메뉴 건너뛰기




Volumn 33, Issue 5, 2017, Pages 757-759

ImpulseDE: Detection of differentially expressed genes in time series data using impulse models

Author keywords

[No Author keywords available]

Indexed keywords

ANIMAL; GENE EXPRESSION PROFILING; GENE EXPRESSION REGULATION; METABOLISM; MOUSE; PROCEDURES; SEQUENCE ANALYSIS; SOFTWARE; T LYMPHOCYTE; TIME;

EID: 85020058202     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btw665     Document Type: Article
Times cited : (30)

References (22)
  • 1
    • 84902476492 scopus 로고    scopus 로고
    • Methods for time series analysis of RNA-seq data with application to human Th17 cell differentiation
    • Äjiö,T. et al. (2014) Methods for time series analysis of RNA-seq data with application to human Th17 cell differentiation. Bioinformatics, 30, 113-120.
    • (2014) Bioinformatics , vol.30 , pp. 113-120
    • Äjiö, T.1
  • 2
    • 84863887694 scopus 로고    scopus 로고
    • Studying and modelling dynamic biological processes using time-series gene expression data
    • Bar-Joseph,Z. et al. (2012) Studying and modelling dynamic biological processes using time-series gene expression data. Nat. Rev. Genet., 13, 552-564.
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 552-564
    • Bar-Joseph, Z.1
  • 3
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini,Y. and Hochberg,Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol., 57, 289-300.
    • (1995) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 4
    • 59649119722 scopus 로고    scopus 로고
    • Timing of gene expression responses to environmental changes
    • Chechik,G. and Koller,D. (2009) Timing of gene expression responses to environmental changes. J. Comput. Biol., 16, 279-290.
    • (2009) J. Comput. Biol. , vol.16 , pp. 279-290
    • Chechik, G.1    Koller, D.2
  • 5
    • 84867581744 scopus 로고    scopus 로고
    • A validated regulatory network for Th17 cell specification
    • Ciofani,M. et al. (2012) A validated regulatory network for Th17 cell specification. Cell, 151, 289-303.
    • (2012) Cell , vol.151 , pp. 289-303
    • Ciofani, M.1
  • 7
    • 0032720458 scopus 로고    scopus 로고
    • Early events in dendritic cell maturation induced by LPS
    • Granucci,F. et al. (1999) Early events in dendritic cell maturation induced by LPS. Microb. Infect., 1, 1079-1084.
    • (1999) Microb. Infect. , vol.1 , pp. 1079-1084
    • Granucci, F.1
  • 8
    • 84924347993 scopus 로고    scopus 로고
    • Dynamic profiling of the protein life cycle in response to pathogens
    • Jovanovic,M. et al. (2015) Dynamic profiling of the protein life cycle in response to pathogens. Science, 347, 1259038.
    • (2015) Science , vol.347 , pp. 1259038
    • Jovanovic, M.1
  • 9
    • 84885494902 scopus 로고    scopus 로고
    • A method to identify differential expression profiles of time-course gene data with Fourier transformation
    • Kim,J. et al. (2013) A method to identify differential expression profiles of time-course gene data with Fourier transformation. BMC Bioinformatics, 14, 310.
    • (2013) BMC Bioinformatics , vol.14 , pp. 310
    • Kim, J.1
  • 10
    • 84907419194 scopus 로고    scopus 로고
    • Chromatin state dynamics during blood formation
    • Lara-Astiaso,D. et al. (2014) Chromatin state dynamics during blood formation. Science, 345, 943-949.
    • (2014) Science , vol.345 , pp. 943-949
    • Lara-Astiaso, D.1
  • 11
    • 77949507153 scopus 로고    scopus 로고
    • RNA-Seq gene expression estimation with read mapping uncertainty
    • Li,B. et al. (2010) RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics, 26, 493-500.
    • (2010) Bioinformatics , vol.26 , pp. 493-500
    • Li, B.1
  • 12
    • 40449111457 scopus 로고    scopus 로고
    • Human Th17 cells share major trafficking receptors with both polarized effector T cells and FOXP3+ regulatory T cells
    • Lim,H.W. et al. (2008) Human Th17 cells share major trafficking receptors with both polarized effector T cells and FOXP3+ regulatory T cells. J. Immunol., 180, 122-129.
    • (2008) J. Immunol. , vol.180 , pp. 122-129
    • Lim, H.W.1
  • 13
    • 14044275098 scopus 로고    scopus 로고
    • Improved Fourier transform method for unsupervised cell-cycle regulated gene prediction
    • Murthy,K.R.K. and Hua,L.J. (2004). Improved Fourier transform method for unsupervised cell-cycle regulated gene prediction. In: Proc. IEEE Comp. Sys. Bioinformatics Conf. Proceeding, pp. 194-203.
    • (2004) Proc. IEEE Comp. Sys. Bioinformatics Conf. Proceeding , pp. 194-203
    • Murthy, K.R.K.1    Hua, L.J.2
  • 14
    • 84919952154 scopus 로고    scopus 로고
    • High-resolution sequencing and modeling identifies distinct dynamic RNA regulatory strategies
    • Rabani,M. et al. (2014) High-resolution sequencing and modeling identifies distinct dynamic RNA regulatory strategies. Cell, 159, 1698-1710.
    • (2014) Cell , vol.159 , pp. 1698-1710
    • Rabani, M.1
  • 15
    • 84903185013 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals dynamic paracrine control of cellular variation
    • Shalek,A.K. et al. (2014) Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature, 510, 363-369.
    • (2014) Nature , vol.510 , pp. 363-369
    • Shalek, A.K.1
  • 16
    • 84874677498 scopus 로고    scopus 로고
    • A comparison of methods for differential expression analysis of RNA-seq data
    • Soneson,C. and Delorenzi,M. (2013) A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics, 14, 91.
    • (2013) BMC Bioinformatics , vol.14 , pp. 91
    • Soneson, C.1    Delorenzi, M.2
  • 17
    • 34249111910 scopus 로고    scopus 로고
    • The optimal discovery procedure: A new approach to simultaneous significance testing
    • Storey,J.D. (2007) The optimal discovery procedure: a new approach to simultaneous significance testing. J. R. Stat. Soc. Ser. B Stat. Methodol., 69, 347-368.
    • (2007) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.69 , pp. 347-368
    • Storey, J.D.1
  • 18
    • 24644519314 scopus 로고    scopus 로고
    • Significance analysis of time course microarray experiments
    • Storey,J.D. et al. (2005) Significance analysis of time course microarray experiments. Proc. Natl. Acad. Sci. U. S. A., 102, 12837-12841.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 12837-12841
    • Storey, J.D.1
  • 19
    • 77949750180 scopus 로고    scopus 로고
    • Gene expression profiles identify inflammatory signatures in dendritic cells
    • Torri,A. et al. (2010) Gene expression profiles identify inflammatory signatures in dendritic cells. Plos One, 5, e9404.
    • (2010) Plos One , vol.5
    • Torri, A.1
  • 20
    • 84928211518 scopus 로고    scopus 로고
    • High-resolution chromatin dynamics during a yeast stress response
    • Weiner,A. et al. (2015) High-resolution chromatin dynamics during a yeast stress response. Mol. Cell, 58, 371-386.
    • (2015) Mol. Cell , vol.58 , pp. 371-386
    • Weiner, A.1
  • 21
    • 79952672993 scopus 로고    scopus 로고
    • Impulse control: Temporal dynamics in gene transcription
    • Yosef,N. and Regev,A. (2011) Impulse control: temporal dynamics in gene transcription. Cell, 144, 886-896.
    • (2011) Cell , vol.144 , pp. 886-896
    • Yosef, N.1    Regev, A.2
  • 22
    • 84876806691 scopus 로고    scopus 로고
    • Dynamic regulatory network controlling TH17 cell differentiation
    • Yosef,N. et al. (2013) Dynamic regulatory network controlling TH17 cell differentiation. Nature, 496, 461-468.
    • (2013) Nature , vol.496 , pp. 461-468
    • Yosef, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.