-
1
-
-
40349084011
-
Diagnosis and Classification of Diabetes Mellitus
-
American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2008; 31:S55-60; PMID:18165338; https://doi.org/10.2337/dc08-S055
-
(2008)
Diabetes Care
, vol.31
, pp. S55-S60
-
-
-
2
-
-
84899922580
-
The pathobiology of diabetic vascular complications cardiovascular and kidney disease
-
Gray SP, Jandeleit-Dahm K. The pathobiology of diabetic vascular complications cardiovascular and kidney disease. J Mol Med (Berl) 2014; 92:441-52; PMID:24687627; https://doi.org/10.1007/s00109-014-1146-1
-
(2014)
J Mol Med (Berl)
, vol.92
, pp. 441-452
-
-
Gray, S.P.1
Jandeleit-Dahm, K.2
-
3
-
-
84947933321
-
Innate and adaptive immune response in stroke: Focus on epigenetic regulation
-
26616880
-
Picascia A, Grimaldi V, Iannone C, Soricelli A, Napoli C. Innate and adaptive immune response in stroke:Focus on epigenetic regulation. J Neuroimmunol 2015; 289:111-20; PMID:26616880; https://doi.org/10.1016/j.jneuroim.2015.10.013
-
(2015)
J Neuroimmunol
, vol.289
, pp. 111-120
-
-
Picascia, A.1
Grimaldi, V.2
Iannone, C.3
Soricelli, A.4
Napoli, C.5
-
4
-
-
33745863033
-
Islet beta cell failure in type 2 diabetes
-
16823478
-
Prentki M, Nolan CJ. Islet beta cell failure in type 2 diabetes. J Clin Invest 2006; 116:1802-12; PMID:16823478; https://doi.org/10.1172/JCI29103
-
(2006)
J Clin Invest
, vol.116
, pp. 1802-1812
-
-
Prentki, M.1
Nolan, C.J.2
-
5
-
-
79151478555
-
Type 2 diabetes as an inflammatory disease
-
21233852
-
Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 2011; 11:98-107; PMID:21233852; https://doi.org/10.1038/nri2925
-
(2011)
Nat Rev Immunol
, vol.11
, pp. 98-107
-
-
Donath, M.Y.1
Shoelson, S.E.2
-
6
-
-
84895832615
-
Global estimates of diabetes prevalence for 2013 and projections for 2035
-
24630390
-
Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 2014; 103:137-49; PMID:24630390; https://doi.org/10.1016/j.diabres.2013.11.002
-
(2014)
Diabetes Res Clin Pract
, vol.103
, pp. 137-149
-
-
Guariguata, L.1
Whiting, D.R.2
Hambleton, I.3
Beagley, J.4
Linnenkamp, U.5
Shaw, J.E.6
-
7
-
-
84879796488
-
Epigenetic changes in diabetes
-
23398084
-
Keating S, El-Osta A. Epigenetic changes in diabetes. Clin Genet 2013; 84:1-10; PMID:23398084; https://doi.org/10.1111/cge.12121
-
(2013)
Clin Genet
, vol.84
, pp. 1-10
-
-
Keating, S.1
El-Osta, A.2
-
8
-
-
84956886112
-
Epigenetics and Human Disease
-
Feb, 26834142
-
Zoghbi HY, Beaudet AL. Epigenetics and Human Disease. Cold Spring Harb Perspect Biol 2016 Feb 1; 8(2):a019497; PMID:26834142; https://doi.org/10.1101/cshperspect.a019497
-
(2016)
Cold Spring Harb Perspect Biol
, vol.8
, Issue.2
, pp. a019497
-
-
Zoghbi, H.Y.1
Beaudet, A.L.2
-
9
-
-
85006345832
-
Evidence of epigenetic tags in cardiac fibrosis
-
27863907
-
Grimaldi V, De Pascale MR, Zullo A, Soricelli A, Infante T, Mancini FP, Napoli C. Evidence of epigenetic tags in cardiac fibrosis. J Cardiol 2017 Feb; 69(2):401-08; PMID:27863907
-
(2017)
J Cardiol
-
-
Grimaldi, V.1
De Pascale, M.R.2
Zullo, A.3
Soricelli, A.4
Infante, T.5
Mancini, F.P.6
Napoli, C.7
-
10
-
-
84938210275
-
Epigenetic modifications in DNA could mimic oxidative DNA damage: A double-edged sword
-
25956859
-
Ito S, Kuraoka I. Epigenetic modifications in DNA could mimic oxidative DNA damage:A double-edged sword. DNA Repair (Amst) 2015; 32:52-7; PMID:25956859; https://doi.org/10.1016/j.dnarep.2015.04.013
