-
1
-
-
34249724445
-
Nosocomial fungal infections: epidemiology, diagnosis, and treatment
-
1 Perlroth, J., et al. Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med. Mycol. 45 (2007), 321–346.
-
(2007)
Med. Mycol.
, vol.45
, pp. 321-346
-
-
Perlroth, J.1
-
2
-
-
84947441717
-
Immune interactions with pathogenic and commensal fungi: a two-way street
-
2 Underhill, D.M., Pearlman, E., Immune interactions with pathogenic and commensal fungi: a two-way street. Immunity 43 (2015), 845–858.
-
(2015)
Immunity
, vol.43
, pp. 845-858
-
-
Underhill, D.M.1
Pearlman, E.2
-
3
-
-
84883162002
-
The cup runneth over: lessons from the ever-expanding pool of primary immunodeficiency diseases
-
3 Milner, J.D., Holland, S.M., The cup runneth over: lessons from the ever-expanding pool of primary immunodeficiency diseases. Nat. Rev. Immunol. 13 (2013), 635–648.
-
(2013)
Nat. Rev. Immunol.
, vol.13
, pp. 635-648
-
-
Milner, J.D.1
Holland, S.M.2
-
4
-
-
84878700149
-
Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans
-
4 Smeekens, S.P., et al. Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans. Nat. Commun., 4, 2013, 1342.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1342
-
-
Smeekens, S.P.1
-
5
-
-
84923000491
-
Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation
-
5 Kashem, S.W., et al. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity 42 (2015), 356–366.
-
(2015)
Immunity
, vol.42
, pp. 356-366
-
-
Kashem, S.W.1
-
6
-
-
84892479849
-
IL-17 regulates systemic fungal immunity by controlling the functional competence of NK cells
-
6 Bar, E., et al. IL-17 regulates systemic fungal immunity by controlling the functional competence of NK cells. Immunity 40 (2014), 117–127.
-
(2014)
Immunity
, vol.40
, pp. 117-127
-
-
Bar, E.1
-
7
-
-
34249026701
-
Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17
-
7 LeibundGut-Landmann, S., et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol. 8 (2007), 630–638.
-
(2007)
Nat. Immunol.
, vol.8
, pp. 630-638
-
-
LeibundGut-Landmann, S.1
-
8
-
-
80051792725
-
Inflammation and gastrointestinal Candida colonization
-
8 Kumamoto, C.A., Inflammation and gastrointestinal Candida colonization. Curr. Opin. Microbiol. 14 (2011), 386–391.
-
(2011)
Curr. Opin. Microbiol.
, vol.14
, pp. 386-391
-
-
Kumamoto, C.A.1
-
9
-
-
84928046816
-
Vulvovaginal Candida albicans infections: pathogenesis, immunity and vaccine prospects
-
9 Cassone, A., Vulvovaginal Candida albicans infections: pathogenesis, immunity and vaccine prospects. BJOG 122 (2015), 785–794.
-
(2015)
BJOG
, vol.122
, pp. 785-794
-
-
Cassone, A.1
-
10
-
-
84937695151
-
IL-17-mediated immunity to the opportunistic fungal pathogen Candida albicans
-
10 Conti, H.R., Gaffen, S.L., IL-17-mediated immunity to the opportunistic fungal pathogen Candida albicans. J. Immunol. 195 (2015), 780–788.
-
(2015)
J. Immunol.
, vol.195
, pp. 780-788
-
-
Conti, H.R.1
Gaffen, S.L.2
-
11
-
-
84861964286
-
Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis
-
11 Iliev, I.D., et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 336 (2012), 1314–1317.
-
(2012)
Science
, vol.336
, pp. 1314-1317
-
-
Iliev, I.D.1
-
12
-
-
80051906942
-
Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses
-
12 Igyártó, B.Z., et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 35 (2011), 260–272.
-
(2011)
Immunity
, vol.35
, pp. 260-272
-
-
Igyártó, B.Z.1
-
13
-
-
78149491862
-
IL-23 and IL-17A, but not IL-12 and IL-22, are required for optimal skin host defense against Candida albicans
-
13 Kagami, S., et al. IL-23 and IL-17A, but not IL-12 and IL-22, are required for optimal skin host defense against Candida albicans. J. Immunol. 185 (2010), 5453–5462.
-
(2010)
J. Immunol.
, vol.185
, pp. 5453-5462
-
-
Kagami, S.1
-
14
-
-
84941645578
-
+ dermal dendritic cells and drive protective cutaneous immunity
-
+ dermal dendritic cells and drive protective cutaneous immunity. Immunity 43 (2015), 515–526.
