메뉴 건너뛰기




Volumn 38, Issue 11, 2017, Pages 817-828

Langerhans Cells – The Macrophage in Dendritic Cell Clothing

Author keywords

Langerhans cell function; Langerhans cell ontogeny; Langerhans cells

Indexed keywords

ANTIGEN SPECIFICITY; ANTIGENICITY; CANDIDA ALBICANS; CELL DIFFERENTIATION; CELL FATE; CELL FUNCTION; CELL PROLIFERATION; DENDRITIC CELL; DERMOEPIDERMAL JUNCTION; HUMORAL IMMUNITY; LANGERHANS CELL; MACROPHAGE; NONHUMAN; ONTOGENY; PROTEIN EXPRESSION; REGULATORY MECHANISM; REVIEW; T LYMPHOCYTE; ANIMAL; ANTIGEN PRESENTATION; CELL MOTION; CELL SELF-RENEWAL; HOMEOSTASIS; HUMAN; IMMUNITY; IMMUNOLOGICAL TOLERANCE; IMMUNOLOGY; PHYSIOLOGY; REGULATORY T LYMPHOCYTE; TH17 CELL;

EID: 85023605840     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2017.06.008     Document Type: Review
Times cited : (177)

References (87)
  • 1
    • 56749152272 scopus 로고    scopus 로고
    • Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells
    • Merad, M., et al. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat. Rev. Immunol. 8 (2008), 935–947.
    • (2008) Nat. Rev. Immunol. , vol.8 , pp. 935-947
    • Merad, M.1
  • 2
    • 33748742509 scopus 로고    scopus 로고
    • Characterization of chicken epidermal dendritic cells
    • Igyarto, B.Z., et al. Characterization of chicken epidermal dendritic cells. Immunology 119 (2006), 278–288.
    • (2006) Immunology , vol.119 , pp. 278-288
    • Igyarto, B.Z.1
  • 3
    • 0028841479 scopus 로고
    • Epidermal Langerhans cells in the terrestrial turtle, Kinosternum integrum
    • Perez-Torres, A., et al. Epidermal Langerhans cells in the terrestrial turtle, Kinosternum integrum. Dev. Comp. Immunol. 19 (1995), 225–236.
    • (1995) Dev. Comp. Immunol. , vol.19 , pp. 225-236
    • Perez-Torres, A.1
  • 5
    • 84981489685 scopus 로고    scopus 로고
    • Specification of tissue-resident macrophages during organogenesis
    • Mass, E., et al. Specification of tissue-resident macrophages during organogenesis. Science, 353, 2016, aaf4238.
    • (2016) Science , vol.353 , pp. aaf4238
    • Mass, E.1
  • 6
    • 84925465211 scopus 로고    scopus 로고
    • Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors
    • Gomez Perdiguero, E., et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518 (2015), 547–551.
    • (2015) Nature , vol.518 , pp. 547-551
    • Gomez Perdiguero, E.1
  • 7
    • 84859508307 scopus 로고    scopus 로고
    • A lineage of myeloid cells independent of Myb and hematopoietic stem cells
    • Schulz, C., et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336 (2012), 86–90.
    • (2012) Science , vol.336 , pp. 86-90
    • Schulz, C.1
  • 8
    • 84928189502 scopus 로고    scopus 로고
    • C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages
    • Hoeffel, G., et al. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42 (2015), 665–678.
    • (2015) Immunity , vol.42 , pp. 665-678
    • Hoeffel, G.1
  • 9
    • 84864298329 scopus 로고    scopus 로고
    • Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages
    • Hoeffel, G., et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 209 (2012), 1167–1181.
    • (2012) J. Exp. Med. , vol.209 , pp. 1167-1181
    • Hoeffel, G.1
  • 10
    • 84940984138 scopus 로고    scopus 로고
    • Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells
    • Sheng, J., et al. Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity 43 (2015), 382–393.
    • (2015) Immunity , vol.43 , pp. 382-393
    • Sheng, J.1
  • 11
    • 73949147392 scopus 로고    scopus 로고
    • Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network
    • Chorro, L., et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J. Exp. Med. 206 (2009), 3089–3100.