-
(2015)
DNA Repair (Amst)
, vol.32
, pp. 52-57
-
-
Ito, S.1
Kuraoka, I.2
-
11
-
-
84870878023
-
Acetylation and deacetylation-novel factors in muscle wasting
-
22626763
-
Alamdari N, Aversa Z, Castillero E, Hasselgren PO. Acetylation and deacetylation-novel factors in muscle wasting. Metabolism 2013; 62:1-11; PMID:22626763; https://doi.org/10.1016/j.metabol.2012.03.019
-
(2013)
Metabolism
, vol.62
, pp. 1-11
-
-
Alamdari, N.1
Aversa, Z.2
Castillero, E.3
Hasselgren, P.O.4
-
12
-
-
84930485203
-
Epigenetic modifications and long noncoding RNAs influence pancreas development and function
-
25812926
-
Arnes L, Sussel L. Epigenetic modifications and long noncoding RNAs influence pancreas development and function. Trends Genet 2015; 31:290-9; PMID:25812926; https://doi.org/10.1016/j.tig.2015.02.008
-
(2015)
Trends Genet
, vol.31
, pp. 290-299
-
-
Arnes, L.1
Sussel, L.2
-
13
-
-
84994491866
-
The emerging role of epigenetics in inflammation and immunometabolism
-
Raghuraman S, Donkin I, Versteyhe S, Barrès R, Simar D. The emerging role of epigenetics in inflammation and immunometabolism. Trends Endocrinol Metab 2016; 27(11):782-795; PMID:27444065; https://doi.org/10.1016/j.tem.2016.06.008
-
(2016)
Trends Endocrinol Metab
, vol.27
, Issue.11
, pp. 782-795
-
-
Raghuraman, S.1
Donkin, I.2
Versteyhe, S.3
Barrès, R.4
Simar, D.5
-
14
-
-
9444259786
-
Pathways in beta-cell stimulus-secretion coupling as targets for therapeutic insulin secretagogues
-
15561921
-
Henquin JC. Pathways in beta-cell stimulus-secretion coupling as targets for therapeutic insulin secretagogues. Diabetes 2004; 53:S48-58; PMID:15561921; https://doi.org/10.2337/diabetes.53.suppl_3.S48
-
(2004)
Diabetes
, vol.53
, pp. S48-S58
-
-
Henquin, J.C.1
-
15
-
-
84959473901
-
Dynamic pathology of islet endocrine cells in type 2 diabetes: β-Cell growth, death, regeneration and their clinical implications
-
27042265
-
Yagihashi S, Inaba W, Mizukami H. Dynamic pathology of islet endocrine cells in type 2 diabetes:β-Cell growth, death, regeneration and their clinical implications. J Diabetes Investig 2016; 7:155-65; PMID:27042265; https://doi.org/10.1111/jdi.12424
-
(2016)
J Diabetes Investig
, vol.7
, pp. 155-165
-
-
Yagihashi, S.1
Inaba, W.2
Mizukami, H.3
-
16
-
-
79961044817
-
β -Cell failure in type 2 diabetes
-
24843466
-
Leibowitz G, Kaiser N, Cerasi E. β -Cell failure in type 2 diabetes. J Diabetes Investig 2011; 2:82-91; PMID:24843466; https://doi.org/10.1111/j.2040-1124.2010.00094.x
-
(2011)
J Diabetes Investig
, vol.2
, pp. 82-91
-
-
Leibowitz, G.1
Kaiser, N.2
Cerasi, E.3
-
17
-
-
84919841620
-
Translational implications of the β-cell epigenome in diabetes mellitus
-
24686035
-
Johnson JS, Evans-Molina C. Translational implications of the β-cell epigenome in diabetes mellitus. Transl Res 2015; 165:91-101; PMID:24686035; https://doi.org/10.1016/j.trsl.2014.03.002
-
(2015)
Transl Res
, vol.165
, pp. 91-101
-
-
Johnson, J.S.1
Evans-Molina, C.2
-
18
-
-
84970938058
-
Implication of epigenetics in pancreas development and disease
-
26696517
-
Quilichini E, Haumaitre C. Implication of epigenetics in pancreas development and disease. Best Pract Res Clin Endocrinol Metab 2015; 29:883-98; PMID:26696517; https://doi.org/10.1016/j.beem.2015.10.010
-
(2015)
Best Pract Res Clin Endocrinol Metab
, vol.29
, pp. 883-898
-
-
Quilichini, E.1
Haumaitre, C.2
-
19
-
-
14544304564
-
The gene Pax4 is an essential regulator of pancreatic beta-cell development
-
15650323
-
Sosa-Pineda B. The gene Pax4 is an essential regulator of pancreatic beta-cell development. Mol Cells 2004; 18:289-94; PMID:15650323
-
(2004)
Mol Cells
, vol.18
, pp. 289-294
-
-
Sosa-Pineda, B.1
-
20
-
-
84858800629
-
DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients
-
22293752
-
Volkmar M, Dedeurwaerder S, Cunha DA, Ndlovu MN, Defrance M, Deplus R, Calonne E, Volkmar U, Igoillo-Esteve M, Naamane N, et al. DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J 2012; 31:1405-26; PMID:22293752; https://doi.org/10.1038/emboj.2011.503
-
(2012)
EMBO J
, vol.31
, pp. 1405-1426
-
-
Volkmar, M.1
Dedeurwaerder, S.2
Cunha, D.A.3
Ndlovu, M.N.4
Defrance, M.5
Deplus, R.6
Calonne, E.7
Volkmar, U.8
Igoillo-Esteve, M.9
Naamane, N.10
-
21
-
-
79954563768
-
Pancreatic beta cell identity is maintained by DNA methylation-mediated repression of Arx
-
21497756
-
Dhawan S, Georgia S, Tschen SI, Fan G, Bhushan A. Pancreatic beta cell identity is maintained by DNA methylation-mediated repression of Arx. Dev Cell 2011; 20:419-29; PMID:21497756; https://doi.org/10.1016/j.devcel.2011.03.012
-
(2011)
Dev Cell
, vol.20
, pp. 419-429
-
-
Dhawan, S.1
Georgia, S.2
Tschen, S.I.3
Fan, G.4
Bhushan, A.5
-
22
-
-
84887046365
-
MicroRNA-26a targets ten eleven translocation enzymes and is regulated during pancreatic cell differentiation
-
24114270
-
Fu X, Jin L, Wang X, Luo A, Hu J, Zheng X, Tsark WM, Riggs AD, Ku HT, Huang W. MicroRNA-26a targets ten eleven translocation enzymes and is regulated during pancreatic cell differentiation. Proc Natl Acad Sci U S A 2013; 110:17892-7; PMID:24114270; https://doi.org/10.1073/pnas.1317397110
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 17892-17897
-
-
Fu, X.1
Jin, L.2
Wang, X.3
Luo, A.4
Hu, J.5
Zheng, X.6
Tsark, W.M.7
Riggs, A.D.8
Ku, H.T.9
Huang, W.10
-
23
-
-
80755168896
-
Specific control of pancreatic endocrine β- and δ-cell mass by class IIa histone deacetylases HDAC4, HDAC5, and HDAC9
-
21953612
-
Lenoir O, Flosseau K, Ma FX, Blondeau B, Mai A, Bassel-Duby R, Ravassard P, Olson EN, Haumaitre C, Scharfmann R. Specific control of pancreatic endocrine β- and δ-cell mass by class IIa histone deacetylases HDAC4, HDAC5, and HDAC9. Diabetes 2011; 60:2861-71; PMID:21953612; https://doi.org/10.2337/db11-0440
-
(2011)
Diabetes
, vol.60
, pp. 2861-2871
-
-
Lenoir, O.1
Flosseau, K.2
Ma, F.X.3
Blondeau, B.4
Mai, A.5
Bassel-Duby, R.6
Ravassard, P.7
Olson, E.N.8
Haumaitre, C.9
Scharfmann, R.10
-
24
-
-
84865693929
-
Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways
-
22885924
-
Scott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, Luan J, Mägi R, Strawbridge RJ, Rehnberg E, Gustafsson S, et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet 2012; 44:991-1005; PMID:22885924; https://doi.org/10.1038/ng.2385
-
(2012)
Nat Genet
, vol.44
, pp. 991-1005
-
-
Scott, R.A.1
Lagou, V.2
Welch, R.P.3
Wheeler, E.4
Montasser, M.E.5
Luan, J.6
Mägi, R.7
Strawbridge, R.J.8
Rehnberg, E.9
Gustafsson, S.10
-
25
-
-
84868337361
-
Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes
-
22885922
-
Morris AP, Voight BF, Teslovich TM, Ferreira T, Segrè AV, Steinthorsdottir V, Strawbridge RJ, Khan H, Grallert H, Mahajan A, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 2012; 44:981-90; PMID:22885922; https://doi.org/10.1038/ng.2383
-
(2012)
Nat Genet
, vol.44
, pp. 981-990
-
-
Morris, A.P.1
Voight, B.F.2
Teslovich, T.M.3
Ferreira, T.4
Segrè, A.V.5
Steinthorsdottir, V.6
Strawbridge, R.J.7
Khan, H.8
Grallert, H.9
Mahajan, A.10
-
26
-
-
85008613407
-
Long noncoding RNA variations in cardiometabolic diseases
-
27305986
-
Dechamethakun S, Muramatsu M. Long noncoding RNA variations in cardiometabolic diseases. J Hum Genet 2017 Jan; 62(1):97-104; PMID:27305986; https://doi.org/10.1038/jhg.2016.70
-
(2017)
J Hum Genet
-
-
Dechamethakun, S.1
Muramatsu, M.2
-
27
-
-
33751520287
-
Role of chromatin accessibility in the occupancy and transcription of the insulin gene by the pancreatic and duodenal homeobox factor 1
-
16901969
-
Francis J, Babu DA, Deering TG, Chakrabarti SK, Garmey JC, Evans-Molina C, Taylor DG, Mirmira RG. Role of chromatin accessibility in the occupancy and transcription of the insulin gene by the pancreatic and duodenal homeobox factor 1. Mol Endocrinol 2006; 20:3133-45; PMID:16901969; https://doi.org/10.1210/me.2006-0126
-
(2006)
Mol Endocrinol
, vol.20
, pp. 3133-3145
-
-
Francis, J.1
Babu, D.A.2
Deering, T.G.3
Chakrabarti, S.K.4
Garmey, J.C.5
Evans-Molina, C.6
Taylor, D.G.7
Mirmira, R.G.8
-
28
-
-
4544233448
-
Glucose regulation of insulin gene expression requires the recruitment of p300 by the beta-cell-specific transcription factor Pdx-1
-
15166251
-
Mosley AL, Corbett JA, Ozcan S. Glucose regulation of insulin gene expression requires the recruitment of p300 by the beta-cell-specific transcription factor Pdx-1. Mol Endocrinol 2004; 18:2279-90; PMID:15166251; https://doi.org/10.1210/me.2003-0463
-
(2004)
Mol Endocrinol
, vol.18
, pp. 2279-2290
-
-
Mosley, A.L.1
Corbett, J.A.2
Ozcan, S.3
-
29
-
-
84880335165
-
DNA methylation of the glucagon-like peptide 1 receptor (GLP1R) in human pancreatic islets
-
23879380
-
Hall E, Dayeh T, Kirkpatrick CL, Wollheim CB, Dekker Nitert M, Ling C. DNA methylation of the glucagon-like peptide 1 receptor (GLP1R) in human pancreatic islets. BMC Med Genet 2013; 14:76; PMID:23879380; https://doi.org/10.1186/1471-2350-14-76
-
(2013)
BMC Med Genet
, vol.14
, pp. 76
-
-
Hall, E.1
Dayeh, T.2
Kirkpatrick, C.L.3
Wollheim, C.B.4
Dekker Nitert, M.5
Ling, C.6
-
30
-
-
85021406476
-
-
09
-
FDA. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm513602.htm/; 2016 [accessed 05.09.16]
-
(2016)
-
-
-
31
-
-
41149172495
-
Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion
-
18270681
-
Ling C, Del Guerra S, Lupi R, Rönn T, Granhall C, Luthman H, Masiello P, Marchetti P, Groop L, Del Prato S. Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 2008; 51:615-22; PMID:18270681; https://doi.org/10.1007/s00125-007-0916-5
-
(2008)
Diabetologia
, vol.51
, pp. 615-622
-
-
Ling, C.1
Del Guerra, S.2
Lupi, R.3
Rönn, T.4
Granhall, C.5
Luthman, H.6
Masiello, P.7
Marchetti, P.8
Groop, L.9
Del Prato, S.10
-
32
-
-
84961202709
-
New insights into diabetes cell therapy
-
May, 26983626
-
Lysy PA, Corritore E, Sokal EM. New insights into diabetes cell therapy. Curr Diab Rep 2016 May; 16(5):38; PMID:26983626; https://doi.org/10.1007/s11892-016-0729-3
-
(2016)
Curr Diab Rep
, vol.16
, Issue.5
, pp. 38
-
-
Lysy, P.A.1
Corritore, E.2
Sokal, E.M.3
-
33
-
-
84962808624
-
Imaging techniques to evaluate cell therapy in peripheral artery disease: state of the art and clinical trials
-
May, 25385089
-
Grimaldi V, Schiano C, Casamassimi A, Zullo A, Soricelli A, Mancini FP, Napoli C. Imaging techniques to evaluate cell therapy in peripheral artery disease:state of the art and clinical trials. Clin Physiol Funct Imaging 2016 May; 36(3):165-78; PMID:25385089; https://doi.org/10.1111/cpf.12210
-
(2016)
Clin Physiol Funct Imaging
, vol.36
, Issue.3
, pp. 165-178
-
-
Grimaldi, V.1
Schiano, C.2
Casamassimi, A.3
Zullo, A.4
Soricelli, A.5
Mancini, F.P.6
Napoli, C.7
-
34
-
-
84877130503
-
mRNA transfection-based, feeder-free, induced pluripotent stem cells derived from adipose tissue of a 50-year-old patient
-
23542141
-
Heng BC, Heinimann K, Miny P, Iezzi G, Glatz K, Scherberich A, Zulewski H, Fussenegger M. mRNA transfection-based, feeder-free, induced pluripotent stem cells derived from adipose tissue of a 50-year-old patient. Metab Eng 2013; 18:9-24; PMID:23542141; https://doi.org/10.1016/j.ymben.2013.02.004
-
(2013)
Metab Eng
, vol.18
, pp. 9-24
-
-
Heng, B.C.1
Heinimann, K.2
Miny, P.3
Iezzi, G.4
Glatz, K.5
Scherberich, A.6
Zulewski, H.7
Fussenegger, M.8
-
35
-
-
84964335447
-
A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells
-
27063289
-
Saxena P, Heng BC, Bai P, Folcher M, Zulewski H, Fussenegger M. A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells. Nat Commun 2016; 7:11247; PMID:27063289; https://doi.org/10.1038/ncomms11247
-
(2016)
Nat Commun
, vol.7
, pp. 11247
-
-
Saxena, P.1
Heng, B.C.2
Bai, P.3
Folcher, M.4
Zulewski, H.5
Fussenegger, M.6
-
36
-
-
84954477944
-
Human pancreatic beta-like cells converted from fibroblasts
-
26733021
-
Zhu S, Russ HA, Wang X, Zhang M, Ma T, Xu T, Tang S, Hebrok M, Ding S. Human pancreatic beta-like cells converted from fibroblasts. Nat Commun 2016; 7:10080; PMID:26733021; https://doi.org/10.1038/ncomms10080
-
(2016)
Nat Commun
, vol.7
, pp. 10080
-
-
Zhu, S.1
Russ, H.A.2
Wang, X.3
Zhang, M.4
Ma, T.5
Xu, T.6
Tang, S.7
Hebrok, M.8
Ding, S.9
-
37
-
-
84888092380
-
Transplantation of human islets without immunosuppression
-
24167261
-
Ludwig B, Reichel A, Steffen A, Zimerman B, Schally AV, Block NL, Colton CK, Ludwig S, Kersting S, Bonifacio E, et al. Transplantation of human islets without immunosuppression. Proc Natl Acad Sci USA 2013; 110:19054-58; PMID:24167261; https://doi.org/10.1073/pnas.1317561110
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 19054-19058
-
-
Ludwig, B.1
Reichel, A.2
Steffen, A.3
Zimerman, B.4
Schally, A.V.5
Block, N.L.6
Colton, C.K.7
Ludwig, S.8
Kersting, S.9
Bonifacio, E.10
-
38
-
-
84898545288
-
Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution
-
23916992
-
Scharp DW, Marchetti P. Encapsulated islets for diabetes therapy:history, current progress, and critical issues requiring solution. Adv Drug Deliv Rev 2014; 67-68:35-73; PMID:23916992; https://doi.org/10.1016/j.addr.2013.07.018
-
(2014)
Adv Drug Deliv Rev
, vol.67-68
, pp. 35-73
-
-
Scharp, D.W.1
Marchetti, P.2
-
39
-
-
84983126565
-
Differentiation of human pluripotent stem cells into β-cells: Potential and challenges
-
26696513
-
Quiskamp N, Bruin JE, Kieffer TJ. Differentiation of human pluripotent stem cells into β-cells:Potential and challenges. Best Pract Res Clin Endocrinol Metab 2015; 29:833-847; PMID:26696513; https://doi.org/10.1016/j.beem.2015.10.011
-
(2015)
Best Pract Res Clin Endocrinol Metab
, vol.29
, pp. 833-847
-
-
Quiskamp, N.1
Bruin, J.E.2
Kieffer, T.J.3
-
40
-
-
84951991739
-
Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction
-
Khodabandehloo H, Gorgani-Firuzjaee S, Panahi S, Meshkani R. Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Transl Res 2015 pii:S1931-5244(15)00297-2 2016; 167:228-56; PMID:26408801; https://doi.org/10.1016/j.trsl.2015.08.011
-
(2016)
Transl Res
, vol.167
, pp. 228-256
-
-
Khodabandehloo, H.1
Gorgani-Firuzjaee, S.2
Panahi, S.3
Meshkani, R.4
-
41
-
-
84983078679
-
Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes
-
26015812
-
Prattichizzo F, Giuliani A, Ceka A, Rippo MR, Bonfigli AR, Testa R, Procopio AD, Olivieri F. Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes. Clin Epigenetics 2015; 7:56; PMID:26015812; https://doi.org/10.1186/s13148-015-0090-4
-
(2015)
Clin Epigenetics
, vol.7
, pp. 56
-
-
Prattichizzo, F.1
Giuliani, A.2
Ceka, A.3
Rippo, M.R.4
Bonfigli, A.R.5
Testa, R.6
Procopio, A.D.7
Olivieri, F.8
-
42
-
-
65549170303
-
Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail
-
19208907
-
Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK, Calkin AC, Brownlee M, Cooper ME, El-Osta A. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 2009; 58:1229-36; PMID:19208907; https://doi.org/10.2337/db08-1666
-
(2009)
Diabetes
, vol.58
, pp. 1229-1236
-
-
Brasacchio, D.1
Okabe, J.2
Tikellis, C.3
Balcerczyk, A.4
George, P.5
Baker, E.K.6
Calkin, A.C.7
Brownlee, M.8
Cooper, M.E.9
El-Osta, A.10
-
43
-
-
84906707442
-
Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes
-
24812430
-
Nilsson E, Jansson PA, Perfilyev A, Volkov P, Pedersen M, Svensson MK, Poulsen P, Ribel-Madsen R, Pedersen NL, Almgren P, et al. Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes 2014; 63:2962-76; PMID:24812430; https://doi.org/10.2337/db13-1459
-
(2014)
Diabetes
, vol.63
, pp. 2962-2976
-
-
Nilsson, E.1
Jansson, P.A.2
Perfilyev, A.3
Volkov, P.4
Pedersen, M.5
Svensson, M.K.6
Poulsen, P.7
Ribel-Madsen, R.8
Pedersen, N.L.9
Almgren, P.10
-
44
-
-
84894294507
-
Microbiota and epigenetic regulation of inflammatory mediators in type 2 diabetes and obesity
-
24533976
-
Remely M, Aumueller E, Jahn D, Hippe B, Brath H, Haslberger AG. Microbiota and epigenetic regulation of inflammatory mediators in type 2 diabetes and obesity. Benef Microbes 2014; 5:33-43; PMID:24533976; https://doi.org/10.3920/BM2013.006
-
(2014)
Benef Microbes
, vol.5
, pp. 33-43
-
-
Remely, M.1
Aumueller, E.2
Jahn, D.3
Hippe, B.4
Brath, H.5
Haslberger, A.G.6
-
45
-
-
84884500386
-
Metabolically healthy obesity: epidemiology, mechanisms, and clinical implications
-
24622321
-
Stefan N, Häring HU, Hu FB, Schulze MB. Metabolically healthy obesity:epidemiology, mechanisms, and clinical implications. Lancet Diabetes Endocrinol 2013; 1:152-62; PMID:24622321; https://doi.org/10.1016/S2213-8587(13)70062-7
-
(2013)
Lancet Diabetes Endocrinol
, vol.1
, pp. 152-162
-
-
Stefan, N.1
Häring, H.U.2
Hu, F.B.3
Schulze, M.B.4
-
46
-
-
84900826502
-
Differential methylation in visceral adipose tissue of obese men discordant for metabolic disturbances
-
24495915
-
Guénard F, Tchernof A, Deshaies Y, Pérusse L, Biron S, Lescelleur O, Biertho L, Marceau S, Vohl MC. Differential methylation in visceral adipose tissue of obese men discordant for metabolic disturbances. Physiol Genomics 2014; 46:216-22; PMID:24495915; https://doi.org/10.1152/physiolgenomics.00160.2013
-
(2014)
Physiol Genomics
, vol.46
, pp. 216-222
-
-
Guénard, F.1
Tchernof, A.2
Deshaies, Y.3
Pérusse, L.4
Biron, S.5
Lescelleur, O.6
Biertho, L.7
Marceau, S.8
Vohl, M.C.9
-
47
-
-
84983050288
-
Inflammation triggers specific microRNA profiles in human adipocytes and macrophages and in their supernatants
-
25926893
-
Ortega FJ, Moreno M, Mercader JM, Moreno-Navarrete JM, Fuentes-Batllevell N, Sabater M, Ricart W, Fernández-Real JM. Inflammation triggers specific microRNA profiles in human adipocytes and macrophages and in their supernatants. Clin Epigenetics 2015; 7:49; PMID:25926893; https://doi.org/10.1186/s13148-015-0083-3
-
(2015)
Clin Epigenetics
, vol.7
, pp. 49
-
-
Ortega, F.J.1
Moreno, M.2
Mercader, J.M.3
Moreno-Navarrete, J.M.4
Fuentes-Batllevell, N.5
Sabater, M.6
Ricart, W.7
Fernández-Real, J.M.8
-
48
-
-
84890124194
-
Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes
-
23842730
-
Nesca V, Guay C, Jacovetti C, Menoud V, Peyot ML, Laybutt DR, Prentki M, Regazzi R. Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia 2013; 56:2203-12; PMID:23842730; https://doi.org/10.1007/s00125-013-2993-y
-
(2013)
Diabetologia
, vol.56
, pp. 2203-2212
-
-
Nesca, V.1
Guay, C.2
Jacovetti, C.3
Menoud, V.4
Peyot, M.L.5
Laybutt, D.R.6
Prentki, M.7
Regazzi, R.8
-
49
-
-
77951158889
-
Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic β-cells
-
20086228
-
Roggli E, Britan A, Gattesco S, Lin-Marq N, Abderrahmani A, Meda P, Regazzi R. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic β-cells. Diabetes 2010; 59:978-86; PMID:20086228; https://doi.org/10.2337/db09-0881
-
(2010)
Diabetes
, vol.59
, pp. 978-986
-
-
Roggli, E.1
Britan, A.2
Gattesco, S.3
Lin-Marq, N.4
Abderrahmani, A.5
Meda, P.6
Regazzi, R.7
-
50
-
-
79955671859
-
Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers
-
21367929
-
Heneghan HM, Miller N, McAnena OJ, O'Brien T, Kerin MJ. Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers. J Clin Endocrinol Metab 2011; 96:E846-E850; PMID:21367929; https://doi.org/10.1210/jc.2010-2701
-
(2011)
J Clin Endocrinol Metab
, vol.96
, pp. E846-E850
-
-
Heneghan, H.M.1
Miller, N.2
McAnena, O.J.3
O'Brien, T.4
Kerin, M.J.5
-
51
-
-
84866115684
-
MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic β-cells
-
22733810
-
Zhao X, Mohan R, Özcan S, Tang X. MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic β-cells. J Biol Chem 2012; 287:31155-64; PMID:22733810; https://doi.org/10.1074/jbc.M112.362632
-
(2012)
J Biol Chem
, vol.287
, pp. 31155-31164
-
-
Zhao, X.1
Mohan, R.2
Özcan, S.3
Tang, X.4
-
52
-
-
0027459878
-
Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance
-
7678183
-
Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha:direct role in obesity-linked insulin resistance. Science 1993; 259:87-91; PMID:7678183; https://doi.org/10.1126/science.7678183
-
(1993)
Science
, vol.259
, pp. 87-91
-
-
Hotamisligil, G.S.1
Shargill, N.S.2
Spiegelman, B.M.3
-
53
-
-
33845866857
-
Inflammation and metabolic disorders
-
17167474
-
Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006; 444:860-7; PMID:17167474; https://doi.org/10.1038/nature05485
-
(2006)
Nature
, vol.444
, pp. 860-867
-
-
Hotamisligil, G.S.1
-
54
-
-
9144223683
-
Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance
-
14679177
-
Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112:1821-30; PMID:14679177; https://doi.org/10.1172/JCI200319451
-
(2003)
J Clin Invest
, vol.112
, pp. 1821-1830
-
-
Xu, H.1
Barnes, G.T.2
Yang, Q.3
Tan, G.4
Yang, D.5
Chou, C.J.6
Sole, J.7
Nichols, A.8
Ross, J.S.9
Tartaglia, L.A.10
-
55
-
-
84864383359
-
Adipose tissue microRNAs as regulators of CCL2 production in human obesity
-
22688341
-
Arner E, Mejhert N, Kulyté A, Balwierz PJ, Pachkov M, Cormont M, Lorente-Cebrián S, Ehrlund A, Laurencikiene J, Hedén P, et al. Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes 2012; 61:1986-93; PMID:22688341; https://doi.org/10.2337/db11-1508
-
(2012)
Diabetes
, vol.61
, pp. 1986-1993
-
-
Arner, E.1
Mejhert, N.2
Kulyté, A.3
Balwierz, P.J.4
Pachkov, M.5
Cormont, M.6
Lorente-Cebrián, S.7
Ehrlund, A.8
Laurencikiene, J.9
Hedén, P.10
-
56
-
-
79959198166
-
Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA
-
21572438
-
Wang D, Garcia-Bassets I, Benner C, Li W, Su X, Zhou Y, Qiu J, Liu W, Kaikkonen MU, Ohgi KA, et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 2011; 474:390-4; PMID:21572438; https://doi.org/10.1038/nature10006
-
(2011)
Nature
, vol.474
, pp. 390-394
-
-
Wang, D.1
Garcia-Bassets, I.2
Benner, C.3
Li, W.4
Su, X.5
Zhou, Y.6
Qiu, J.7
Liu, W.8
Kaikkonen, M.U.9
Ohgi, K.A.10
-
57
-
-
84951908383
-
Upregulation of lncRNA MEG3 promotes hepatic insulin resistance via increasing FoxO1 expression
-
26603935
-
Zhu X, Wu YB, Zhou J, Kang DM. Upregulation of lncRNA MEG3 promotes hepatic insulin resistance via increasing FoxO1 expression. Biochem Biophys Res Commun 2016; 469:319-25; PMID:26603935; https://doi.org/10.1016/j.bbrc.2015.11.048
-
(2016)
Biochem Biophys Res Commun
, vol.469
, pp. 319-325
-
-
Zhu, X.1
Wu, Y.B.2
Zhou, J.3
Kang, D.M.4
-
58
-
-
84906663654
-
Parp inhibition prevents ten-eleven translocase enzyme activation and hyperglycemia-induced DNA demethylation
-
Sep, 24722243
-
Dhliwayo N, Sarras MP, Jr, Luczkowski E, Mason SM, Intine RV. Parp inhibition prevents ten-eleven translocase enzyme activation and hyperglycemia-induced DNA demethylation. Diabetes 2014 Sep; 63(9):3069-76; PMID:24722243; https://doi.org/10.2337/db13-1916
-
(2014)
Diabetes
, vol.63
, Issue.9
, pp. 3069-3076
-
-
Dhliwayo, N.1
Sarras, M.P.2
Luczkowski, E.3
Mason, S.M.4
Intine, R.V.5
-
59
-
-
84862095921
-
Primary prevention of atherosclerosis: a clinical challenge for the reversal of epigenetic mechanisms?
-
22586291
-
Napoli C, Crudele V, Soricelli A, Al-Omran M, Vitale N, Infante T, Mancini FP. Primary prevention of atherosclerosis:a clinical challenge for the reversal of epigenetic mechanisms? Circulation 2012; 125:2363-73; PMID:22586291; https://doi.org/10.1161/CIRCULATIONAHA.111.085787
-
(2012)
Circulation
, vol.125
, pp. 2363-2373
-
-
Napoli, C.1
Crudele, V.2
Soricelli, A.3
Al-Omran, M.4
Vitale, N.5
Infante, T.6
Mancini, F.P.7
-
60
-
-
84897139220
-
Transgenerational epigenetic inheritance: myths and mechanisms
-
24679529
-
Heard E, Martienssen RA. Transgenerational epigenetic inheritance:myths and mechanisms. Cell 2014; 157:95-109; PMID:24679529; https://doi.org/10.1016/j.cell.2014.02.045
-
(2014)
Cell
, vol.157
, pp. 95-109
-
-
Heard, E.1
Martienssen, R.A.2
-
61
-
-
84948107743
-
Transgenerational inheritance of metabolic disease
-
25937492
-
Stegemann R, