-
1
-
-
79953266898
-
Single-cell genomics
-
21451520,.; (): –
-
Kalisky T, Quake SR, Single-cell genomics. Nature methods. 2011;8(4):311–314. doi: 10.1038/nmeth0411-31121451520
-
(2011)
Nature methods
, vol.8
, Issue.4
, pp. 311-314
-
-
Kalisky, T.1
Quake, S.R.2
-
2
-
-
84882455458
-
Single-cell sequencing-based technologies will revolutionize whole-organism science
-
23897237,.; (): –. Available from:
-
Shapiro E, Biezuner T, Linnarsson S, Single-cell sequencing-based technologies will revolutionize whole-organism science. Nature reviews Genetics. 2013Sep;14(9):618–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23897237. doi: 10.1038/nrg354223897237
-
(2013)
Nature reviews Genetics
, vol.14
, Issue.9
, pp. 618-630
-
-
Shapiro, E.1
Biezuner, T.2
Linnarsson, S.3
-
3
-
-
84896739948
-
Single cell genomics: advances and future perspectives
-
24497842,.; ():. Available from:
-
Macaulay IC, Voet T, Single cell genomics: advances and future perspectives. PLoS genetics. 2014Jan;10(1):e1004126. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3907301&tool=pmcentrez&rendertype=abstract. doi: 10.1371/journal.pgen.100412624497842
-
(2014)
PLoS genetics
, vol.10
, Issue.1
, pp. e1004126
-
-
Macaulay, I.C.1
Voet, T.2
-
4
-
-
84943799688
-
Application of Single Cell Genomics in Cancer: Promise and Challenges
-
26113645,.;p
-
Wills QF, Mead AJ, Application of Single Cell Genomics in Cancer: Promise and Challenges. Human molecular genetics. 2015;p. ddv235. doi: 10.1093/hmg/ddv23526113645
-
(2015)
Human molecular genetics
, pp. ddv235
-
-
Wills, Q.F.1
Mead, A.J.2
-
5
-
-
84923647450
-
Computational and analytical challenges in single-cell transcriptomics
-
25628217,.; (): –. Available from:
-
Stegle O, Teichmann Sa, Marioni JC, Computational and analytical challenges in single-cell transcriptomics. Nature reviews Genetics. 2015Jan;16(3):133–145. Available from: http://www.nature.com/doifinder/10.1038/nrg3833. 25628217
-
(2015)
Nature reviews Genetics
, vol.16
, Issue.3
, pp. 133-145
-
-
Stegle, O.1
Teichmann, S.2
Marioni, J.C.3
-
6
-
-
84942940566
-
Defining cell types and states with single-cell genomics
-
26430159,.; (): –
-
Trapnell C, Defining cell types and states with single-cell genomics. Genome Res. 2015Oct;25(10):1491–8. doi: 10.1101/gr.190595.11526430159
-
(2015)
Genome Res
, vol.25
, Issue.10
, pp. 1491-1498
-
-
Trapnell, C.1
-
7
-
-
84900529199
-
Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq
-
24739965,..; (): –
-
Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 2014;509(7500):371–375. doi: 10.1038/nature1317324739965
-
(2014)
Nature
, vol.509
, Issue.7500
, pp. 371-375
-
-
Treutlein, B.1
Brownfield, D.G.2
Wu, A.R.3
Neff, N.F.4
Mantalas, G.L.5
Espinoza, F.H.6
-
8
-
-
84941929935
-
Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11a-deficient hematopoietic stem cells
-
26387834,..; (): –
-
Tsang JC, Yu Y, Burke S, Buettner F, Wang C, Kolodziejczyk AA, et al. Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11a-deficient hematopoietic stem cells. Genome biology. 2015;16(1):1–16. doi: 10.1186/s13059-015-0739-526387834
-
(2015)
Genome biology
, vol.16
, Issue.1
, pp. 1-16
-
-
Tsang, J.C.1
Yu, Y.2
Burke, S.3
Buettner, F.4
Wang, C.5
Kolodziejczyk, A.A.6
-
9
-
-
80054768631
-
Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE
-
21964415,..; (): –
-
Qiu P, Simonds EF, Bendall SC, Gibbs KD, JrBruggner RV, Linderman MD, et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nature biotechnology. 2011;29(10):886–891. doi: 10.1038/nbt.199121964415
-
(2011)
Nature biotechnology
, vol.29
, Issue.10
, pp. 886-891
-
-
Qiu, P.1
Simonds, E.F.2
Bendall, S.C.3
Gibbs, K.D.4
Bruggner, R.V.5
Linderman, M.D.6
-
10
-
-
84899574465
-
Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development