    • (2009) J. Exp. Med. , vol.206 , pp. 3089-3100
    • Chorro, L.1
  • 12
    • 84920724792 scopus 로고    scopus 로고
    • Environment drives selection and function of enhancers controlling tissue-specific macrophage identities
    • Gosselin, D., et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159 (2014), 1327–1340.
    • (2014) Cell , vol.159 , pp. 1327-1340
    • Gosselin, D.1
  • 13
    • 84920724791 scopus 로고    scopus 로고
    • Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment
    • Lavin, Y., et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159 (2014), 1312–1326.
    • (2014) Cell , vol.159 , pp. 1312-1326
    • Lavin, Y.1
  • 14
    • 84884214656 scopus 로고    scopus 로고
    • Multicolor fate mapping of Langerhans cell homeostasis
    • Ghigo, C., et al. Multicolor fate mapping of Langerhans cell homeostasis. J. Exp. Med. 210 (2013), 1657–1664.
    • (2013) J. Exp. Med. , vol.210 , pp. 1657-1664
    • Ghigo, C.1
  • 15
    • 84958191207 scopus 로고    scopus 로고
    • Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells
    • Soucie, E.L., et al. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells. Science, 351, 2016, aad5510.
    • (2016) Science , vol.351 , pp. aad5510
    • Soucie, E.L.1
  • 16
    • 0027217314 scopus 로고
    • Loss of expression of transforming growth factor beta in skin and skin tumors is associated with hyperproliferation and a high risk for malignant conversion
    • Glick, A.B., et al. Loss of expression of transforming growth factor beta in skin and skin tumors is associated with hyperproliferation and a high risk for malignant conversion. Proc. Natl. Acad. Sci. U. S. A. 90 (1993), 6076–6080.
    • (1993) Proc. Natl. Acad. Sci. U. S. A. , vol.90 , pp. 6076-6080
    • Glick, A.B.1
  • 17
    • 35748948090 scopus 로고    scopus 로고
    • Autocrine/paracrine TGFbeta1 is required for the development of epidermal Langerhans cells
    • Kaplan, D.H., et al. Autocrine/paracrine TGFbeta1 is required for the development of epidermal Langerhans cells. J. Exp. Med. 204 (2007), 2545–2552.
    • (2007) J. Exp. Med. , vol.204 , pp. 2545-2552
    • Kaplan, D.H.1
  • 18
    • 84862987203 scopus 로고    scopus 로고
    • Autocrine/paracrine TGF-beta1 inhibits Langerhans cell migration
    • Bobr, A., et al. Autocrine/paracrine TGF-beta1 inhibits Langerhans cell migration. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 10492–10497.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 10492-10497
    • Bobr, A.1
  • 19
    • 78649629136 scopus 로고    scopus 로고
    • TGF-beta is required to maintain the pool of immature Langerhans cells in the epidermis
    • Kel, J.M., et al. TGF-beta is required to maintain the pool of immature Langerhans cells in the epidermis. J. Immunol. 185 (2010), 3248–3255.
    • (2010) J. Immunol. , vol.185 , pp. 3248-3255
    • Kel, J.M.1
  • 20
    • 0030456368 scopus 로고    scopus 로고
    • A role for endogenous transforming growth factor beta 1 in Langerhans cell biology: the skin of transforming growth factor beta 1 null mice is devoid of epidermal Langerhans cells
    • Borkowski, T.A., et al. A role for endogenous transforming growth factor beta 1 in Langerhans cell biology: the skin of transforming growth factor beta 1 null mice is devoid of epidermal Langerhans cells. J. Exp. Med. 184 (1996), 2417–2422.
    • (1996) J. Exp. Med. , vol.184 , pp. 2417-2422
    • Borkowski, T.A.1
  • 21
    • 84896973126 scopus 로고    scopus 로고
    • TGF-beta activation and function in immunity
    • Travis, M.A., Sheppard, D., TGF-beta activation and function in immunity. Annu. Rev. Immunol. 32 (2014), 51–82.
    • (2014) Annu. Rev. Immunol. , vol.32 , pp. 51-82
    • Travis, M.A.1    Sheppard, D.2
  • 22
    • 84959105586 scopus 로고    scopus 로고
    • Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-beta
    • Mohammed, J., et al. Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-beta. Nat. Immunol. 17 (2016), 414–421.
