-
1
-
-
27844439373
-
A framework for learning predictive structures from multiple tasks and unlabeled data
-
R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. JMLR, 6:1817-1853, 2005.
-
(2005)
JMLR
, vol.6
, pp. 1817-1853
-
-
Ando, R.K.1
Zhang, T.2
-
2
-
-
0043278893
-
Laplacian eigenmaps and spectral techniques for embedding and clustering
-
M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS, 2001.
-
(2001)
NIPS
-
-
Belkin, M.1
Niyogi, P.2
-
4
-
-
0347963789
-
GTM: The generative topographic mapping
-
C. M. Bishop, M. Svensén, and C. K. I. Williams. GTM: the generative topographic mapping. Neural Comput, 10(1):215-234, 1998.
-
(1998)
Neural Comput
, vol.10
, Issue.1
, pp. 215-234
-
-
Bishop, C.M.1
Svensén, M.2
Williams, C.K.I.3
-
6
-
-
77958497920
-
Dimension reduction: A guided tour
-
C. J. C. Burges. Dimension reduction: a guided tour. FTML, 2(4):275-365, 2009.
-
(2009)
FTML
, vol.2
, Issue.4
, pp. 275-365
-
-
Burges, C.J.C.1
-
8
-
-
0029357425
-
Mean shift, mode seeking, and clustering
-
Y. Cheng. Mean shift, mode seeking, and clustering. IEEE T-PAMI, 17(8):790-799, 1995.
-
(1995)
IEEE T-PAMI
, vol.17
, Issue.8
, pp. 790-799
-
-
Cheng, Y.1
-
10
-
-
84861527388
-
The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups
-
C. Curtis, S. P. Shah, S. Chin, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 486(7403):346-352, 2012.
-
(2012)
Nature
, vol.486
, Issue.7403
, pp. 346-352
-
-
Curtis, C.1
Shah, S.P.2
Chin, S.3
-
11
-
-
14344257496
-
K-means clustering via principal component analysis
-
C. Ding and X. He. K-means clustering via principal component analysis. In ICML, 2004.
-
(2004)
ICML
-
-
Ding, C.1
He, X.2
-
12
-
-
0026436795
-
Self-organizing maps: Ordering, convergence properties and energy functions
-
E. Erwin, K. Obermayer, and K. Schulten. Self-organizing maps: ordering, convergence properties and energy functions. Biol Cybern, 67:47-55, 1992.
-
(1992)
Biol Cybern
, vol.67
, pp. 47-55
-
-
Erwin, E.1
Obermayer, K.2
Schulten, K.3
-
13
-
-
34548025132
-
A survey of kernel and spectral methods for clustering
-
M. Filippone, F. Camastra, F. Masulli, and S. Rovetta. A survey of kernel and spectral methods for clustering. Pattern Recogn, 41:176-190, 2008.
-
(2008)
Pattern Recogn
, vol.41
, pp. 176-190
-
-
Filippone, M.1
Camastra, F.2
Masulli, F.3
Rovetta, S.4
-
14
-
-
53949100479
-
-
Springer
-
A. Gorban, B. Kégl, D. Wunsch, and A. Zinovyev. Principal Manifolds for Data Visualisation and Dimension Reduction, Volume 58. Springer, 2007.
-
(2007)
Principal Manifolds for Data Visualisation and Dimension Reduction
, vol.58
-
-
Gorban, A.1
Kégl, B.2
Wunsch, D.3
Zinovyev, A.4
-
15
-
-
84856013431
-
Clonal evolution in cancer
-
M. Greaves and C. C. Maley. Clonal evolution in cancer. Nature, 481(7381):306-313, 2012.
-
(2012)
Nature
, vol.481
, Issue.7381
, pp. 306-313
-
-
Greaves, M.1
Maley, C.C.2
-
16
-
-
84950453673
-
Principal curves
-
T. Hastie and W. Stuetzle. Principal curves. JASA, 84:502-516, 1989.
-
(1989)
JASA
, vol.84
, pp. 502-516
-
-
Hastie, T.1
Stuetzle, W.2
-
19
-
-
0036223199
-
Piecewise linear skeletonization using principal curves
-
B. Kégl and A. Kryzak. Piecewise linear skeletonization using principal curves. IEEE T-PAMI, 24(1):59-74, 2002.
-
(2002)
IEEE T-PAMI
, vol.24
, Issue.1
, pp. 59-74
-
-
Kégl, B.1
Kryzak, A.2
-
21
-
-
84970897509
-
Generalized multiple kernel learning with data-dependent priors
-
Q. Mao, I. Tsang, S. Gao, and L. Wang. Generalized multiple kernel learning with data-dependent priors. IEEE T-NNLS, 29(6):1134-1148, 2015.