-
24766814,..; (): –. Available from:
-
Bendall SC, Davis KL, Amir EAD, Tadmor MD, Simonds EF, Chen TJ, et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell. 2014Apr;157(3):714–25. Available from: http://www.sciencedirect.com/science/article/pii/S0092867414004711. doi: 10.1016/j.cell.2014.04.00524766814
-
(2014)
Cell
, vol.157
, Issue.3
, pp. 714-725
-
-
Bendall, S.C.1
Davis, K.L.2
Amir, E.A.D.3
Tadmor, M.D.4
Simonds, E.F.5
Chen, T.J.6
-
11
-
-
84924365758
-
Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape
-
25512504,..; (): –. Available from:
-
Marco E, Karp RL, Guo G, Robson P, Hart AH, Trippa L, et al. Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape. Proceedings of the National Academy of Sciences of the United States of America. 2014Dec;111(52):E5643–50. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4284553&tool=pmcentrez&rendertype=abstract. doi: 10.1073/pnas.140899311125512504
-
(2014)
Proceedings of the National Academy of Sciences of the United States of America
, vol.111
, Issue.52
, pp. E5643-E5650
-
-
Marco, E.1
Karp, R.L.2
Guo, G.3
Robson, P.4
Hart, A.H.5
Trippa, L.6
-
12
-
-
84900873950
-
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
-
24658644,..; (): –. Available from:
-
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature biotechnology. 2014Apr;32(4):381–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24658644. doi: 10.1038/nbt.285924658644
-
(2014)
Nature biotechnology
, vol.32
, Issue.4
, pp. 381-386
-
-
Trapnell, C.1
Cacchiarelli, D.2
Grimsby, J.3
Pokharel, P.4
Li, S.5
Morse, M.6
-
13
-
-
84924353105
-
Decoding the regulatory network of early blood development from single-cell gene expression measurements
-
25664528,..; (). Available from:
-
Moignard V, Woodhouse S, Haghverdi L, Lilly AJ, Tanaka Y, Wilkinson AC, et al. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nature Biotechnology. 2015Feb;33(3). Available from: http://www.nature.com/doifinder/10.1038/nbt.3154. 25664528
-
(2015)
Nature Biotechnology
, vol.33
, Issue.3
-
-
Moignard, V.1
Woodhouse, S.2
Haghverdi, L.3
Lilly, A.J.4
Tanaka, Y.5
Wilkinson, A.C.6
-
14
-
-
84999769430
-
Pseudotime estimation: deconfounding single cell time series
-
27318198,.;p
-
Reid JE, Wernisch L, Pseudotime estimation: deconfounding single cell time series. bioRxiv. 2015;p. 019588. doi: 10.1093/bioinformatics/btw37227318198
-
(2015)
bioRxiv
, pp. 019588
-
-
Reid, J.E.1
Wernisch, L.2
-
15
-
-
84949035291
-
Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis
-
26541607,..;p. science.aad2456–. Available from:
-
Hanchate NK, Kondoh K, Lu Z, Kuang D, Ye X, Qiu X, et al. Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis. Science. 2015Nov;p. science.aad2456–. Available from: http://www.sciencemag.org/content/early/2015/11/04/science.aad2456.full. doi: 10.1126/science.aad245626541607
-
(2015)
Science
-
-
Hanchate, N.K.1
Kondoh, K.2
Lu, Z.3
Kuang, D.4
Ye, X.5
Qiu, X.6
-
16
-
-
84941010341
-
Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis
-
26299571,..; (): –. Available from:
-
Shin J, Berg DA, Zhu Y, Shin JY, Song J, Bonaguidi MA, et al. Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis. Cell Stem Cell. 2015Aug;17(3):360–372. Available from: http://www.cell.com/article/S1934590915003124/fulltext. doi: 10.1016/j.stem.2015.07.01326299571
-
(2015)
Cell Stem Cell
, vol.17
, Issue.3
, pp. 360-372
-
-
Shin, J.1
Berg, D.A.2
Zhu, Y.3
Shin, J.Y.4
Song, J.5
Bonaguidi, M.A.6
-
17
-
-
84984643819
-
Diffusion pseudotime robustly reconstructs lineage branching
-
27571553,.;
-
Haghverdi L, Buettner M, Wolf FA, Buettner F, Theis FJ, Diffusion pseudotime robustly reconstructs lineage branching. Nature Methods. 2016;. doi: 10.1038/nmeth.397127571553
