메뉴 건너뛰기




Volumn 2015-August, Issue , 2015, Pages 765-774

Dimensionality reduction via graph structure learning

Author keywords

Clustering; Dimensionality reduction; Graph structure learning; Unsupervised learning

Indexed keywords

DATA REDUCTION; DATA VISUALIZATION; GRAPHIC METHODS; REDUCTION; UNSUPERVISED LEARNING;

EID: 84954123824     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2783258.2783309     Document Type: Conference Paper
Times cited : (75)

References (34)
  • 1
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. JMLR, 6:1817-1853, 2005.
    • (2005) JMLR , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 2
    • 0043278893 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS, 2001.
    • (2001) NIPS
    • Belkin, M.1    Niyogi, P.2
  • 4
    • 0347963789 scopus 로고    scopus 로고
    • GTM: The generative topographic mapping
    • C. M. Bishop, M. Svensén, and C. K. I. Williams. GTM: the generative topographic mapping. Neural Comput, 10(1):215-234, 1998.
    • (1998) Neural Comput , vol.10 , Issue.1 , pp. 215-234
    • Bishop, C.M.1    Svensén, M.2    Williams, C.K.I.3
  • 6
    • 77958497920 scopus 로고    scopus 로고
    • Dimension reduction: A guided tour
    • C. J. C. Burges. Dimension reduction: a guided tour. FTML, 2(4):275-365, 2009.
    • (2009) FTML , vol.2 , Issue.4 , pp. 275-365
    • Burges, C.J.C.1
  • 8
    • 0029357425 scopus 로고
    • Mean shift, mode seeking, and clustering
    • Y. Cheng. Mean shift, mode seeking, and clustering. IEEE T-PAMI, 17(8):790-799, 1995.
    • (1995) IEEE T-PAMI , vol.17 , Issue.8 , pp. 790-799
    • Cheng, Y.1
  • 10
    • 84861527388 scopus 로고    scopus 로고
    • The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups
    • C. Curtis, S. P. Shah, S. Chin, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 486(7403):346-352, 2012.
    • (2012) Nature , vol.486 , Issue.7403 , pp. 346-352
    • Curtis, C.1    Shah, S.P.2    Chin, S.3
  • 11
    • 14344257496 scopus 로고    scopus 로고
    • K-means clustering via principal component analysis
    • C. Ding and X. He. K-means clustering via principal component analysis. In ICML, 2004.
    • (2004) ICML
    • Ding, C.1    He, X.2
  • 12
    • 0026436795 scopus 로고
    • Self-organizing maps: Ordering, convergence properties and energy functions
    • E. Erwin, K. Obermayer, and K. Schulten. Self-organizing maps: ordering, convergence properties and energy functions. Biol Cybern, 67:47-55, 1992.
    • (1992) Biol Cybern , vol.67 , pp. 47-55
    • Erwin, E.1    Obermayer, K.2    Schulten, K.3
  • 13
  • 15
    • 84856013431 scopus 로고    scopus 로고
    • Clonal evolution in cancer
    • M. Greaves and C. C. Maley. Clonal evolution in cancer. Nature, 481(7381):306-313, 2012.
    • (2012) Nature , vol.481 , Issue.7381 , pp. 306-313
    • Greaves, M.1    Maley, C.C.2
  • 16
    • 84950453673 scopus 로고
    • Principal curves
    • T. Hastie and W. Stuetzle. Principal curves. JASA, 84:502-516, 1989.
    • (1989) JASA , vol.84 , pp. 502-516
    • Hastie, T.1    Stuetzle, W.2
  • 19
    • 0036223199 scopus 로고    scopus 로고
    • Piecewise linear skeletonization using principal curves
    • B. Kégl and A. Kryzak. Piecewise linear skeletonization using principal curves. IEEE T-PAMI, 24(1):59-74, 2002.
    • (2002) IEEE T-PAMI , vol.24 , Issue.1 , pp. 59-74
    • Kégl, B.1    Kryzak, A.2
  • 21
    • 84970897509 scopus 로고    scopus 로고
    • Generalized multiple kernel learning with data-dependent priors
    • Q. Mao, I. Tsang, S. Gao, and L. Wang. Generalized multiple kernel learning with data-dependent priors. IEEE T-NNLS, 29(6):1134-1148, 2015.
    • (2015) IEEE T-NNLS , vol.29 , Issue.6 , pp. 1134-1148
    • Mao, Q.1    Tsang, I.2    Gao, S.3    Wang, L.4
  • 22
  • 23
    • 62449131093 scopus 로고    scopus 로고
    • Supervised risk predictor of breast cancer based on intrinsic subtypes
    • J. Parker, M. Mullins, M. Cheang, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol, 27(8):1160-1167, 2009.
    • (2009) J Clin Oncol , vol.27 , Issue.8 , pp. 1160-1167
    • Parker, J.1    Mullins, M.2    Cheang, M.3
  • 24
    • 78649417385 scopus 로고    scopus 로고
    • Hubs in space: Popular nearest neighbors in high-dimensional data
    • M. Radovanović, A. Nanopoulos, and M. Ivanović. Hubs in space: popular nearest neighbors in high-dimensional data. JMLR, 11:2487-2531, 2010.
    • (2010) JMLR , vol.11 , pp. 2487-2531
    • Radovanović, M.1    Nanopoulos, A.2    Ivanović, M.3
  • 25
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 26
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of low dimensional mainfolds
    • L. Saul and S. Roweis. Think globally, fit locally: unsupervised learning of low dimensional mainfolds. JMLR, 4:119-155, 2003.
    • (2003) JMLR , vol.4 , pp. 119-155
    • Saul, L.1    Roweis, S.2
  • 30
    • 84964315153 scopus 로고    scopus 로고
    • Cancer progression modeling using static sample data
    • Y. Sun, J. Yao, N. Nowak, and S. Goodison. Cancer progression modeling using static sample data. Genome Biol, 15(8):440, 2014.
    • (2014) Genome Biol , vol.15 , Issue.8 , pp. 440
    • Sun, Y.1    Yao, J.2    Nowak, N.3    Goodison, S.4
  • 31
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. B. Tenenbaum, V. deSilva, and J. C. Landford. A global geometric framework for nonlinear dimensionality reduction. Science, 290:2319-2323, 2000.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    DeSilva, V.2    Landford, J.C.3
  • 32
    • 33846255123 scopus 로고
    • Principal curves revisited
    • R. Tibshirani. Principal curves revisited. Stat Comput, 2:183-190, 1992.
    • (1992) Stat Comput , vol.2 , pp. 183-190
    • Tibshirani, R.1
  • 33
    • 34547991668 scopus 로고    scopus 로고
    • An introduction to nonlinear dimensionality reduction by maximum variance unfolding
    • K. Q. Weinberger and L. K. Saul. An introduction to nonlinear dimensionality reduction by maximum variance unfolding. In AAAI, 2006.
    • (2006) AAAI
    • Weinberger, K.Q.1    Saul, L.K.2
  • 34
    • 84920071031 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning through local learning
    • J. Yao, Q. Mao, S. Goodison, V. Mai, and Y. Sun. Feature selection for unsupervised learning through local learning. Pattern Recogn Lett, 53:100-107, 2015.
    • (2015) Pattern Recogn Lett , vol.53 , pp. 100-107
    • Yao, J.1    Mao, Q.2    Goodison, S.3    Mai, V.4    Sun, Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.