-
(2015)
Immunity
, vol.43
, pp. 515-526
-
-
Kashem, S.W.1
-
15
-
-
84920896754
-
C-type lectins in immunity: recent developments
-
15 Dambuza, I.M., Brown, G.D., C-type lectins in immunity: recent developments. Curr. Opin. Immunol. 32 (2015), 21–27.
-
(2015)
Curr. Opin. Immunol.
, vol.32
, pp. 21-27
-
-
Dambuza, I.M.1
Brown, G.D.2
-
16
-
-
0035817818
-
A new receptor for beta-glucans
-
16 Brown, G.D., Gordon, S., A new receptor for beta-glucans. Nature 413 (2001), 36–37.
-
(2001)
Nature
, vol.413
, pp. 36-37
-
-
Brown, G.D.1
Gordon, S.2
-
17
-
-
70350545720
-
A homozygous CARD9 mutation in a family with susceptibility to fungal infections
-
17 Glocker, E.-O., et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N. Engl. J. Med. 361 (2009), 1727–1735.
-
(2009)
N. Engl. J. Med.
, vol.361
, pp. 1727-1735
-
-
Glocker, E.-O.1
-
18
-
-
70350534272
-
Human dectin-1 deficiency and mucocutaneous fungal infections
-
18 Ferwerda, B., et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N. Engl. J. Med. 361 (2009), 1760–1767.
-
(2009)
N. Engl. J. Med.
, vol.361
, pp. 1760-1767
-
-
Ferwerda, B.1
-
19
-
-
33846962860
-
Dectin-1 is required for beta-glucan recognition and control of fungal infection
-
19 Taylor, P.R., et al. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat. Immunol. 8 (2007), 31–38.
-
(2007)
Nat. Immunol.
, vol.8
, pp. 31-38
-
-
Taylor, P.R.1
-
20
-
-
33846963844
-
Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans
-
20 Saijo, S., et al. Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat. Immunol. 8 (2007), 39–46.
-
(2007)
Nat. Immunol.
, vol.8
, pp. 39-46
-
-
Saijo, S.1
-
21
-
-
84876848564
-
Differential adaptation of Candida albicans in vivo modulates immune recognition by dectin-1
-
21 Marakalala, M.J., et al. Differential adaptation of Candida albicans in vivo modulates immune recognition by dectin-1. PLoS Pathog., 9, 2013, e1003315.
-
(2013)
PLoS Pathog.
, vol.9
, pp. e1003315
-
-
Marakalala, M.J.1
-
22
-
-
17144370549
-
Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments
-
22 Gantner, B.N., et al. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J. 24 (2005), 1277–1286.
-
(2005)
EMBO J.
, vol.24
, pp. 1277-1286
-
-
Gantner, B.N.1
-
23
-
-
84855872990
-
Candida albicans morphogenesis and host defence: discriminating invasion from colonization
-
23 Gow, N.A.R., et al. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat. Rev. Microbiol. 10 (2012), 112–122.
-
(2012)
Nat. Rev. Microbiol.
, vol.10
, pp. 112-122
-
-
Gow, N.A.R.1
-
24
-
-
0012929728
-
Toll-like receptors
-
24 Takeda, K., et al. Toll-like receptors. Annu. Rev. Immunol. 21 (2003), 335–376.
-
(2003)
Annu. Rev. Immunol.
, vol.21
, pp. 335-376
-
-
Takeda, K.1
-
25
-
-
0038558249
-
Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2
-
25 Gantner, B.N., et al. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med. 197 (2003), 1107–1117.
-
(2003)
J. Exp. Med.
, vol.197
, pp. 1107-1117
-
-
Gantner, B.N.1
-
26
-
-
51449087747
-
Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages
-
26 Ferwerda, G., et al. Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cell. Microbiol. 10 (2008), 2058–2066.
-
(2008)
Cell. Microbiol.
, vol.10
, pp. 2058-2066
-
-
Ferwerda, G.1
-
27
-
-
10744221913
-
The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo
-
27 Bellocchio, S., et al. The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J. Immunol. 172 (2004), 3059–3069.
-
(2004)
J. Immunol.
, vol.172
, pp. 3059-3069
-
-
Bellocchio, S.1
-
28
-
-
84860318542
-
Langerhans cells require MyD88-dependent signals for Candida albicans response but not for contact hypersensitivity or migration
-
28 Haley, K., et al. Langerhans cells require MyD88-dependent signals for Candida albicans response but not for contact hypersensitivity or migration. J. Immunol. 188 (2012), 4334–4339.
-
(2012)
J. Immunol.
, vol.188
, pp. 4334-4339
-
-
Haley, K.1
-
29
-
-
79960121968
-
Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IκBα deficiency
-
29 Picard, C., et al. Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IκBα deficiency. Clin. Microbiol. Rev. 24 (2011), 490–497.