-
(2016)
Nature Methods
-
-
Haghverdi, L.1
Buettner, M.2
Wolf, F.A.3
Buettner, F.4
Theis, F.J.5
-
18
-
-
84982806105
-
TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis
-
27179027,.;p
-
Ji Z, Ji H, TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic acids research. 2016;p. gkw430. doi: 10.1093/nar/gkw43027179027
-
(2016)
Nucleic acids research
, pp. gkw430
-
-
Ji, Z.1
Ji, H.2
-
19
-
-
84975764298
-
SCOUP: a probabilistic model based on the Ornstein–Uhlenbeck process to analyze single-cell expression data during differentiation
-
27277014,.; ():
-
Matsumoto H, Kiryu H, SCOUP: a probabilistic model based on the Ornstein–Uhlenbeck process to analyze single-cell expression data during differentiation. BMC bioinformatics. 2016;17(1):1. doi: 10.1186/s12859-016-1109-327277014
-
(2016)
BMC bioinformatics
, vol.17
, Issue.1
, pp. 1
-
-
Matsumoto, H.1
Kiryu, H.2
-
20
-
-
0037620665
-
Reconstructing the temporal ordering of biological samples using microarray data
-
12724294,.; (): –
-
Magwene PM, Lizardi P, Kim J, Reconstructing the temporal ordering of biological samples using microarray data. Bioinformatics. 2003;19(7):842–850. doi: 10.1093/bioinformatics/btg08112724294
-
(2003)
Bioinformatics
, vol.19
, Issue.7
, pp. 842-850
-
-
Magwene, P.M.1
Lizardi, P.2
Kim, J.3
-
21
-
-
43849088804
-
Extracting dynamics from static cancer expression data
-
18451427,.; (): –. Available from:
-
Gupta A, Bar-Joseph Z, Extracting dynamics from static cancer expression data. IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM. 2008;5(2):172–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18451427. doi: 10.1109/TCBB.2007.7023318451427
-
(2008)
IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM
, vol.5
, Issue.2
, pp. 172-182
-
-
Gupta, A.1
Bar-Joseph, Z.2
-
22
-
-
79955570576
-
Discovering biological progression underlying microarray samples
-
21533210,.; ():. Available from:
-
Qiu P, Gentles AJ, Plevritis SK, Discovering biological progression underlying microarray samples. PLoS computational biology. 2011Apr;7(4):e1001123. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3077357&tool=pmcentrez&rendertype=abstract. doi: 10.1371/journal.pcbi.100112321533210
-
(2011)
PLoS computational biology
, vol.7
, Issue.4
, pp. e1001123
-
-
Qiu, P.1
Gentles, A.J.2
Plevritis, S.K.3
-
23
-
-
84941753288
-
Diffusion maps for high-dimensional single-cell analysis of differentiation data
-
26002886,.;(): –. Available from:
-
Haghverdi L, Buettner F, Theis FJ, Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics. 2015;(May):1–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26002886. doi: 10.1093/bioinformatics/btv32526002886
-
(2015)
Bioinformatics
, Issue.May
, pp. 1-10
-
-
Haghverdi, L.1
Buettner, F.2
Theis, F.J.3
-
26
-
-
84880280631
-
viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia
-
23685480,..; (): –. Available from:
-
Amir EaD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nature biotechnology. 2013Jun;31(6):545–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23685480. doi: 10.1038/nbt.259423685480
-
(2013)
Nature biotechnology
, vol.31
, Issue.6
, pp. 545-552
-
-
Amir, E.D.1
Davis, K.L.2
Tadmor, M.D.3
Simonds, E.F.4
Levine, J.H.5
Bendall, S.C.6
-
27
-
-
84950453673
-
-
.;Available from:
-
Hastie T, Stuetzle W, Principal Curves. 2012Mar;Available from: http://www.tandfonline.com/doi/abs/10.1080/01621459.1989.10478797.
-
(2012)
Principal Curves
-
-
Hastie, T.1
Stuetzle, W.2
-
28
-
-
84990912686
-
Bayesian Gaussian Process Latent Variable Models for pseudotime inference in single-cell RNA-seq data
-
.;p
-
Campbell K, Yau C, Bayesian Gaussian Process Latent Variable Models for pseudotime inference in single-cell RNA-seq data. bioRxiv. 2015;p. 026872.
