메뉴 건너뛰기




Volumn 37, Issue 7, 2016, Pages 440-450

Skin Immunity to Candida albicans

Author keywords

[No Author keywords available]

Indexed keywords

INTERLEUKIN 17; INTERLEUKIN 23; LECTIN; NUCLEOTIDE BINDING OLIGOMERIZATION DOMAIN LIKE RECEPTOR; TOLL LIKE RECEPTOR;

EID: 84975154530     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2016.04.007     Document Type: Review
Times cited : (104)

References (109)
  • 1
    • 34249724445 scopus 로고    scopus 로고
    • Nosocomial fungal infections: epidemiology, diagnosis, and treatment
    • 1 Perlroth, J., et al. Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med. Mycol. 45 (2007), 321–346.
    • (2007) Med. Mycol. , vol.45 , pp. 321-346
    • Perlroth, J.1
  • 2
    • 84947441717 scopus 로고    scopus 로고
    • Immune interactions with pathogenic and commensal fungi: a two-way street
    • 2 Underhill, D.M., Pearlman, E., Immune interactions with pathogenic and commensal fungi: a two-way street. Immunity 43 (2015), 845–858.
    • (2015) Immunity , vol.43 , pp. 845-858
    • Underhill, D.M.1    Pearlman, E.2
  • 3
    • 84883162002 scopus 로고    scopus 로고
    • The cup runneth over: lessons from the ever-expanding pool of primary immunodeficiency diseases
    • 3 Milner, J.D., Holland, S.M., The cup runneth over: lessons from the ever-expanding pool of primary immunodeficiency diseases. Nat. Rev. Immunol. 13 (2013), 635–648.
    • (2013) Nat. Rev. Immunol. , vol.13 , pp. 635-648
    • Milner, J.D.1    Holland, S.M.2
  • 4
    • 84878700149 scopus 로고    scopus 로고
    • Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans
    • 4 Smeekens, S.P., et al. Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans. Nat. Commun., 4, 2013, 1342.
    • (2013) Nat. Commun. , vol.4 , pp. 1342
    • Smeekens, S.P.1
  • 5
    • 84923000491 scopus 로고    scopus 로고
    • Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation
    • 5 Kashem, S.W., et al. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity 42 (2015), 356–366.
    • (2015) Immunity , vol.42 , pp. 356-366
    • Kashem, S.W.1
  • 6
    • 84892479849 scopus 로고    scopus 로고
    • IL-17 regulates systemic fungal immunity by controlling the functional competence of NK cells
    • 6 Bar, E., et al. IL-17 regulates systemic fungal immunity by controlling the functional competence of NK cells. Immunity 40 (2014), 117–127.
    • (2014) Immunity , vol.40 , pp. 117-127
    • Bar, E.1
  • 7
    • 34249026701 scopus 로고    scopus 로고
    • Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17
    • 7 LeibundGut-Landmann, S., et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol. 8 (2007), 630–638.
    • (2007) Nat. Immunol. , vol.8 , pp. 630-638
    • LeibundGut-Landmann, S.1
  • 8
    • 80051792725 scopus 로고    scopus 로고
    • Inflammation and gastrointestinal Candida colonization
    • 8 Kumamoto, C.A., Inflammation and gastrointestinal Candida colonization. Curr. Opin. Microbiol. 14 (2011), 386–391.
    • (2011) Curr. Opin. Microbiol. , vol.14 , pp. 386-391
    • Kumamoto, C.A.1
  • 9
    • 84928046816 scopus 로고    scopus 로고
    • Vulvovaginal Candida albicans infections: pathogenesis, immunity and vaccine prospects
    • 9 Cassone, A., Vulvovaginal Candida albicans infections: pathogenesis, immunity and vaccine prospects. BJOG 122 (2015), 785–794.
    • (2015) BJOG , vol.122 , pp. 785-794
    • Cassone, A.1
  • 10
    • 84937695151 scopus 로고    scopus 로고
    • IL-17-mediated immunity to the opportunistic fungal pathogen Candida albicans
    • 10 Conti, H.R., Gaffen, S.L., IL-17-mediated immunity to the opportunistic fungal pathogen Candida albicans. J. Immunol. 195 (2015), 780–788.
    • (2015) J. Immunol. , vol.195 , pp. 780-788
    • Conti, H.R.1    Gaffen, S.L.2
  • 11
    • 84861964286 scopus 로고    scopus 로고
    • Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis
    • 11 Iliev, I.D., et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 336 (2012), 1314–1317.
    • (2012) Science , vol.336 , pp. 1314-1317
    • Iliev, I.D.1
  • 12
    • 80051906942 scopus 로고    scopus 로고
    • Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses
    • 12 Igyártó, B.Z., et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 35 (2011), 260–272.
    • (2011) Immunity , vol.35 , pp. 260-272
    • Igyártó, B.Z.1
  • 13
    • 78149491862 scopus 로고    scopus 로고
    • IL-23 and IL-17A, but not IL-12 and IL-22, are required for optimal skin host defense against Candida albicans
    • 13 Kagami, S., et al. IL-23 and IL-17A, but not IL-12 and IL-22, are required for optimal skin host defense against Candida albicans. J. Immunol. 185 (2010), 5453–5462.