-
(2015)
IEEE T-NNLS
, vol.29
, Issue.6
, pp. 1134-1148
-
-
Mao, Q.1
Tsang, I.2
Gao, S.3
Wang, L.4
-
22
-
-
84961922790
-
SimplePPT: A simple principal tree algorithm
-
Q. Mao, L. Yang, L. Wang, S. Goodison, and Y. Sun. SimplePPT: A simple principal tree algorithm. In SDM, 2015.
-
(2015)
SDM
-
-
Mao, Q.1
Yang, L.2
Wang, L.3
Goodison, S.4
Sun, Y.5
-
23
-
-
62449131093
-
Supervised risk predictor of breast cancer based on intrinsic subtypes
-
J. Parker, M. Mullins, M. Cheang, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol, 27(8):1160-1167, 2009.
-
(2009)
J Clin Oncol
, vol.27
, Issue.8
, pp. 1160-1167
-
-
Parker, J.1
Mullins, M.2
Cheang, M.3
-
24
-
-
78649417385
-
Hubs in space: Popular nearest neighbors in high-dimensional data
-
M. Radovanović, A. Nanopoulos, and M. Ivanović. Hubs in space: popular nearest neighbors in high-dimensional data. JMLR, 11:2487-2531, 2010.
-
(2010)
JMLR
, vol.11
, pp. 2487-2531
-
-
Radovanović, M.1
Nanopoulos, A.2
Ivanović, M.3
-
25
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, 2000.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
26
-
-
2342517502
-
Think globally, fit locally: Unsupervised learning of low dimensional mainfolds
-
L. Saul and S. Roweis. Think globally, fit locally: unsupervised learning of low dimensional mainfolds. JMLR, 4:119-155, 2003.
-
(2003)
JMLR
, vol.4
, pp. 119-155
-
-
Saul, L.1
Roweis, S.2
-
28
-
-
0037845137
-
Regularized principal manifolds
-
A. J. Smola, S. Mika, B. Schölkopf, and R. C. Williamson. Regularized principal manifolds. JMLR, 1:179-209, 2001.
-
(2001)
JMLR
, vol.1
, pp. 179-209
-
-
Smola, A.J.1
Mika, S.2
Schölkopf, B.3
Williamson, R.C.4
-
30
-
-
84964315153
-
Cancer progression modeling using static sample data
-
Y. Sun, J. Yao, N. Nowak, and S. Goodison. Cancer progression modeling using static sample data. Genome Biol, 15(8):440, 2014.
-
(2014)
Genome Biol
, vol.15
, Issue.8
, pp. 440
-
-
Sun, Y.1
Yao, J.2
Nowak, N.3
Goodison, S.4
-
31
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
J. B. Tenenbaum, V. deSilva, and J. C. Landford. A global geometric framework for nonlinear dimensionality reduction. Science, 290:2319-2323, 2000.
-
(2000)
Science
, vol.290
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
DeSilva, V.2
Landford, J.C.3
-
32
-
-
33846255123
-
Principal curves revisited
-
R. Tibshirani. Principal curves revisited. Stat Comput, 2:183-190, 1992.
-
(1992)
Stat Comput
, vol.2
, pp. 183-190
-
-
Tibshirani, R.1
-
33
-
-
34547991668
-
An introduction to nonlinear dimensionality reduction by maximum variance unfolding
-
K. Q. Weinberger and L. K. Saul. An introduction to nonlinear dimensionality reduction by maximum variance unfolding. In AAAI, 2006.
-
(2006)
AAAI
-
-
Weinberger, K.Q.1
Saul, L.K.2
-
34
-
-
84920071031
-
Feature selection for unsupervised learning through local learning
-
J. Yao, Q. Mao, S. Goodison, V. Mai, and Y. Sun. Feature selection for unsupervised learning through local learning. Pattern Recogn Lett, 53:100-107, 2015.
-
(2015)
Pattern Recogn Lett
, vol.53
, pp. 100-107
-
-
Yao, J.1
Mao, Q.2
Goodison, S.3
Mai, V.4
Sun, Y.5
|