-
(2015)
bioRxiv
, pp. 026872
-
-
Campbell, K.1
Yau, C.2
-
29
-
-
84958103478
-
Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of Differentiation in Hematopoietic Cells
-
26804912,..;
-
Macaulay IC, Svensson V, Labalette C, Ferreira L, Hamey F, Voet T, et al. Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of Differentiation in Hematopoietic Cells. Cell Reports. 2016;. doi: 10.1016/j.celrep.2015.12.08226804912
-
(2016)
Cell Reports
-
-
Macaulay, I.C.1
Svensson, V.2
Labalette, C.3
Ferreira, L.4
Hamey, F.5
Voet, T.6
-
30
-
-
84945296911
-
Stan A Probabilistic Programming Language for Bayesian Inference and Optimization
-
.;p. 1076998615606113
-
Gelman A, Lee D, Guo J, Stan A Probabilistic Programming Language for Bayesian Inference and Optimization. Journal of Educational and Behavioral Statistics. 2015;p. 1076998615606113. doi: 10.3102/1076998615606113
-
(2015)
Journal of Educational and Behavioral Statistics
-
-
Gelman, A.1
Lee, D.2
Guo, J.3
-
31
-
-
84955706109
-
ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis
-
26527291,.; (): –
-
Pierson E, Yau C, ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome biology. 2015;16(1):1–10. doi: 10.1186/s13059-015-0805-z26527291
-
(2015)
Genome biology
, vol.16
, Issue.1
, pp. 1-10
-
-
Pierson, E.1
Yau, C.2
-
32
-
-
84862302424
-
Bayesian Gaussian Process Latent Variable Model
-
.;: –. Available from:
-
Titsias M, Lawrence N, Bayesian Gaussian Process Latent Variable Model. Artificial Intelligence. 2010;9:844–851. Available from: http://eprints.pascal-network.org/archive/00006343/.
-
(2010)
Artificial Intelligence
, vol.9
, pp. 844-851
-
-
Titsias, M.1
Lawrence, N.2
-
33
-
-
84944341559
-
Single-cell RNA-Seq resolves cellular complexity in sensory organs from the neonatal inner ear
-
26469390,.;:. Available from:
-
Burns JC, Kelly MC, Hoa M, Morell RJ, Kelley MW, Single-cell RNA-Seq resolves cellular complexity in sensory organs from the neonatal inner ear. Nature Communications. 2015;6:8557. Available from: http://www.nature.com/doifinder/10.1038/ncomms9557. 26469390
-
(2015)
Nature Communications
, vol.6
, pp. 8557
-
-
Burns, J.C.1
Kelly, M.C.2
Hoa, M.3
Morell, R.J.4
Kelley, M.W.5
-
35
-
-
31844456216
-
Proceedings of the 22nd international conference on Machine learning
-
Le QV, Smola AJ, Canu S. Heteroscedastic Gaussian process regression. In: Proceedings of the 22nd international conference on Machine learning. ACM; 2005. p. 489–496.
-
ACM
, vol.2005
, pp. 489-496
-
-
Le, Q.V.1
Smola, A.J.2
Canu, S.3
-
36
-
-
77953212372
-
Gene ontology analysis for RNA-seq: accounting for selection bias
-
20132535,.; ():
-
Young MD, Wakefield MJ, Smyth GK, Oshlack A, Gene ontology analysis for RNA-seq: accounting for selection bias. Genome biology. 2010;11(2):1. doi: 10.1186/gb-2010-11-2-r1420132535
-
(2010)
Genome biology
, vol.11
, Issue.2
, pp. 1
-
-
Young, M.D.1
Wakefield, M.J.2
Smyth, G.K.3
Oshlack, A.4
-
37
-
-
84941010341
-
Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis
-
26299571,..; (): –
-
Shin J, Berg DA, Zhu Y, Shin JY, Song J, Bonaguidi MA, et al. Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell stem cell. 2015;17(3):360–372. doi: 10.1016/j.stem.2015.07.01326299571
-
(2015)
Cell stem cell
, vol.17
, Issue.3
, pp. 360-372
-
-
Shin, J.1
Berg, D.A.2
Zhu, Y.3
Shin, J.Y.4
Song, J.5
Bonaguidi, M.A.6
-
38
-
-
84999824254
-
-
McCarthy D, Wills Q, Campbell K. scater: Single-cell analysis toolkit for gene expression data in R.;
-
McCarthy D, Wills Q, Campbell K. scater: Single-cell analysis toolkit for gene expression data in R.;. Https://github.com/davismcc/scater.
-
-
-
-
40
-
-
84999823713
-
-
Gaussian processes for big data. arXiv preprint arXiv:13096835. 2013;
-
Hensman J, Fusi N, Lawrence ND. Gaussian processes for big data. arXiv preprint arXiv:13096835. 2013;.
-
-
-
Hensman, J.1
Fusi, N.2
Lawrence, N.D.3
|