrome or bullous impetigo
-
Nishioka, K., et al. Staphylococcal scalded skin syndrome. II. Serum level of anti exfoliatin and anti alpha-toxin in patients with staphylococcal scalded skin syndrome or bullous impetigo. J. Dermatol. 4 (1977), 65–68.
-
(1977)
J. Dermatol.
, vol.4
, pp. 65-68
-
-
Nishioka, K.1
-
70
-
-
84928958293
-
Skin dendritic cells induce follicular helper T cells and protective humoral immune responses
-
1387–1397.e1–7
-
Yao, C., et al. Skin dendritic cells induce follicular helper T cells and protective humoral immune responses. J. Allergy Clin. Immunol., 136, 2015 1387–1397.e1–7.
-
(2015)
J. Allergy Clin. Immunol.
, vol.136
-
-
Yao, C.1
-
71
-
-
84861703829
-
Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice
-
1538–1546.e6
-
Kawasaki, H., et al. Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice. J. Allergy Clin. Immunol., 129, 2012 1538–1546.e6.
-
(2012)
J. Allergy Clin. Immunol.
, vol.129
-
-
Kawasaki, H.1
-
72
-
-
84928184443
-
Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis
-
Kobayashi, T., et al. Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis. Immunity 42 (2015), 756–766.
-
(2015)
Immunity
, vol.42
, pp. 756-766
-
-
Kobayashi, T.1
-
73
-
-
84975154530
-
Skin immunity to Candida albicans
-
Kashem, S.W., Kaplan, D.H., Skin immunity to Candida albicans. Trends Immunol. 37 (2016), 440–450.
-
(2016)
Trends Immunol.
, vol.37
, pp. 440-450
-
-
Kashem, S.W.1
Kaplan, D.H.2
-
74
-
-
80051906942
-
Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses
-
Igyarto, B.Z., et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 35 (2011), 260–272.
-
(2011)
Immunity
, vol.35
, pp. 260-272
-
-
Igyarto, B.Z.1
-
75
-
-
84923000491
-
Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation
-
Kashem, S.W., et al. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity 42 (2015), 356–366.
-
(2015)
Immunity
, vol.42
, pp. 356-366
-
-
Kashem, S.W.1
-
76
-
-
85019610985
-
Monocyte-derived inflammatory Langerhans cells and dermal dendritic cells mediate psoriasis-like inflammation
-
Singh, T.P., et al. Monocyte-derived inflammatory Langerhans cells and dermal dendritic cells mediate psoriasis-like inflammation. Nat. Commun., 7, 2016, 13581.
-
(2016)
Nat. Commun.
, vol.7
, pp. 13581
-
-
Singh, T.P.1
-
77
-
-
84902537284
-
IL-23 from Langerhans cells is required for the development of imiquimod-induced psoriasis-like dermatitis by induction of IL-17A-producing gammadelta T cells
-
Yoshiki, R., et al. IL-23 from Langerhans cells is required for the development of imiquimod-induced psoriasis-like dermatitis by induction of IL-17A-producing gammadelta T cells. J. Invest. Dermatol. 134 (2014), 1912–1921.
-
(2014)
J. Invest. Dermatol.
, vol.134
, pp. 1912-1921
-
-
Yoshiki, R.1
-
78
-
-
79956067743
-
Langerhans cells are negative regulators of the anti-Leishmania response
-
Kautz-Neu, K., et al. Langerhans cells are negative regulators of the anti-Leishmania response. J. Exp. Med. 208 (2011), 885–891.
-
(2011)
J. Exp. Med.
, vol.208
, pp. 885-891
-
-
Kautz-Neu, K.1
-
79
-
-
84860565845
-
Langerhans cells protect from allergic contact dermatitis in mice by tolerizing CD8(+) T cells and activating Foxp3(+) regulatory T cells
-
Gomez de Aguero, M., et al. Langerhans cells protect from allergic contact dermatitis in mice by tolerizing CD8(+) T cells and activating Foxp3(+) regulatory T cells. J. Clin. Invest. 122 (2012), 1700–1711.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 1700-1711
-
-
Gomez de Aguero, M.1
-
80
-
-
84918531042
-
+ T cells while Langerhans cells induce cross-tolerance
-
+ T cells while Langerhans cells induce cross-tolerance. EMBO Mol. Med. 6 (2014), 1191–1204.
-
(2014)
EMBO Mol. Med.
, vol.6
, pp. 1191-1204
-
-
Flacher, V.1
-
81
-
-
84986893432
-
CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation
-
Price, J.G., et al. CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation. Nat. Immunol. 16 (2015), 1060–1068.
-
(2015)
Nat. Immunol.
, vol.16
, pp. 1060-1068
-
-
Price, J.G.1
-
82
-
-
84873331871
-
Specialized role of migratory dendritic cells in peripheral tolerance induction
-
Idoyaga, J., et al. Specialized role of migratory dendritic cells in peripheral tolerance induction. J. Clin. Invest. 123 (2013), 844–854.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 844-854
-
-
Idoyaga, J.1
-
83
-
-
0031780897
-
A possible role for Langerhans cells in the removal of melanin from early catagen hair follicles
-
Tobin, D.J., A possible role for Langerhans cells in the removal of melanin from early catagen hair follicles. Br. J. Dermatol. 138 (1998), 795–798.
-
(1998)
Br. J. Dermatol.
, vol.138
, pp. 795-798
-
-
Tobin, D.J.1
-
84
-
-
84856512591
-
Severe dermatitis with loss of epidermal Langerhans cells in human and mouse zinc deficiency
-
Kawamura, T., et al. Severe dermatitis with loss of epidermal Langerhans cells in human and mouse zinc deficiency. J. Clin. Invest. 122 (2012), 722–732.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 722-732
-
-
Kawamura, T.1
-
85
-
-
85006819029
-
+ macrophages or monocyte-derived dendritic cells
-
+ macrophages or monocyte-derived dendritic cells. Immunity 45 (2016), 1205–1218.
-
(2016)
Immunity
, vol.45
, pp. 1205-1218
-
-
Menezes, S.1
-
86
-
-
84999752022
-
Mafb lineage tracing to distinguish macrophages from other immune lineages reveals dual identity of Langerhans cells
-
Wu, X., et al. Mafb lineage tracing to distinguish macrophages from other immune lineages reveals dual identity of Langerhans cells. J. Exp. Med. 213 (2016), 2553–2565.
-
(2016)
J. Exp. Med.
, vol.213
, pp. 2553-2565
-
-
Wu, X.1
-
87
-
-
85010956304
-
Receptor usage dictates HIV-1 restriction by human TRIM5alpha in dendritic cell subsets
-
Ribeiro, C.M., et al. Receptor usage dictates HIV-1 restriction by human TRIM5alpha in dendritic cell subsets. Nature 540 (2016), 448–452.
-
(2016)
Nature
, vol.540
, pp. 448-452
-
-
Ribeiro, C.M.1
|