    • (2016) Nat. Immunol. , vol.17 , pp. 414-421
    • Mohammed, J.1
  • 23
    • 12144285752 scopus 로고    scopus 로고
    • Runx3 regulates mouse TGF-beta-mediated dendritic cell function and its absence results in airway inflammation
    • Fainaru, O., et al. Runx3 regulates mouse TGF-beta-mediated dendritic cell function and its absence results in airway inflammation. EMBO J. 23 (2004), 969–979.
    • (2004) EMBO J. , vol.23 , pp. 969-979
    • Fainaru, O.1
  • 24
    • 0037386339 scopus 로고    scopus 로고
    • Transcriptional profiling identifies Id2 function in dendritic cell development
    • Hacker, C., et al. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat. Immunol. 4 (2003), 380–386.
    • (2003) Nat. Immunol. , vol.4 , pp. 380-386
    • Hacker, C.1
  • 25
    • 84890809254 scopus 로고    scopus 로고
    • Langerhans cells are generated by two distinct PU.1-dependent transcriptional networks
    • Chopin, M., et al. Langerhans cells are generated by two distinct PU.1-dependent transcriptional networks. J. Exp. Med. 210 (2013), 2967–2980.
    • (2013) J. Exp. Med. , vol.210 , pp. 2967-2980
    • Chopin, M.1
  • 26
    • 84892655317 scopus 로고    scopus 로고
    • The late endosomal adaptor molecule p14 (LAMTOR2) represents a novel regulator of Langerhans cell homeostasis
    • Sparber, F., et al. The late endosomal adaptor molecule p14 (LAMTOR2) represents a novel regulator of Langerhans cell homeostasis. Blood 123 (2014), 217–227.
    • (2014) Blood , vol.123 , pp. 217-227
    • Sparber, F.1
  • 27
    • 84925938012 scopus 로고    scopus 로고
    • The late endosomal adaptor molecule p14 (LAMTOR2) regulates TGFbeta1-mediated homeostasis of Langerhans cells
    • Sparber, F., et al. The late endosomal adaptor molecule p14 (LAMTOR2) regulates TGFbeta1-mediated homeostasis of Langerhans cells. J. Invest. Dermatol. 135 (2015), 119–129.
    • (2015) J. Invest. Dermatol. , vol.135 , pp. 119-129
    • Sparber, F.1
  • 28
    • 84971673905 scopus 로고    scopus 로고
    • TGF-beta1-Smad signaling pathways are not required for epidermal LC homeostasis
    • Li, G., et al. TGF-beta1-Smad signaling pathways are not required for epidermal LC homeostasis. Oncotarget 7 (2016), 15290–15291.
    • (2016) Oncotarget , vol.7 , pp. 15290-15291
    • Li, G.1
  • 29
    • 84863984608 scopus 로고    scopus 로고
    • TGFbeta/Smad3 signal pathway is not required for epidermal Langerhans cell development
    • Xu, Y.P., et al. TGFbeta/Smad3 signal pathway is not required for epidermal Langerhans cell development. J. Invest. Dermatol. 132 (2012), 2106–2109.
    • (2012) J. Invest. Dermatol. , vol.132 , pp. 2106-2109
    • Xu, Y.P.1
  • 30
    • 85011591309 scopus 로고    scopus 로고
    • Non-Smad signaling pathways of the TGF-beta family
    • Zhang, Y.E., Non-Smad signaling pathways of the TGF-beta family. Cold Spring Harb. Perspect. Biol., 9, 2017, 10.1101/cshperspect.a022129.
    • (2017) Cold Spring Harb. Perspect. Biol. , vol.9
    • Zhang, Y.E.1
  • 31
    • 84888114656 scopus 로고    scopus 로고
    • Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation
    • Yasmin, N., et al. Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation. J. Exp. Med. 210 (2013), 2597–2610.
    • (2013) J. Exp. Med. , vol.210 , pp. 2597-2610
    • Yasmin, N.1
  • 32
    • 84864152036 scopus 로고    scopus 로고
    • IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia
    • Wang, Y., et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13 (2012), 753–760.
    • (2012) Nat. Immunol. , vol.13 , pp. 753-760
    • Wang, Y.1
  • 33
    • 84959367081 scopus 로고    scopus 로고
    • Nonredundant roles of keratinocyte-derived IL-34 and neutrophil-derived CSF1 in Langerhans cell renewal in the steady state and during inflammation
    • Wang, Y., et al. Nonredundant roles of keratinocyte-derived IL-34 and neutrophil-derived CSF1 in Langerhans cell renewal in the steady state and during inflammation. Eur. J. Immunol. 46 (2016), 552–559.