    • (2010) J. Immunol. , vol.185 , pp. 5453-5462
    • Kagami, S.1
  • 14
    • 84941645578 scopus 로고    scopus 로고
    • + dermal dendritic cells and drive protective cutaneous immunity
    • + dermal dendritic cells and drive protective cutaneous immunity. Immunity 43 (2015), 515–526.
    • (2015) Immunity , vol.43 , pp. 515-526
    • Kashem, S.W.1
  • 15
    • 84920896754 scopus 로고    scopus 로고
    • C-type lectins in immunity: recent developments
    • 15 Dambuza, I.M., Brown, G.D., C-type lectins in immunity: recent developments. Curr. Opin. Immunol. 32 (2015), 21–27.
    • (2015) Curr. Opin. Immunol. , vol.32 , pp. 21-27
    • Dambuza, I.M.1    Brown, G.D.2
  • 16
    • 0035817818 scopus 로고    scopus 로고
    • A new receptor for beta-glucans
    • 16 Brown, G.D., Gordon, S., A new receptor for beta-glucans. Nature 413 (2001), 36–37.
    • (2001) Nature , vol.413 , pp. 36-37
    • Brown, G.D.1    Gordon, S.2
  • 17
    • 70350545720 scopus 로고    scopus 로고
    • A homozygous CARD9 mutation in a family with susceptibility to fungal infections
    • 17 Glocker, E.-O., et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N. Engl. J. Med. 361 (2009), 1727–1735.
    • (2009) N. Engl. J. Med. , vol.361 , pp. 1727-1735
    • Glocker, E.-O.1
  • 18
    • 70350534272 scopus 로고    scopus 로고
    • Human dectin-1 deficiency and mucocutaneous fungal infections
    • 18 Ferwerda, B., et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N. Engl. J. Med. 361 (2009), 1760–1767.
    • (2009) N. Engl. J. Med. , vol.361 , pp. 1760-1767
    • Ferwerda, B.1
  • 19
    • 33846962860 scopus 로고    scopus 로고
    • Dectin-1 is required for beta-glucan recognition and control of fungal infection
    • 19 Taylor, P.R., et al. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat. Immunol. 8 (2007), 31–38.
    • (2007) Nat. Immunol. , vol.8 , pp. 31-38
    • Taylor, P.R.1
  • 20
    • 33846963844 scopus 로고    scopus 로고
    • Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans
    • 20 Saijo, S., et al. Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat. Immunol. 8 (2007), 39–46.
    • (2007) Nat. Immunol. , vol.8 , pp. 39-46
    • Saijo, S.1
  • 21
    • 84876848564 scopus 로고    scopus 로고
    • Differential adaptation of Candida albicans in vivo modulates immune recognition by dectin-1
    • 21 Marakalala, M.J., et al. Differential adaptation of Candida albicans in vivo modulates immune recognition by dectin-1. PLoS Pathog., 9, 2013, e1003315.
    • (2013) PLoS Pathog. , vol.9 , pp. e1003315
    • Marakalala, M.J.1
  • 22
    • 17144370549 scopus 로고    scopus 로고
    • Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments
    • 22 Gantner, B.N., et al. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J. 24 (2005), 1277–1286.
    • (2005) EMBO J. , vol.24 , pp. 1277-1286
    • Gantner, B.N.1
  • 23
    • 84855872990 scopus 로고    scopus 로고
    • Candida albicans morphogenesis and host defence: discriminating invasion from colonization
    • 23 Gow, N.A.R., et al. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat. Rev. Microbiol. 10 (2012), 112–122.
    • (2012) Nat. Rev. Microbiol. , vol.10 , pp. 112-122
    • Gow, N.A.R.1
  • 24
    • 0012929728 scopus 로고    scopus 로고
    • Toll-like receptors
    • 24 Takeda, K., et al. Toll-like receptors. Annu. Rev. Immunol. 21 (2003), 335–376.
    • (2003) Annu. Rev. Immunol. , vol.21 , pp. 335-376
    • Takeda, K.1
  • 25
    • 0038558249 scopus 로고    scopus 로고
    • Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2
    • 25 Gantner, B.N., et al. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med. 197 (2003), 1107–1117.
    • (2003) J. Exp. Med. , vol.197 , pp. 1107-1117
    • Gantner, B.N.1
  • 26
    • 51449087747 scopus 로고    scopus 로고
    • Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages
    • 26 Ferwerda, G., et al. Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cell. Microbiol. 10 (2008), 2058–2066.
    • (2008) Cell. Microbiol. , vol.10 , pp. 2058-2066
    • Ferwerda, G.1
  • 27
    • 10744221913 scopus 로고    scopus 로고
    • The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo
    • 27 Bellocchio, S., et al. The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J. Immunol. 172 (2004), 3059–3069.