-
(2011)
Clin. Microbiol. Rev.
, vol.24
, pp. 490-497
-
-
Picard, C.1
-
30
-
-
84888128171
-
Primary immunodeficiencies underlying fungal infections
-
30 Lanternier, F., et al. Primary immunodeficiencies underlying fungal infections. Curr. Opin. Pediatr. 25 (2013), 736–747.
-
(2013)
Curr. Opin. Pediatr.
, vol.25
, pp. 736-747
-
-
Lanternier, F.1
-
31
-
-
66749174867
-
The inflammasomes: guardians of the body
-
31 Martinon, F., et al. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27 (2009), 229–265.
-
(2009)
Annu. Rev. Immunol.
, vol.27
, pp. 229-265
-
-
Martinon, F.1
-
32
-
-
77951652390
-
Lessons from the inflammasome: a molecular sentry linking Candida and Crohn's disease
-
32 Rehaume, L.M., et al. Lessons from the inflammasome: a molecular sentry linking Candida and Crohn's disease. Trends Immunol. 31 (2010), 171–175.
-
(2010)
Trends Immunol.
, vol.31
, pp. 171-175
-
-
Rehaume, L.M.1
-
33
-
-
60849113133
-
Polymorphism in a gene coding for the inflammasome component NALP3 and recurrent vulvovaginal candidiasis in women with vulvar vestibulitis syndrome
-
303.e1–6
-
33 Lev-Sagie, A., et al. Polymorphism in a gene coding for the inflammasome component NALP3 and recurrent vulvovaginal candidiasis in women with vulvar vestibulitis syndrome. Am. J. Obstet. Gynecol., 200, 2009 303.e1–6.
-
(2009)
Am. J. Obstet. Gynecol.
, vol.200
-
-
Lev-Sagie, A.1
-
34
-
-
65549154784
-
An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans
-
34 Hise, A.G., et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5 (2009), 487–497.
-
(2009)
Cell Host Microbe
, vol.5
, pp. 487-497
-
-
Hise, A.G.1
-
35
-
-
70349317039
-
Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome
-
35 Joly, S., et al. Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J. Immunol. 183 (2009), 3578–3581.
-
(2009)
J. Immunol.
, vol.183
, pp. 3578-3581
-
-
Joly, S.1
-
36
-
-
84868554611
-
Cutting edge: Nlrp10 is essential for protective antifungal adaptive immunity against Candida albicans
-
36 Joly, S., et al. Cutting edge: Nlrp10 is essential for protective antifungal adaptive immunity against Candida albicans. J. Immunol. 189 (2012), 4713–4717.
-
(2012)
J. Immunol.
, vol.189
, pp. 4713-4717
-
-
Joly, S.1
-
37
-
-
84860233490
-
NLRP10 is a NOD-like receptor essential to initiate adaptive immunity by dendritic cells
-
37 Eisenbarth, S.C., et al. NLRP10 is a NOD-like receptor essential to initiate adaptive immunity by dendritic cells. Nature 484 (2012), 510–513.
-
(2012)
Nature
, vol.484
, pp. 510-513
-
-
Eisenbarth, S.C.1
-
38
-
-
84924308188
-
Coincidental loss of DOCK8 function in NLRP10-deficient and C3H/HeJ mice results in defective dendritic cell migration
-
38 Krishnaswamy, J.K., et al. Coincidental loss of DOCK8 function in NLRP10-deficient and C3H/HeJ mice results in defective dendritic cell migration. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 3056–3061.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 3056-3061
-
-
Krishnaswamy, J.K.1
-
39
-
-
84916894941
-
Hyper-IgE syndromes: recent advances in pathogenesis, diagnostics and clinical care
-
39 Farmand, S., Sundin, M., Hyper-IgE syndromes: recent advances in pathogenesis, diagnostics and clinical care. Curr. Opin. Hematol. 22 (2015), 12–22.
-
(2015)
Curr. Opin. Hematol.
, vol.22
, pp. 12-22
-
-
Farmand, S.1
Sundin, M.2
-
40
-
-
84855296038
-
A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans
-
40 Tomalka, J., et al. A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans. PLoS Pathog., 7, 2011, e1002379.
-
(2011)
PLoS Pathog.
, vol.7
, pp. e1002379
-
-
Tomalka, J.1
-
41
-
-
0034946112
-
Expression of the peptide antibiotics human beta defensin-1 and human beta defensin-2 in normal human skin
-
41 Ali, R.S., et al. Expression of the peptide antibiotics human beta defensin-1 and human beta defensin-2 in normal human skin. J. Invest. Dermatol. 117 (2001), 106–111.