    • (2016) Eur. J. Immunol. , vol.46 , pp. 552-559
    • Wang, Y.1
  • 34
    • 84869229157 scopus 로고    scopus 로고
    • Two distinct types of Langerhans cells populate the skin during steady state and inflammation
    • Sere, K., et al. Two distinct types of Langerhans cells populate the skin during steady state and inflammation. Immunity 37 (2012), 905–916.
    • (2012) Immunity , vol.37 , pp. 905-916
    • Sere, K.1
  • 35
    • 33645953640 scopus 로고    scopus 로고
    • Langerhans cells arise from monocytes in vivo
    • Ginhoux, F., et al. Langerhans cells arise from monocytes in vivo. Nat. Immunol. 7 (2006), 265–273.
    • (2006) Nat. Immunol. , vol.7 , pp. 265-273
    • Ginhoux, F.1
  • 36
    • 84864124259 scopus 로고    scopus 로고
    • Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin
    • Nagao, K., et al. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat. Immunol. 13 (2012), 744–752.
    • (2012) Nat. Immunol. , vol.13 , pp. 744-752
    • Nagao, K.1
  • 37
    • 84960920909 scopus 로고    scopus 로고
    • Yolk sac macrophages, fetal liver, and adult monocytes can colonize an empty niche and develop into functional tissue-resident macrophages
    • van de Laar, L., et al. Yolk sac macrophages, fetal liver, and adult monocytes can colonize an empty niche and develop into functional tissue-resident macrophages. Immunity 44 (2016), 755–768.
    • (2016) Immunity , vol.44 , pp. 755-768
    • van de Laar, L.1
  • 38
    • 84941024695 scopus 로고    scopus 로고
    • Distinct murine mucosal Langerhans cell subsets develop from pre-dendritic cells and monocytes
    • Capucha, T., et al. Distinct murine mucosal Langerhans cell subsets develop from pre-dendritic cells and monocytes. Immunity 43 (2015), 369–381.
    • (2015) Immunity , vol.43 , pp. 369-381
    • Capucha, T.1
  • 39
    • 84922179711 scopus 로고    scopus 로고
    • + blood dendritic cells have Langerhans cell potential
    • + blood dendritic cells have Langerhans cell potential. Blood 125 (2015), 470–473.
    • (2015) Blood , vol.125 , pp. 470-473
    • Milne, P.1
  • 40
    • 84907611125 scopus 로고    scopus 로고
    • Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-beta
    • Martinez-Cingolani, C., et al. Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-beta. Blood 124 (2014), 2411–2420.
    • (2014) Blood , vol.124 , pp. 2411-2420
    • Martinez-Cingolani, C.1
  • 41
    • 0027530547 scopus 로고
    • Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin
    • Tang, A., et al. Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin. Nature 361 (1993), 82–85.
    • (1993) Nature , vol.361 , pp. 82-85
    • Tang, A.1
  • 42
    • 0021917676 scopus 로고
    • Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro
    • Schuler, G., Steinman, R.M., Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J. Exp. Med. 161 (1985), 526–546.
    • (1985) J. Exp. Med. , vol.161 , pp. 526-546
    • Schuler, G.1    Steinman, R.M.2
  • 43
    • 0036568954 scopus 로고    scopus 로고
    • Matrix metalloproteinases 9 and 2 are necessary for the migration of Langerhans cells and dermal dendritic cells from human and murine skin
    • Ratzinger, G., et al. Matrix metalloproteinases 9 and 2 are necessary for the migration of Langerhans cells and dermal dendritic cells from human and murine skin. J. Immunol. 168 (2002), 4361–4371.
    • (2002) J. Immunol. , vol.168 , pp. 4361-4371
    • Ratzinger, G.1
  • 44
    • 35348901875 scopus 로고    scopus 로고
    • CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells
    • Kabashima, K., et al. CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. Am. J. Pathol. 171 (2007), 1249–1257.
    • (2007) Am. J. Pathol. , vol.171 , pp. 1249-1257
    • Kabashima, K.1
  • 45
    • 80555153996 scopus 로고    scopus 로고
    • DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling
    • Tal, O., et al. DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling. J. Exp. Med. 208 (2011), 2141–2153.
    • (2011) J. Exp. Med. , vol.208 , pp. 2141-2153
    • Tal, O.1
  • 46
    • 4143096772 scopus 로고    scopus 로고
    • CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions
    • Ohl, L., et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21 (2004), 279–288.
    • (2004) Immunity , vol.21 , pp. 279-288
    • Ohl, L.1
  • 47
    • 21144444056 scopus 로고    scopus 로고
    • Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells
    • Kissenpfennig, A., et al. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22 (2005), 643–654.
    • (2005) Immunity , vol.22 , pp. 643-654
    • Kissenpfennig, A.1
  • 48
    • 84905979569 scopus 로고    scopus 로고
    • Tracking and quantification of dendritic cell migration and antigen trafficking between the skin and lymph nodes
    • Tomura, M., et al. Tracking and quantification of dendritic cell migration and antigen trafficking between the skin and lymph nodes. Sci. Rep., 4, 2014, 6030.
    • (2014) Sci. Rep. , vol.4 , pp. 6030
    • Tomura, M.1
  • 49
    • 84869411578 scopus 로고    scopus 로고
    • Control of RelB during dendritic cell activation integrates canonical and noncanonical NF-kappaB pathways
    • Shih, V.F., et al. Control of RelB during dendritic cell activation integrates canonical and noncanonical NF-kappaB pathways. Nat. Immunol. 13 (2012), 1162–1170.
    • (2012) Nat. Immunol. , vol.13 , pp. 1162-1170
    • Shih, V.F.1
  • 50
    • 84928206908 scopus 로고    scopus 로고
    • Homeostatic NF-kappaB signaling in steady-state migratory dendritic cells regulates immune homeostasis and tolerance
    • Baratin, M., et al. Homeostatic NF-kappaB signaling in steady-state migratory dendritic cells regulates immune homeostasis and tolerance. Immunity 42 (2015), 627–639.
    • (2015) Immunity , vol.42 , pp. 627-639
    • Baratin, M.1
  • 51
    • 81055141487 scopus 로고    scopus 로고
    • Langerhans cells are precommitted to immune tolerance induction
    • Shklovskaya, E., et al. Langerhans cells are precommitted to immune tolerance induction. Proc. Natl. Acad. Sci. U. S. A. 108 (2011), 18049–18054.
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , pp. 18049-18054
    • Shklovskaya, E.1
  • 52
    • 0030725852 scopus 로고    scopus 로고
    • Langerhans cells require signals from both tumour necrosis factor-alpha and interleukin-1 beta for migration
    • Cumberbatch, M., et al. Langerhans cells require signals from both tumour necrosis factor-alpha and interleukin-1 beta for migration. Immunology 92 (1997), 388–395.
    • (1997) Immunology , vol.92 , pp. 388-395
    • Cumberbatch, M.1
  • 53
    • 0035067261 scopus 로고    scopus 로고
    • Interleukin (IL)-18 induces Langerhans cell migration by a tumour necrosis factor-alpha- and IL-1beta-dependent mechanism
    • Cumberbatch, M., et al. Interleukin (IL)-18 induces Langerhans cell migration by a tumour necrosis factor-alpha- and IL-1beta-dependent mechanism. Immunology 102 (2001), 323–330.
    • (2001) Immunology , vol.102 , pp. 323-330
    • Cumberbatch, M.1
  • 54
    • 0036351436 scopus 로고    scopus 로고
    • Differential regulation of epidermal Langerhans ​cell migration by interleukins (IL)-1alpha and IL-1beta during irritant- and allergen-induced cutaneous immune responses
    • Cumberbatch, M., et al. Differential regulation of epidermal Langerhans ​cell migration by interleukins (IL)-1alpha and IL-1beta during irritant- and allergen-induced cutaneous immune responses. Toxicol. Appl. Pharmacol. 182 (2002), 126–135.
    • (2002) Toxicol. Appl. Pharmacol. , vol.182 , pp. 126-135
    • Cumberbatch, M.1
  • 55
    • 84860318542 scopus 로고    scopus 로고
    • Langerhans cells require MyD88-dependent signals for Candida albicans response but not for contact hypersensitivity or migration
    • Haley, K., et al. Langerhans cells require MyD88-dependent signals for Candida albicans response but not for contact hypersensitivity or migration. J. Immunol. 188 (2012), 4334–4339.
    • (2012) J. Immunol. , vol.188 , pp. 4334-4339
    • Haley, K.1
  • 56
    • 1642379407 scopus 로고    scopus 로고
    • Lymphoid organ dendritic cells: beyond the Langerhans cells paradigm
    • Wilson, N.S., Villadangos, J.A., Lymphoid organ dendritic cells: beyond the Langerhans cells paradigm. Immunol. Cell Biol. 82 (2004), 91–98.
    • (2004) Immunol. Cell Biol. , vol.82 , pp. 91-98
    • Wilson, N.S.1    Villadangos, J.A.2
  • 57
    • 65249099085 scopus 로고    scopus 로고
    • + dendritic cells
    • + dendritic cells. Nat. Immunol. 10 (2009), 488–495.
    • (2009) Nat. Immunol. , vol.10 , pp. 488-495
    • Bedoui, S.1
  • 58
    • 28844492624 scopus 로고    scopus 로고
    • Epidermal Langerhans ​cell-deficient mice develop enhanced contact hypersensitivity
    • Kaplan, D.H., et al. Epidermal Langerhans ​cell-deficient mice develop enhanced contact hypersensitivity. Immunity 23 (2005), 611–620.
    • (2005) Immunity , vol.23 , pp. 611-620
    • Kaplan, D.H.1
  • 59
    • 22344443257 scopus 로고    scopus 로고
    • Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity
    • Bennett, C.L., et al. Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J. Cell Biol. 169 (2005), 569–576.
    • (2005) J. Cell Biol. , vol.169 , pp. 569-576
    • Bennett, C.L.1
  • 60
    • 55249092998 scopus 로고    scopus 로고
    • Insights into Langerhans cell function from Langerhans cell ablation models
    • Kaplan, D.H., et al. Insights into Langerhans cell function from Langerhans cell ablation models. Eur. J. Immunol. 38 (2008), 2369–2376.
    • (2008) Eur. J. Immunol. , vol.38 , pp. 2369-2376
    • Kaplan, D.H.1
  • 61
    • 84859158015 scopus 로고    scopus 로고
    • Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling
    • 1048–1055 e1046
    • Nakajima, S., et al. Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling. J. Allergy Clin. Immunol., 129, 2012 1048–1055 e1046.
    • (2012) J. Allergy Clin. Immunol. , vol.129
    • Nakajima, S.1
  • 62
    • 78649630548 scopus 로고    scopus 로고
    • In vivo function of Langerhans cells and dermal dendritic cells
    • Kaplan, D.H., In vivo function of Langerhans cells and dermal dendritic cells. Trends Immunol. 31 (2010), 446–451.
    • (2010) Trends Immunol. , vol.31 , pp. 446-451
    • Kaplan, D.H.1
  • 63
    • 66149111441 scopus 로고    scopus 로고
    • MGL2 Dermal dendritic cells are sufficient to initiate contact hypersensitivity in vivo
    • Kumamoto, Y., et al. MGL2 Dermal dendritic cells are sufficient to initiate contact hypersensitivity in vivo. PLoS One, 4, 2009, e5619.
    • (2009) PLoS One , vol.4 , pp. e5619
    • Kumamoto, Y.1
  • 64
    • 24344448276 scopus 로고    scopus 로고
    • Stratum corneum defensive functions: an integrated view
    • Elias, P.M., Stratum corneum defensive functions: an integrated view. J. Invest. Dermatol. 125 (2005), 183–200.
    • (2005) J. Invest. Dermatol. , vol.125 , pp. 183-200
    • Elias, P.M.1
  • 65
    • 0037128938 scopus 로고    scopus 로고
    • Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice
    • Furuse, M., et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J. Cell Biol. 156 (2002), 1099–1111.
    • (2002) J. Cell Biol. , vol.156 , pp. 1099-1111
    • Furuse, M.1
  • 66
    • 84877746703 scopus 로고    scopus 로고
    • The stratum corneum comprises three layers with distinct metal-ion barrier properties
    • Kubo, A., et al. The stratum corneum comprises three layers with distinct metal-ion barrier properties. Sci. Rep., 3, 2013, 1731.