    • (2004) J. Immunol. , vol.172 , pp. 3059-3069
    • Bellocchio, S.1
  • 28
    • 84860318542 scopus 로고    scopus 로고
    • Langerhans cells require MyD88-dependent signals for Candida albicans response but not for contact hypersensitivity or migration
    • 28 Haley, K., et al. Langerhans cells require MyD88-dependent signals for Candida albicans response but not for contact hypersensitivity or migration. J. Immunol. 188 (2012), 4334–4339.
    • (2012) J. Immunol. , vol.188 , pp. 4334-4339
    • Haley, K.1
  • 29
    • 79960121968 scopus 로고    scopus 로고
    • Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IκBα deficiency
    • 29 Picard, C., et al. Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IκBα deficiency. Clin. Microbiol. Rev. 24 (2011), 490–497.
    • (2011) Clin. Microbiol. Rev. , vol.24 , pp. 490-497
    • Picard, C.1
  • 30
    • 84888128171 scopus 로고    scopus 로고
    • Primary immunodeficiencies underlying fungal infections
    • 30 Lanternier, F., et al. Primary immunodeficiencies underlying fungal infections. Curr. Opin. Pediatr. 25 (2013), 736–747.
    • (2013) Curr. Opin. Pediatr. , vol.25 , pp. 736-747
    • Lanternier, F.1
  • 31
    • 66749174867 scopus 로고    scopus 로고
    • The inflammasomes: guardians of the body
    • 31 Martinon, F., et al. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27 (2009), 229–265.
    • (2009) Annu. Rev. Immunol. , vol.27 , pp. 229-265
    • Martinon, F.1
  • 32
    • 77951652390 scopus 로고    scopus 로고
    • Lessons from the inflammasome: a molecular sentry linking Candida and Crohn's disease
    • 32 Rehaume, L.M., et al. Lessons from the inflammasome: a molecular sentry linking Candida and Crohn's disease. Trends Immunol. 31 (2010), 171–175.
    • (2010) Trends Immunol. , vol.31 , pp. 171-175
    • Rehaume, L.M.1
  • 33
    • 60849113133 scopus 로고    scopus 로고
    • Polymorphism in a gene coding for the inflammasome component NALP3 and recurrent vulvovaginal candidiasis in women with vulvar vestibulitis syndrome
    • 303.e1–6
    • 33 Lev-Sagie, A., et al. Polymorphism in a gene coding for the inflammasome component NALP3 and recurrent vulvovaginal candidiasis in women with vulvar vestibulitis syndrome. Am. J. Obstet. Gynecol., 200, 2009 303.e1–6.
    • (2009) Am. J. Obstet. Gynecol. , vol.200
    • Lev-Sagie, A.1
  • 34
    • 65549154784 scopus 로고    scopus 로고
    • An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans
    • 34 Hise, A.G., et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5 (2009), 487–497.
    • (2009) Cell Host Microbe , vol.5 , pp. 487-497
    • Hise, A.G.1
  • 35
    • 70349317039 scopus 로고    scopus 로고
    • Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome
    • 35 Joly, S., et al. Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J. Immunol. 183 (2009), 3578–3581.
    • (2009) J. Immunol. , vol.183 , pp. 3578-3581
    • Joly, S.1
  • 36
    • 84868554611 scopus 로고    scopus 로고
    • Cutting edge: Nlrp10 is essential for protective antifungal adaptive immunity against Candida albicans
    • 36 Joly, S., et al. Cutting edge: Nlrp10 is essential for protective antifungal adaptive immunity against Candida albicans. J. Immunol. 189 (2012), 4713–4717.
    • (2012) J. Immunol. , vol.189 , pp. 4713-4717
    • Joly, S.1
  • 37
    • 84860233490 scopus 로고    scopus 로고
    • NLRP10 is a NOD-like receptor essential to initiate adaptive immunity by dendritic cells
    • 37 Eisenbarth, S.C., et al. NLRP10 is a NOD-like receptor essential to initiate adaptive immunity by dendritic cells. Nature 484 (2012), 510–513.
    • (2012) Nature , vol.484 , pp. 510-513
    • Eisenbarth, S.C.1
  • 38
    • 84924308188 scopus 로고    scopus 로고
    • Coincidental loss of DOCK8 function in NLRP10-deficient and C3H/HeJ mice results in defective dendritic cell migration
    • 38 Krishnaswamy, J.K., et al. Coincidental loss of DOCK8 function in NLRP10-deficient and C3H/HeJ mice results in defective dendritic cell migration. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 3056–3061.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 3056-3061
    • Krishnaswamy, J.K.1
  • 39
    • 84916894941 scopus 로고    scopus 로고
    • Hyper-IgE syndromes: recent advances in pathogenesis, diagnostics and clinical care
    • 39 Farmand, S., Sundin, M., Hyper-IgE syndromes: recent advances in pathogenesis, diagnostics and clinical care. Curr. Opin. Hematol. 22 (2015), 12–22.
    • (2015) Curr. Opin. Hematol. , vol.22 , pp. 12-22
    • Farmand, S.1    Sundin, M.2
  • 40
    • 84855296038 scopus 로고    scopus 로고
    • A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans
    • 40 Tomalka, J., et al. A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans. PLoS Pathog., 7, 2011, e1002379.