-
(2001)
J. Invest. Dermatol.
, vol.117
, pp. 106-111
-
-
Ali, R.S.1
-
42
-
-
84855916623
-
Loss of ceramide synthase 3 causes lethal skin barrier disruption
-
42 Jennemann, R., et al. Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum. Mol. Genet. 21 (2012), 586–608.
-
(2012)
Hum. Mol. Genet.
, vol.21
, pp. 586-608
-
-
Jennemann, R.1
-
43
-
-
84898762485
-
Candida albicans uses the surface protein Gpm1 to attach to human endothelial cells and to keratinocytes via the adhesive protein vitronectin
-
43 Lopez, C.M., et al. Candida albicans uses the surface protein Gpm1 to attach to human endothelial cells and to keratinocytes via the adhesive protein vitronectin. PLoS ONE, 9, 2014, e90796.
-
(2014)
PLoS ONE
, vol.9
, pp. e90796
-
-
Lopez, C.M.1
-
44
-
-
33749318470
-
Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides
-
44 Liang, S.C., et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203 (2006), 2271–2279.
-
(2006)
J. Exp. Med.
, vol.203
, pp. 2271-2279
-
-
Liang, S.C.1
-
45
-
-
54249130813
-
Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways
-
45 Nograles, K.E., et al. Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. Br. J. Dermatol. 159 (2008), 1092–1102.
-
(2008)
Br. J. Dermatol.
, vol.159
, pp. 1092-1102
-
-
Nograles, K.E.1
-
46
-
-
84864124259
-
Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin
-
46 Nagao, K., et al. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat. Immunol. 13 (2012), 744–752.
-
(2012)
Nat. Immunol.
, vol.13
, pp. 744-752
-
-
Nagao, K.1
-
47
-
-
84959105586
-
Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-β
-
47 Mohammed, J., et al. Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-β. Nat. Immunol. 17 (2016), 414–421.
-
(2016)
Nat. Immunol.
, vol.17
, pp. 414-421
-
-
Mohammed, J.1
-
48
-
-
84862987203
-
Autocrine/paracrine TGF-β1 inhibits Langerhans cell migration
-
48 Bobr, A., et al. Autocrine/paracrine TGF-β1 inhibits Langerhans cell migration. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 10492–10497.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 10492-10497
-
-
Bobr, A.1
-
49
-
-
84941738580
-
The immunology and inflammatory responses of human melanocytes in infectious diseases
-
49 Gasque, P., Jaffar-Bandjee, M.C., The immunology and inflammatory responses of human melanocytes in infectious diseases. J. Infect. 71 (2015), 413–421.
-
(2015)
J. Infect.
, vol.71
, pp. 413-421
-
-
Gasque, P.1
Jaffar-Bandjee, M.C.2
-
50
-
-
0035928531
-
The antimicrobial properties of melanocytes, melanosomes and melanin and the evolution of black skin
-
50 Mackintosh, J.A., The antimicrobial properties of melanocytes, melanosomes and melanin and the evolution of black skin. J. Theor. Biol. 211 (2001), 101–113.
-
(2001)
J. Theor. Biol.
, vol.211
, pp. 101-113
-
-
Mackintosh, J.A.1
-
51
-
-
0031440459
-
Candida albicans suppresses transcription of melanogenesis enzymes in cultured melanocytes
-
51 Kippenberger, S., et al. Candida albicans suppresses transcription of melanogenesis enzymes in cultured melanocytes. Mycoses 40 (1997), 373–375.
-
(1997)
Mycoses
, vol.40
, pp. 373-375
-
-
Kippenberger, S.1
-
52
-
-
84903194435
-
Melanocytes and melanin represent a first line of innate immunity against Candida albicans
-
52 Tapia, C.V., et al. Melanocytes and melanin represent a first line of innate immunity against Candida albicans. Med. Mycol. 52 (2014), 445–454.
-
(2014)
Med. Mycol.
, vol.52
, pp. 445-454
-
-
Tapia, C.V.1
-
53
-
-
84942522499
-
The regulation of immunological processes by peripheral neurons in homeostasis and disease
-
53 Ordovas-Montanes, J., et al. The regulation of immunological processes by peripheral neurons in homeostasis and disease. Trends Immunol. 36 (2015), 578–604.
-
(2015)
Trends Immunol.
, vol.36
, pp. 578-604
-
-
Ordovas-Montanes, J.1
-
54
-
-
0027314249
-
Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide
-
54 Hosoi, J., et al. Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide. Nature 363 (1993), 159–163.
-
(1993)
Nature
, vol.363
, pp. 159-163
-
-
Hosoi, J.1
-
55
-
-
84901976634
-
Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation
-
55 Riol-Blanco, L., et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 510 (2014), 157–161.
-
(2014)
Nature
, vol.510
, pp. 157-161
-
-
Riol-Blanco, L.1
-
56
-
-
80053119788
-
Repeated vulvovaginal fungal infections cause persistent pain in a mouse model of vulvodynia
-
56 Farmer, M.A., et al. Repeated vulvovaginal fungal infections cause persistent pain in a mouse model of vulvodynia. Sci. Transl. Med., 3, 2011, 101ra91.
-
(2011)
Sci. Transl. Med.
, vol.3
, pp. 101ra91
-
-
Farmer, M.A.1
-
57
-
-
0001316768
-
Inflammatory models of pain and hyperalgesia
-
57 Ren, K., Dubner, R., Inflammatory models of pain and hyperalgesia. ILAR J. 40 (1999), 111–118.
-
(1999)
ILAR J.
, vol.40
, pp. 111-118
-
-
Ren, K.1
Dubner, R.2
-
58
-
-
84883739860
-
Bacteria activate sensory neurons that modulate pain and inflammation
-
58 Chiu, I.M., et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature 501 (2013), 52–57.
-
(2013)
Nature
, vol.501
, pp. 52-57
-
-
Chiu, I.M.1
-
59
-
-
67349246624
-
Chemical synthesis, pharmacological characterization, and possible formation in unicellular fungi of 3-hydroxy-anandamide
-
59 De Petrocellis, L., et al. Chemical synthesis, pharmacological characterization, and possible formation in unicellular fungi of 3-hydroxy-anandamide. J. Lipid Res. 50 (2009), 658–666.
-
(2009)
J. Lipid Res.
, vol.50
, pp. 658-666
-
-
De Petrocellis, L.1
-
60
-
-
49849100430
-
Antimicrobial activity of neuropeptides against a range of micro-organisms from skin, oral, respiratory and gastrointestinal tract sites
-
60 Karim, El, I.A., et al. Antimicrobial activity of neuropeptides against a range of micro-organisms from skin, oral, respiratory and gastrointestinal tract sites. J. Neuroimmunol. 200 (2008), 11–16.
-
(2008)
J. Neuroimmunol.
, vol.200
, pp. 11-16
-
-
Karim1
El, I.A.2
-
61
-
-
84878616067
-
Epidermal nerve fibers modulate keratinocyte growth via neuropeptide signaling in an innervated skin model
-
61 Roggenkamp, D., et al. Epidermal nerve fibers modulate keratinocyte growth via neuropeptide signaling in an innervated skin model. J. Invest. Dermatol. 133 (2013), 1620–1628.
-
(2013)
J. Invest. Dermatol.
, vol.133
, pp. 1620-1628
-
-
Roggenkamp, D.1
-
62
-
-
58749108125
-
Calcitonin gene-related peptide biases Langerhans cells toward Th2-type immunity
-
62 Ding, W., et al. Calcitonin gene-related peptide biases Langerhans cells toward Th2-type immunity. J. Immunol. 181 (2008), 6020–6026.
-
(2008)
J. Immunol.
, vol.181
, pp. 6020-6026
-
-
Ding, W.1
-
63
-
-
0036604306
-
A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R
-
63 Parham, C., et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J. Immunol. 168 (2002), 5699–5708.
-
(2002)
J. Immunol.
, vol.168
, pp. 5699-5708
-
-
Parham, C.1
-
64
-
-
84906535154
-
The IL-23–IL-17 immune axis: from mechanisms to therapeutic testing
-
64 Gaffen, S.L., et al. The IL-23–IL-17 immune axis: from mechanisms to therapeutic testing. Nat. Rev. Immunol. 14 (2014), 585–600.
-
(2014)
Nat. Rev. Immunol.
, vol.14
, pp. 585-600
-
-
Gaffen, S.L.1
-
65
-
-
46949086109
-
Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells
-
65 de Beaucoudrey, L., et al. Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells. J. Exp. Med. 205 (2008), 1543–1550.
-
(2008)
J. Exp. Med.
, vol.205
, pp. 1543-1550
-
-
de Beaucoudrey, L.1
-
66
-
-
84891754308
-
Clinical features of candidiasis in patients with inherited interleukin 12 receptor β1 deficiency
-
66 Ouederni, M., et al. Clinical features of candidiasis in patients with inherited interleukin 12 receptor β1 deficiency. Clin. Infect. Dis. 58 (2014), 204–213.
-
(2014)
Clin. Infect. Dis.
, vol.58
, pp. 204-213
-
-
Ouederni, M.1
-
67
-
-
84905403506
-
Syk signaling in dendritic cells orchestrates innate resistance to systemic fungal infection
-
67 Whitney, P.G., et al. Syk signaling in dendritic cells orchestrates innate resistance to systemic fungal infection. PLoS Pathog., 10, 2014, e1004276.
-
(2014)
PLoS Pathog.
, vol.10
, pp. e1004276
-
-
Whitney, P.G.1
-
68
-
-
63049138176
-
Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis
-
68 Conti, H.R., et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J. Exp. Med. 206 (2009), 299–311.
-
(2009)
J. Exp. Med.
, vol.206
, pp. 299-311
-
-
Conti, H.R.1
-
69
-
-
84931480865
-
Candida albicans stimulates IL-23 release by human dendritic cells and downstream IL-17 secretion by Vδ1 T cells
-
69 Maher, C.O., et al. Candida albicans stimulates IL-23 release by human dendritic cells and downstream IL-17 secretion by Vδ1 T cells. J. Immunol. 194 (2015), 5953–5960.
-
(2015)
J. Immunol.
, vol.194
, pp. 5953-5960
-
-
Maher, C.O.1
-
70
-
-
78649630548
-
In vivo function of Langerhans cells and dermal dendritic cells
-
70 Kaplan, D.H., In vivo function of Langerhans cells and dermal dendritic cells. Trends Immunol. 31 (2010), 446–451.
-
(2010)
Trends Immunol.
, vol.31
, pp. 446-451
-
-
Kaplan, D.H.1
-
71
-
-
84902537284
-
IL-23 from Langerhans cells is required for the development of imiquimod-induced psoriasis-like dermatitis by induction of IL-17A-producing γδ T cells
-
71 Yoshiki, R., et al. IL-23 from Langerhans cells is required for the development of imiquimod-induced psoriasis-like dermatitis by induction of IL-17A-producing γδ T cells. J. Invest. Dermatol. 134 (2014), 1912–1921.
-
(2014)
J. Invest. Dermatol.
, vol.134
, pp. 1912-1921
-
-
Yoshiki, R.1
-
72
-
-
84879547366
-
Langerin(neg) conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice
-
72 Wohn, C., et al. Langerin(neg) conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 10723–10728.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 10723-10728
-
-
Wohn, C.1
-
73
-
-
84940121901
-
+ NK cell-mediated skin inflammation
-
+ NK cell-mediated skin inflammation. J. Immunol. 195 (2015), 2335–2342.
-
(2015)
J. Immunol.
, vol.195
, pp. 2335-2342
-
-
Scholz, F.1
-
74
-
-
28844492624
-
Epidermal Langerhans cell-deficient mice develop enhanced contact hypersensitivity
-
74 Kaplan, D.H., et al. Epidermal Langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 23 (2005), 611–620.
-
(2005)
Immunity
, vol.23
, pp. 611-620
-
-
Kaplan, D.H.1
-
75
-
-
78049488909
-
Acute ablation of Langerhans cells enhances skin immune responses
-
75 Bobr, A., et al. Acute ablation of Langerhans cells enhances skin immune responses. J. Immunol. 185 (2010), 4724–4728.
-
(2010)
J. Immunol.
, vol.185
, pp. 4724-4728
-
-
Bobr, A.1
-
76
-
-
77349125610
-
Langerhans cells suppress contact hypersensitivity responses via cognate CD4 interaction and Langerhans cell-derived IL-10
-
76 Igyártó, B.Z., et al. Langerhans cells suppress contact hypersensitivity responses via cognate CD4 interaction and Langerhans cell-derived IL-10. J. Immunol. 183 (2009), 5085–5093.
-
(2009)
J. Immunol.
, vol.183
, pp. 5085-5093
-
-
Igyártó, B.Z.1
-
77
-
-
84894270649
-
Role of neutrophils in IL-17-dependent immunity to mucosal candidiasis
-
77 Huppler, A.R., et al. Role of neutrophils in IL-17-dependent immunity to mucosal candidiasis. J. Immunol. 192 (2014), 1745–1752.
-
(2014)
J. Immunol.
, vol.192
, pp. 1745-1752
-
-
Huppler, A.R.1
-
78
-
-
84922759318
-
IL-17-mediated antifungal defense in the oral mucosa is independent of neutrophils
-
78 Trautwein-Weidner, K., et al. IL-17-mediated antifungal defense in the oral mucosa is independent of neutrophils. Mucosal Immunol. 8 (2015), 221–231.
-
(2015)
Mucosal Immunol.
, vol.8
, pp. 221-231
-
-
Trautwein-Weidner, K.1
-
79
-
-
84874256199
-
Keratinocyte overexpression of IL-17C promotes psoriasiform skin inflammation
-
79 Johnston, A., et al. Keratinocyte overexpression of IL-17C promotes psoriasiform skin inflammation. J. Immunol. 190 (2013), 2252–2262.
-
(2013)
J. Immunol.
, vol.190
, pp. 2252-2262
-
-
Johnston, A.1
-
80
-
-
84928901662
-
Signaling through IL-17C/IL-17RE is dispensable for immunity to systemic, oral and cutaneous candidiasis
-
80 Conti, H.R., et al. Signaling through IL-17C/IL-17RE is dispensable for immunity to systemic, oral and cutaneous candidiasis. PLoS ONE, 10, 2015, e0122807.
-
(2015)
PLoS ONE
, vol.10
, pp. e0122807
-
-
Conti, H.R.1
-
81
-
-
84872171847
-
Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection
-
81 Gladiator, A., et al. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J. Immunol. 190 (2013), 521–525.
-
(2013)
J. Immunol.
, vol.190
, pp. 521-525
-
-
Gladiator, A.1
-
82
-
-
84907202739
-
Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections
-
82 Conti, H.R., et al. Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections. J. Exp. Med. 211 (2014), 2075–2084.
-
(2014)
J. Exp. Med.
, vol.211
, pp. 2075-2084
-
-
Conti, H.R.1
-
83
-
-
84980000578
-
STAT3 is a critical cell-intrinsic regulator of human unconventional T cell numbers and function
-
83 Wilson, R.P., et al. STAT3 is a critical cell-intrinsic regulator of human unconventional T cell numbers and function. J. Exp. Med. 212 (2015), 855–864.
-
(2015)
J. Exp. Med.
, vol.212
, pp. 855-864
-
-
Wilson, R.P.1
-
84
-
-
77954143695
-
Innate IL-17-producing cells: the sentinels of the immune system
-
84 Cua, D.J., Tato, C.M., Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 10 (2010), 479–489.
-
(2010)
Nat. Rev. Immunol.
, vol.10
, pp. 479-489
-
-
Cua, D.J.1
Tato, C.M.2
-
85
-
-
84878257398
-
+ congenic mouse substrain provides protection from dermatitis
-
+ congenic mouse substrain provides protection from dermatitis. Nat. Immunol. 14 (2013), 584–592.
-
(2013)
Nat. Immunol.
, vol.14
, pp. 584-592
-
-
Gray, E.E.1
-
86
-
-
84892827750
-
Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORγt and dectin-2
-
86 Taylor, P.R., et al. Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORγt and dectin-2. Nat. Immunol. 15 (2014), 143–151.
-
(2014)
Nat. Immunol.
, vol.15
, pp. 143-151
-
-
Taylor, P.R.1
-
87
-
-
84908135568
-
Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens
-
87 Branzk, N., et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol. 15 (2014), 1017–1025.
-
(2014)
Nat. Immunol.
, vol.15
, pp. 1017-1025
-
-
Branzk, N.1
-
88
-
-
84926980006
-
Pathogenic fungi regulate immunity by inducing neutrophilic myeloid-derived suppressor cells
-
88 Rieber, N., et al. Pathogenic fungi regulate immunity by inducing neutrophilic myeloid-derived suppressor cells. Cell Host Microbe 17 (2015), 507–514.
-
(2015)
Cell Host Microbe
, vol.17
, pp. 507-514
-
-
Rieber, N.1
-
89
-
-
84942829247
-
Immune defence against Candida fungal infections
-
89 Netea, M.G., et al. Immune defence against Candida fungal infections. Nat. Rev. Immunol. 15 (2015), 630–642.
-
(2015)
Nat. Rev. Immunol.
, vol.15
, pp. 630-642
-
-
Netea, M.G.1
-
90
-
-
84860241847
-
Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β
-
90 Zielinski, C.E., et al. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature 484 (2012), 514–518.
-
(2012)
Nature
, vol.484
, pp. 514-518
-
-
Zielinski, C.E.1
-
91
-
-
84921753054
-
Functional heterogeneity of human memory CD4ζ T cell clones primed by pathogens or vaccines
-
91 Becattini, S., et al. Functional heterogeneity of human memory CD4ζ T cell clones primed by pathogens or vaccines. Science 347 (2015), 400–406.
-
(2015)
Science
, vol.347
, pp. 400-406
-
-
Becattini, S.1
-
92
-
-
80055107954
-
DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice
-
92 Randall, K.L., et al. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J. Exp. Med. 208 (2011), 2305–2320.
-
(2011)
J. Exp. Med.
, vol.208
, pp. 2305-2320
-
-
Randall, K.L.1
-
94
-
-
84928704650
-
Commensal–dendritic-cell interaction specifies a unique protective skin immune signature
-
94 Naik, S., et al. Commensal–dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520 (2015), 104–108.
-
(2015)
Nature
, vol.520
, pp. 104-108
-
-
Naik, S.1
-
95
-
-
84946023036
-
Antigen-specific Th17 cells are primed by distinct and complementary dendritic cell subsets in oropharyngeal candidiasis
-
95 Trautwein-Weidner, K., et al. Antigen-specific Th17 cells are primed by distinct and complementary dendritic cell subsets in oropharyngeal candidiasis. PLoS Pathog., 11, 2015, e1005164.
-
(2015)
PLoS Pathog.
, vol.11
, pp. e1005164
-
-
Trautwein-Weidner, K.1
-
96
-
-
79960219807
-
IRF8 mutations and human dendritic-cell immunodeficiency
-
96 Hambleton, S., et al. IRF8 mutations and human dendritic-cell immunodeficiency. N. Engl. J. Med. 365 (2011), 127–138.
-
(2011)
N. Engl. J. Med.
, vol.365
, pp. 127-138
-
-
Hambleton, S.1
-
97
-
-
84883176275
-
Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections
-
97 Hernández-Santos, N., et al. Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections. Mucosal Immunol. 6 (2013), 900–910.
-
(2013)
Mucosal Immunol.
, vol.6
, pp. 900-910
-
-
Hernández-Santos, N.1
-
98
-
-
74049131014
-
Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells
-
98 Pepper, M., et al. Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells. Nat. Immunol. 11 (2010), 83–89.
-
(2010)
Nat. Immunol.
, vol.11
, pp. 83-89
-
-
Pepper, M.1
-
99
-
-
84900822184
-
Idiopathic CD4 lymphocytopenia: spectrum of opportunistic infections, malignancies, and autoimmune diseases
-
99 Ahmad, D.S., et al. Idiopathic CD4 lymphocytopenia: spectrum of opportunistic infections, malignancies, and autoimmune diseases. Avicenna J. Med. 3 (2013), 37–47.
-
(2013)
Avicenna J. Med.
, vol.3
, pp. 37-47
-
-
Ahmad, D.S.1
-
101
-
-
35348960378
-
STAT3 mutations in the hyper-IgE syndrome
-
101 Holland, S.M., et al. STAT3 mutations in the hyper-IgE syndrome. N. Engl. J. Med. 357 (2007), 1608–1619.
-
(2007)
N. Engl. J. Med.
, vol.357
, pp. 1608-1619
-
-
Holland, S.M.1
-
102
-
-
41449110468
-
Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome
-
102 Milner, J.D., et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452 (2008), 773–776.
-
(2008)
Nature
, vol.452
, pp. 773-776
-
-
Milner, J.D.1
-
103
-
-
70949098060
-
Combined immunodeficiency associated with DOCK8 mutations
-
103 Zhang, Q., et al. Combined immunodeficiency associated with DOCK8 mutations. N. Engl. J. Med. 361 (2009), 2046–2055.
-
(2009)
N. Engl. J. Med.
, vol.361
, pp. 2046-2055
-
-
Zhang, Q.1
-
104
-
-
79953284685
-
Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity
-
104 Puel, A., et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332 (2011), 65–68.
-
(2011)
Science
, vol.332
, pp. 65-68
-
-
Puel, A.1
-
105
-
-
84937713659
-
Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis
-
105 Ling, Y., et al. Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis. J. Exp. Med. 212 (2015), 619–631.
-
(2015)
J. Exp. Med.
, vol.212
, pp. 619-631
-
-
Ling, Y.1
-
106
-
-
84885865938
-
An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis
-
106 Boisson, B., et al. An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunity 39 (2013), 676–686.
-
(2013)
Immunity
, vol.39
, pp. 676-686
-
-
Boisson, B.1
-
107
-
-
84939154723
-
Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations
-
107 Okada, S., et al. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 349 (2015), 606–613.
-
(2015)
Science
, vol.349
, pp. 606-613
-
-
Okada, S.1
-
108
-
-
77149147477
-
Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines
-
108 Kisand, K., et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J. Exp. Med. 207 (2010), 299–308.
-
(2010)
J. Exp. Med.
, vol.207
, pp. 299-308
-
-
Kisand, K.1
-
109
-
-
79961154447
-
Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis
-
109 Liu, L., et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J. Exp. Med. 208 (2011), 1635–1648.
-
(2011)
J. Exp. Med.
, vol.208
, pp. 1635-1648
-
-
Liu, L.1
|