    • (2013) Sci. Rep. , vol.3 , pp. 1731
    • Kubo, A.1
  • 67
    • 73949120263 scopus 로고    scopus 로고
    • External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers
    • Kubo, A., et al. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J. Exp. Med. 206 (2009), 2937–2946.
    • (2009) J. Exp. Med. , vol.206 , pp. 2937-2946
    • Kubo, A.1
  • 68
    • 84862908998 scopus 로고    scopus 로고
    • Langerhans cell antigen capture through tight junctions confers preemptive immunity in experimental staphylococcal scalded skin syndrome
    • Ouchi, T., et al. Langerhans cell antigen capture through tight junctions confers preemptive immunity in experimental staphylococcal scalded skin syndrome. J. Exp. Med. 208 (2011), 2607–2613.
    • (2011) J. Exp. Med. , vol.208 , pp. 2607-2613
    • Ouchi, T.1
  • 69
    • 0017684607 scopus 로고
    • Staphylococcal scalded skin syndrome. II. Serum level of anti exfoliatin and anti alpha-toxin in patients with staphylococcal scalded skin syndrome or bullous impetigo
    • Nishioka, K., et al. Staphylococcal scalded skin syndrome. II. Serum level of anti exfoliatin and anti alpha-toxin in patients with staphylococcal scalded skin syndrome or bullous impetigo. J. Dermatol. 4 (1977), 65–68.
    • (1977) J. Dermatol. , vol.4 , pp. 65-68
    • Nishioka, K.1
  • 70
    • 84928958293 scopus 로고    scopus 로고
    • Skin dendritic cells induce follicular helper T cells and protective humoral immune responses
    • 1387–1397.e1–7
    • Yao, C., et al. Skin dendritic cells induce follicular helper T cells and protective humoral immune responses. J. Allergy Clin. Immunol., 136, 2015 1387–1397.e1–7.
    • (2015) J. Allergy Clin. Immunol. , vol.136
    • Yao, C.1
  • 71
    • 84861703829 scopus 로고    scopus 로고
    • Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice
    • 1538–1546.e6
    • Kawasaki, H., et al. Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice. J. Allergy Clin. Immunol., 129, 2012 1538–1546.e6.
    • (2012) J. Allergy Clin. Immunol. , vol.129
    • Kawasaki, H.1
  • 72
    • 84928184443 scopus 로고    scopus 로고
    • Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis
    • Kobayashi, T., et al. Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis. Immunity 42 (2015), 756–766.
    • (2015) Immunity , vol.42 , pp. 756-766
    • Kobayashi, T.1
  • 73
    • 84975154530 scopus 로고    scopus 로고
    • Skin immunity to Candida albicans
    • Kashem, S.W., Kaplan, D.H., Skin immunity to Candida albicans. Trends Immunol. 37 (2016), 440–450.
    • (2016) Trends Immunol. , vol.37 , pp. 440-450
    • Kashem, S.W.1    Kaplan, D.H.2
  • 74
    • 80051906942 scopus 로고    scopus 로고
    • Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses
    • Igyarto, B.Z., et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 35 (2011), 260–272.
    • (2011) Immunity , vol.35 , pp. 260-272
    • Igyarto, B.Z.1
  • 75
    • 84923000491 scopus 로고    scopus 로고
    • Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation
    • Kashem, S.W., et al. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity 42 (2015), 356–366.
    • (2015) Immunity , vol.42 , pp. 356-366
    • Kashem, S.W.1
  • 76
    • 85019610985 scopus 로고    scopus 로고
    • Monocyte-derived inflammatory Langerhans cells and dermal dendritic cells mediate psoriasis-like inflammation
    • Singh, T.P., et al. Monocyte-derived inflammatory Langerhans cells and dermal dendritic cells mediate psoriasis-like inflammation. Nat. Commun., 7, 2016, 13581.
    • (2016) Nat. Commun. , vol.7 , pp. 13581
    • Singh, T.P.1
  • 77
    • 84902537284 scopus 로고    scopus 로고
    • IL-23 from Langerhans cells is required for the development of imiquimod-induced psoriasis-like dermatitis by induction of IL-17A-producing gammadelta T cells
    • Yoshiki, R., et al. IL-23 from Langerhans cells is required for the development of imiquimod-induced psoriasis-like dermatitis by induction of IL-17A-producing gammadelta T cells. J. Invest. Dermatol. 134 (2014), 1912–1921.
    • (2014) J. Invest. Dermatol. , vol.134 , pp. 1912-1921
    • Yoshiki, R.1
  • 78
    • 79956067743 scopus 로고    scopus 로고
    • Langerhans cells are negative regulators of the anti-Leishmania response
    • Kautz-Neu, K., et al. Langerhans cells are negative regulators of the anti-Leishmania response. J. Exp. Med. 208 (2011), 885–891.
    • (2011) J. Exp. Med. , vol.208 , pp. 885-891
    • Kautz-Neu, K.1
  • 79
    • 84860565845 scopus 로고    scopus 로고
    • Langerhans cells protect from allergic contact dermatitis in mice by tolerizing CD8(+) T cells and activating Foxp3(+) regulatory T cells
    • Gomez de Aguero, M., et al. Langerhans cells protect from allergic contact dermatitis in mice by tolerizing CD8(+) T cells and activating Foxp3(+) regulatory T cells. J. Clin. Invest. 122 (2012), 1700–1711.
    • (2012) J. Clin. Invest. , vol.122 , pp. 1700-1711
    • Gomez de Aguero, M.1
  • 80
    • 84918531042 scopus 로고    scopus 로고
    • + T cells while Langerhans cells induce cross-tolerance
    • + T cells while Langerhans cells induce cross-tolerance. EMBO Mol. Med. 6 (2014), 1191–1204.
    • (2014) EMBO Mol. Med. , vol.6 , pp. 1191-1204
    • Flacher, V.1
  • 81
    • 84986893432 scopus 로고    scopus 로고
    • CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation
    • Price, J.G., et al. CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation. Nat. Immunol. 16 (2015), 1060–1068.
    • (2015) Nat. Immunol. , vol.16 , pp. 1060-1068
    • Price, J.G.1
  • 82
    • 84873331871 scopus 로고    scopus 로고
    • Specialized role of migratory dendritic cells in peripheral tolerance induction
    • Idoyaga, J., et al. Specialized role of migratory dendritic cells in peripheral tolerance induction. J. Clin. Invest. 123 (2013), 844–854.
    • (2013) J. Clin. Invest. , vol.123 , pp. 844-854
    • Idoyaga, J.1
  • 83
    • 0031780897 scopus 로고    scopus 로고
    • A possible role for Langerhans cells in the removal of melanin from early catagen hair follicles
    • Tobin, D.J., A possible role for Langerhans cells in the removal of melanin from early catagen hair follicles. Br. J. Dermatol. 138 (1998), 795–798.
    • (1998) Br. J. Dermatol. , vol.138 , pp. 795-798
    • Tobin, D.J.1
  • 84
    • 84856512591 scopus 로고    scopus 로고
    • Severe dermatitis with loss of epidermal Langerhans cells in human and mouse zinc deficiency
    • Kawamura, T., et al. Severe dermatitis with loss of epidermal Langerhans cells in human and mouse zinc deficiency. J. Clin. Invest. 122 (2012), 722–732.
    • (2012) J. Clin. Invest. , vol.122 , pp. 722-732
    • Kawamura, T.1
  • 85
    • 85006819029 scopus 로고    scopus 로고
    • + macrophages or monocyte-derived dendritic cells
    • + macrophages or monocyte-derived dendritic cells. Immunity 45 (2016), 1205–1218.
    • (2016) Immunity , vol.45 , pp. 1205-1218
    • Menezes, S.1
  • 86
    • 84999752022 scopus 로고    scopus 로고
    • Mafb lineage tracing to distinguish macrophages from other immune lineages reveals dual identity of Langerhans cells
    • Wu, X., et al. Mafb lineage tracing to distinguish macrophages from other immune lineages reveals dual identity of Langerhans cells. J. Exp. Med. 213 (2016), 2553–2565.
    • (2016) J. Exp. Med. , vol.213 , pp. 2553-2565
    • Wu, X.1
  • 87
    • 85010956304 scopus 로고    scopus 로고
    • Receptor usage dictates HIV-1 restriction by human TRIM5alpha in dendritic cell subsets
    • Ribeiro, C.M., et al. Receptor usage dictates HIV-1 restriction by human TRIM5alpha in dendritic cell subsets. Nature 540 (2016), 448–452.
    • (2016) Nature , vol.540 , pp. 448-452
    • Ribeiro, C.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.