    • (2011) PLoS Pathog. , vol.7 , pp. e1002379
    • Tomalka, J.1
  • 41
    • 0034946112 scopus 로고    scopus 로고
    • Expression of the peptide antibiotics human beta defensin-1 and human beta defensin-2 in normal human skin
    • 41 Ali, R.S., et al. Expression of the peptide antibiotics human beta defensin-1 and human beta defensin-2 in normal human skin. J. Invest. Dermatol. 117 (2001), 106–111.
    • (2001) J. Invest. Dermatol. , vol.117 , pp. 106-111
    • Ali, R.S.1
  • 42
    • 84855916623 scopus 로고    scopus 로고
    • Loss of ceramide synthase 3 causes lethal skin barrier disruption
    • 42 Jennemann, R., et al. Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum. Mol. Genet. 21 (2012), 586–608.
    • (2012) Hum. Mol. Genet. , vol.21 , pp. 586-608
    • Jennemann, R.1
  • 43
    • 84898762485 scopus 로고    scopus 로고
    • Candida albicans uses the surface protein Gpm1 to attach to human endothelial cells and to keratinocytes via the adhesive protein vitronectin
    • 43 Lopez, C.M., et al. Candida albicans uses the surface protein Gpm1 to attach to human endothelial cells and to keratinocytes via the adhesive protein vitronectin. PLoS ONE, 9, 2014, e90796.
    • (2014) PLoS ONE , vol.9 , pp. e90796
    • Lopez, C.M.1
  • 44
    • 33749318470 scopus 로고    scopus 로고
    • Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides
    • 44 Liang, S.C., et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203 (2006), 2271–2279.
    • (2006) J. Exp. Med. , vol.203 , pp. 2271-2279
    • Liang, S.C.1
  • 45
    • 54249130813 scopus 로고    scopus 로고
    • Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways
    • 45 Nograles, K.E., et al. Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. Br. J. Dermatol. 159 (2008), 1092–1102.
    • (2008) Br. J. Dermatol. , vol.159 , pp. 1092-1102
    • Nograles, K.E.1
  • 46
    • 84864124259 scopus 로고    scopus 로고
    • Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin
    • 46 Nagao, K., et al. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat. Immunol. 13 (2012), 744–752.
    • (2012) Nat. Immunol. , vol.13 , pp. 744-752
    • Nagao, K.1
  • 47
    • 84959105586 scopus 로고    scopus 로고
    • Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-β
    • 47 Mohammed, J., et al. Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-β. Nat. Immunol. 17 (2016), 414–421.
    • (2016) Nat. Immunol. , vol.17 , pp. 414-421
    • Mohammed, J.1
  • 48
    • 84862987203 scopus 로고    scopus 로고
    • Autocrine/paracrine TGF-β1 inhibits Langerhans cell migration
    • 48 Bobr, A., et al. Autocrine/paracrine TGF-β1 inhibits Langerhans cell migration. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 10492–10497.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 10492-10497
    • Bobr, A.1
  • 49
    • 84941738580 scopus 로고    scopus 로고
    • The immunology and inflammatory responses of human melanocytes in infectious diseases
    • 49 Gasque, P., Jaffar-Bandjee, M.C., The immunology and inflammatory responses of human melanocytes in infectious diseases. J. Infect. 71 (2015), 413–421.
    • (2015) J. Infect. , vol.71 , pp. 413-421
    • Gasque, P.1    Jaffar-Bandjee, M.C.2
  • 50
    • 0035928531 scopus 로고    scopus 로고
    • The antimicrobial properties of melanocytes, melanosomes and melanin and the evolution of black skin
    • 50 Mackintosh, J.A., The antimicrobial properties of melanocytes, melanosomes and melanin and the evolution of black skin. J. Theor. Biol. 211 (2001), 101–113.
    • (2001) J. Theor. Biol. , vol.211 , pp. 101-113
    • Mackintosh, J.A.1
  • 51
    • 0031440459 scopus 로고    scopus 로고
    • Candida albicans suppresses transcription of melanogenesis enzymes in cultured melanocytes
    • 51 Kippenberger, S., et al. Candida albicans suppresses transcription of melanogenesis enzymes in cultured melanocytes. Mycoses 40 (1997), 373–375.
    • (1997) Mycoses , vol.40 , pp. 373-375
    • Kippenberger, S.1
  • 52
    • 84903194435 scopus 로고    scopus 로고
    • Melanocytes and melanin represent a first line of innate immunity against Candida albicans
    • 52 Tapia, C.V., et al. Melanocytes and melanin represent a first line of innate immunity against Candida albicans. Med. Mycol. 52 (2014), 445–454.
    • (2014) Med. Mycol. , vol.52 , pp. 445-454
    • Tapia, C.V.1
  • 53
    • 84942522499 scopus 로고    scopus 로고
    • The regulation of immunological processes by peripheral neurons in homeostasis and disease
    • 53 Ordovas-Montanes, J., et al. The regulation of immunological processes by peripheral neurons in homeostasis and disease. Trends Immunol. 36 (2015), 578–604.
    • (2015) Trends Immunol. , vol.36 , pp. 578-604
    • Ordovas-Montanes, J.1
  • 54
    • 0027314249 scopus 로고
    • Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide
    • 54 Hosoi, J., et al. Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide. Nature 363 (1993), 159–163.
    • (1993) Nature , vol.363 , pp. 159-163
    • Hosoi, J.1
  • 55
    • 84901976634 scopus 로고    scopus 로고
    • Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation
    • 55 Riol-Blanco, L., et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 510 (2014), 157–161.
    • (2014) Nature , vol.510 , pp. 157-161
    • Riol-Blanco, L.1
  • 56
    • 80053119788 scopus 로고    scopus 로고
    • Repeated vulvovaginal fungal infections cause persistent pain in a mouse model of vulvodynia
    • 56 Farmer, M.A., et al. Repeated vulvovaginal fungal infections cause persistent pain in a mouse model of vulvodynia. Sci. Transl. Med., 3, 2011, 101ra91.
    • (2011) Sci. Transl. Med. , vol.3 , pp. 101ra91
    • Farmer, M.A.1
  • 57
    • 0001316768 scopus 로고    scopus 로고
    • Inflammatory models of pain and hyperalgesia
    • 57 Ren, K., Dubner, R., Inflammatory models of pain and hyperalgesia. ILAR J. 40 (1999), 111–118.
    • (1999) ILAR J. , vol.40 , pp. 111-118
    • Ren, K.1    Dubner, R.2
  • 58
    • 84883739860 scopus 로고    scopus 로고
    • Bacteria activate sensory neurons that modulate pain and inflammation
    • 58 Chiu, I.M., et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature 501 (2013), 52–57.
    • (2013) Nature , vol.501 , pp. 52-57
    • Chiu, I.M.1
  • 59
    • 67349246624 scopus 로고    scopus 로고
    • Chemical synthesis, pharmacological characterization, and possible formation in unicellular fungi of 3-hydroxy-anandamide
    • 59 De Petrocellis, L., et al. Chemical synthesis, pharmacological characterization, and possible formation in unicellular fungi of 3-hydroxy-anandamide. J. Lipid Res. 50 (2009), 658–666.
    • (2009) J. Lipid Res. , vol.50 , pp. 658-666
    • De Petrocellis, L.1
  • 60
    • 49849100430 scopus 로고    scopus 로고
    • Antimicrobial activity of neuropeptides against a range of micro-organisms from skin, oral, respiratory and gastrointestinal tract sites
    • 60 Karim, El, I.A., et al. Antimicrobial activity of neuropeptides against a range of micro-organisms from skin, oral, respiratory and gastrointestinal tract sites. J. Neuroimmunol. 200 (2008), 11–16.
    • (2008) J. Neuroimmunol. , vol.200 , pp. 11-16
    • Karim1    El, I.A.2
  • 61
    • 84878616067 scopus 로고    scopus 로고
    • Epidermal nerve fibers modulate keratinocyte growth via neuropeptide signaling in an innervated skin model
    • 61 Roggenkamp, D., et al. Epidermal nerve fibers modulate keratinocyte growth via neuropeptide signaling in an innervated skin model. J. Invest. Dermatol. 133 (2013), 1620–1628.
    • (2013) J. Invest. Dermatol. , vol.133 , pp. 1620-1628
    • Roggenkamp, D.1
  • 62
    • 58749108125 scopus 로고    scopus 로고
    • Calcitonin gene-related peptide biases Langerhans cells toward Th2-type immunity
    • 62 Ding, W., et al. Calcitonin gene-related peptide biases Langerhans cells toward Th2-type immunity. J. Immunol. 181 (2008), 6020–6026.
    • (2008) J. Immunol. , vol.181 , pp. 6020-6026
    • Ding, W.1
  • 63
    • 0036604306 scopus 로고    scopus 로고
    • A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R
    • 63 Parham, C., et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J. Immunol. 168 (2002), 5699–5708.
    • (2002) J. Immunol. , vol.168 , pp. 5699-5708
    • Parham, C.1
  • 64
    • 84906535154 scopus 로고    scopus 로고
    • The IL-23–IL-17 immune axis: from mechanisms to therapeutic testing
    • 64 Gaffen, S.L., et al. The IL-23–IL-17 immune axis: from mechanisms to therapeutic testing. Nat. Rev. Immunol. 14 (2014), 585–600.
    • (2014) Nat. Rev. Immunol. , vol.14 , pp. 585-600
    • Gaffen, S.L.1
  • 65
    • 46949086109 scopus 로고    scopus 로고
    • Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells
    • 65 de Beaucoudrey, L., et al. Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells. J. Exp. Med. 205 (2008), 1543–1550.
    • (2008) J. Exp. Med. , vol.205 , pp. 1543-1550
    • de Beaucoudrey, L.1
  • 66
    • 84891754308 scopus 로고    scopus 로고
    • Clinical features of candidiasis in patients with inherited interleukin 12 receptor β1 deficiency
    • 66 Ouederni, M., et al. Clinical features of candidiasis in patients with inherited interleukin 12 receptor β1 deficiency. Clin. Infect. Dis. 58 (2014), 204–213.
    • (2014) Clin. Infect. Dis. , vol.58 , pp. 204-213
    • Ouederni, M.1
  • 67
    • 84905403506 scopus 로고    scopus 로고
    • Syk signaling in dendritic cells orchestrates innate resistance to systemic fungal infection
    • 67 Whitney, P.G., et al. Syk signaling in dendritic cells orchestrates innate resistance to systemic fungal infection. PLoS Pathog., 10, 2014, e1004276.
    • (2014) PLoS Pathog. , vol.10 , pp. e1004276
    • Whitney, P.G.1
  • 68
    • 63049138176 scopus 로고    scopus 로고
    • Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis
    • 68 Conti, H.R., et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J. Exp. Med. 206 (2009), 299–311.
    • (2009) J. Exp. Med. , vol.206 , pp. 299-311
    • Conti, H.R.1
  • 69
    • 84931480865 scopus 로고    scopus 로고
    • Candida albicans stimulates IL-23 release by human dendritic cells and downstream IL-17 secretion by Vδ1 T cells
    • 69 Maher, C.O., et al. Candida albicans stimulates IL-23 release by human dendritic cells and downstream IL-17 secretion by Vδ1 T cells. J. Immunol. 194 (2015), 5953–5960.
    • (2015) J. Immunol. , vol.194 , pp. 5953-5960
    • Maher, C.O.1
  • 70
    • 78649630548 scopus 로고    scopus 로고
    • In vivo function of Langerhans cells and dermal dendritic cells
    • 70 Kaplan, D.H., In vivo function of Langerhans cells and dermal dendritic cells. Trends Immunol. 31 (2010), 446–451.
    • (2010) Trends Immunol. , vol.31 , pp. 446-451
    • Kaplan, D.H.1
  • 71
    • 84902537284 scopus 로고    scopus 로고
    • IL-23 from Langerhans cells is required for the development of imiquimod-induced psoriasis-like dermatitis by induction of IL-17A-producing γδ T cells
    • 71 Yoshiki, R., et al. IL-23 from Langerhans cells is required for the development of imiquimod-induced psoriasis-like dermatitis by induction of IL-17A-producing γδ T cells. J. Invest. Dermatol. 134 (2014), 1912–1921.
    • (2014) J. Invest. Dermatol. , vol.134 , pp. 1912-1921
    • Yoshiki, R.1
  • 72
    • 84879547366 scopus 로고    scopus 로고
    • Langerin(neg) conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice
    • 72 Wohn, C., et al. Langerin(neg) conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 10723–10728.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 10723-10728
    • Wohn, C.1
  • 73
    • 84940121901 scopus 로고    scopus 로고
    • + NK cell-mediated skin inflammation
    • + NK cell-mediated skin inflammation. J. Immunol. 195 (2015), 2335–2342.
    • (2015) J. Immunol. , vol.195 , pp. 2335-2342
    • Scholz, F.1
  • 74
    • 28844492624 scopus 로고    scopus 로고
    • Epidermal Langerhans cell-deficient mice develop enhanced contact hypersensitivity
    • 74 Kaplan, D.H., et al. Epidermal Langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 23 (2005), 611–620.
    • (2005) Immunity , vol.23 , pp. 611-620
    • Kaplan, D.H.1
  • 75
    • 78049488909 scopus 로고    scopus 로고
    • Acute ablation of Langerhans cells enhances skin immune responses
    • 75 Bobr, A., et al. Acute ablation of Langerhans cells enhances skin immune responses. J. Immunol. 185 (2010), 4724–4728.
    • (2010) J. Immunol. , vol.185 , pp. 4724-4728
    • Bobr, A.1
  • 76
    • 77349125610 scopus 로고    scopus 로고
    • Langerhans cells suppress contact hypersensitivity responses via cognate CD4 interaction and Langerhans cell-derived IL-10
    • 76 Igyártó, B.Z., et al. Langerhans cells suppress contact hypersensitivity responses via cognate CD4 interaction and Langerhans cell-derived IL-10. J. Immunol. 183 (2009), 5085–5093.
    • (2009) J. Immunol. , vol.183 , pp. 5085-5093
    • Igyártó, B.Z.1
  • 77
    • 84894270649 scopus 로고    scopus 로고
    • Role of neutrophils in IL-17-dependent immunity to mucosal candidiasis
    • 77 Huppler, A.R., et al. Role of neutrophils in IL-17-dependent immunity to mucosal candidiasis. J. Immunol. 192 (2014), 1745–1752.
    • (2014) J. Immunol. , vol.192 , pp. 1745-1752
    • Huppler, A.R.1
  • 78
    • 84922759318 scopus 로고    scopus 로고
    • IL-17-mediated antifungal defense in the oral mucosa is independent of neutrophils
    • 78 Trautwein-Weidner, K., et al. IL-17-mediated antifungal defense in the oral mucosa is independent of neutrophils. Mucosal Immunol. 8 (2015), 221–231.
    • (2015) Mucosal Immunol. , vol.8 , pp. 221-231
    • Trautwein-Weidner, K.1
  • 79
    • 84874256199 scopus 로고    scopus 로고
    • Keratinocyte overexpression of IL-17C promotes psoriasiform skin inflammation
    • 79 Johnston, A., et al. Keratinocyte overexpression of IL-17C promotes psoriasiform skin inflammation. J. Immunol. 190 (2013), 2252–2262.
    • (2013) J. Immunol. , vol.190 , pp. 2252-2262
    • Johnston, A.1
  • 80
    • 84928901662 scopus 로고    scopus 로고
    • Signaling through IL-17C/IL-17RE is dispensable for immunity to systemic, oral and cutaneous candidiasis
    • 80 Conti, H.R., et al. Signaling through IL-17C/IL-17RE is dispensable for immunity to systemic, oral and cutaneous candidiasis. PLoS ONE, 10, 2015, e0122807.
    • (2015) PLoS ONE , vol.10 , pp. e0122807
    • Conti, H.R.1
  • 81
    • 84872171847 scopus 로고    scopus 로고
    • Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection
    • 81 Gladiator, A., et al. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J. Immunol. 190 (2013), 521–525.
    • (2013) J. Immunol. , vol.190 , pp. 521-525
    • Gladiator, A.1
  • 82
    • 84907202739 scopus 로고    scopus 로고
    • Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections
    • 82 Conti, H.R., et al. Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections. J. Exp. Med. 211 (2014), 2075–2084.
    • (2014) J. Exp. Med. , vol.211 , pp. 2075-2084
    • Conti, H.R.1
  • 83
    • 84980000578 scopus 로고    scopus 로고
    • STAT3 is a critical cell-intrinsic regulator of human unconventional T cell numbers and function
    • 83 Wilson, R.P., et al. STAT3 is a critical cell-intrinsic regulator of human unconventional T cell numbers and function. J. Exp. Med. 212 (2015), 855–864.
    • (2015) J. Exp. Med. , vol.212 , pp. 855-864
    • Wilson, R.P.1
  • 84
    • 77954143695 scopus 로고    scopus 로고
    • Innate IL-17-producing cells: the sentinels of the immune system
    • 84 Cua, D.J., Tato, C.M., Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 10 (2010), 479–489.
    • (2010) Nat. Rev. Immunol. , vol.10 , pp. 479-489
    • Cua, D.J.1    Tato, C.M.2
  • 85
    • 84878257398 scopus 로고    scopus 로고
    • + congenic mouse substrain provides protection from dermatitis
    • + congenic mouse substrain provides protection from dermatitis. Nat. Immunol. 14 (2013), 584–592.
    • (2013) Nat. Immunol. , vol.14 , pp. 584-592
    • Gray, E.E.1
  • 86
    • 84892827750 scopus 로고    scopus 로고
    • Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORγt and dectin-2
    • 86 Taylor, P.R., et al. Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORγt and dectin-2. Nat. Immunol. 15 (2014), 143–151.
    • (2014) Nat. Immunol. , vol.15 , pp. 143-151
    • Taylor, P.R.1
  • 87
    • 84908135568 scopus 로고    scopus 로고
    • Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens
    • 87 Branzk, N., et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol. 15 (2014), 1017–1025.
    • (2014) Nat. Immunol. , vol.15 , pp. 1017-1025
    • Branzk, N.1
  • 88
    • 84926980006 scopus 로고    scopus 로고
    • Pathogenic fungi regulate immunity by inducing neutrophilic myeloid-derived suppressor cells
    • 88 Rieber, N., et al. Pathogenic fungi regulate immunity by inducing neutrophilic myeloid-derived suppressor cells. Cell Host Microbe 17 (2015), 507–514.
    • (2015) Cell Host Microbe , vol.17 , pp. 507-514
    • Rieber, N.1
  • 89
    • 84942829247 scopus 로고    scopus 로고
    • Immune defence against Candida fungal infections
    • 89 Netea, M.G., et al. Immune defence against Candida fungal infections. Nat. Rev. Immunol. 15 (2015), 630–642.
    • (2015) Nat. Rev. Immunol. , vol.15 , pp. 630-642
    • Netea, M.G.1
  • 90
    • 84860241847 scopus 로고    scopus 로고
    • Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β
    • 90 Zielinski, C.E., et al. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature 484 (2012), 514–518.
    • (2012) Nature , vol.484 , pp. 514-518
    • Zielinski, C.E.1
  • 91
    • 84921753054 scopus 로고    scopus 로고
    • Functional heterogeneity of human memory CD4ζ T cell clones primed by pathogens or vaccines
    • 91 Becattini, S., et al. Functional heterogeneity of human memory CD4ζ T cell clones primed by pathogens or vaccines. Science 347 (2015), 400–406.
    • (2015) Science , vol.347 , pp. 400-406
    • Becattini, S.1
  • 92
    • 80055107954 scopus 로고    scopus 로고
    • DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice
    • 92 Randall, K.L., et al. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J. Exp. Med. 208 (2011), 2305–2320.
    • (2011) J. Exp. Med. , vol.208 , pp. 2305-2320
    • Randall, K.L.1
  • 94
    • 84928704650 scopus 로고    scopus 로고
    • Commensal–dendritic-cell interaction specifies a unique protective skin immune signature
    • 94 Naik, S., et al. Commensal–dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520 (2015), 104–108.
    • (2015) Nature , vol.520 , pp. 104-108
    • Naik, S.1
  • 95
    • 84946023036 scopus 로고    scopus 로고
    • Antigen-specific Th17 cells are primed by distinct and complementary dendritic cell subsets in oropharyngeal candidiasis
    • 95 Trautwein-Weidner, K., et al. Antigen-specific Th17 cells are primed by distinct and complementary dendritic cell subsets in oropharyngeal candidiasis. PLoS Pathog., 11, 2015, e1005164.
    • (2015) PLoS Pathog. , vol.11 , pp. e1005164
    • Trautwein-Weidner, K.1
  • 96
    • 79960219807 scopus 로고    scopus 로고
    • IRF8 mutations and human dendritic-cell immunodeficiency
    • 96 Hambleton, S., et al. IRF8 mutations and human dendritic-cell immunodeficiency. N. Engl. J. Med. 365 (2011), 127–138.
    • (2011) N. Engl. J. Med. , vol.365 , pp. 127-138
    • Hambleton, S.1
  • 97
    • 84883176275 scopus 로고    scopus 로고
    • Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections
    • 97 Hernández-Santos, N., et al. Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections. Mucosal Immunol. 6 (2013), 900–910.
    • (2013) Mucosal Immunol. , vol.6 , pp. 900-910
    • Hernández-Santos, N.1
  • 98
    • 74049131014 scopus 로고    scopus 로고
    • Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells
    • 98 Pepper, M., et al. Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells. Nat. Immunol. 11 (2010), 83–89.
    • (2010) Nat. Immunol. , vol.11 , pp. 83-89
    • Pepper, M.1
  • 99
    • 84900822184 scopus 로고    scopus 로고
    • Idiopathic CD4 lymphocytopenia: spectrum of opportunistic infections, malignancies, and autoimmune diseases
    • 99 Ahmad, D.S., et al. Idiopathic CD4 lymphocytopenia: spectrum of opportunistic infections, malignancies, and autoimmune diseases. Avicenna J. Med. 3 (2013), 37–47.
    • (2013) Avicenna J. Med. , vol.3 , pp. 37-47
    • Ahmad, D.S.1
  • 101
    • 35348960378 scopus 로고    scopus 로고
    • STAT3 mutations in the hyper-IgE syndrome
    • 101 Holland, S.M., et al. STAT3 mutations in the hyper-IgE syndrome. N. Engl. J. Med. 357 (2007), 1608–1619.
    • (2007) N. Engl. J. Med. , vol.357 , pp. 1608-1619
    • Holland, S.M.1
  • 102
    • 41449110468 scopus 로고    scopus 로고
    • Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome
    • 102 Milner, J.D., et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452 (2008), 773–776.
    • (2008) Nature , vol.452 , pp. 773-776
    • Milner, J.D.1
  • 103
    • 70949098060 scopus 로고    scopus 로고
    • Combined immunodeficiency associated with DOCK8 mutations
    • 103 Zhang, Q., et al. Combined immunodeficiency associated with DOCK8 mutations. N. Engl. J. Med. 361 (2009), 2046–2055.
    • (2009) N. Engl. J. Med. , vol.361 , pp. 2046-2055
    • Zhang, Q.1
  • 104
    • 79953284685 scopus 로고    scopus 로고
    • Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity
    • 104 Puel, A., et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332 (2011), 65–68.
    • (2011) Science , vol.332 , pp. 65-68
    • Puel, A.1
  • 105
    • 84937713659 scopus 로고    scopus 로고
    • Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis
    • 105 Ling, Y., et al. Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis. J. Exp. Med. 212 (2015), 619–631.
    • (2015) J. Exp. Med. , vol.212 , pp. 619-631
    • Ling, Y.1
  • 106
    • 84885865938 scopus 로고    scopus 로고
    • An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis
    • 106 Boisson, B., et al. An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunity 39 (2013), 676–686.
    • (2013) Immunity , vol.39 , pp. 676-686
    • Boisson, B.1
  • 107
    • 84939154723 scopus 로고    scopus 로고
    • Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations
    • 107 Okada, S., et al. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 349 (2015), 606–613.
    • (2015) Science , vol.349 , pp. 606-613
    • Okada, S.1
  • 108
    • 77149147477 scopus 로고    scopus 로고
    • Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines
    • 108 Kisand, K., et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J. Exp. Med. 207 (2010), 299–308.
    • (2010) J. Exp. Med. , vol.207 , pp. 299-308
    • Kisand, K.1
  • 109
    • 79961154447 scopus 로고    scopus 로고
    • Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis
    • 109 Liu, L., et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J. Exp. Med. 208 (2011), 1635–1648.
    • (2011) J. Exp. Med. , vol.208 , pp. 1635-1648
    • Liu, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.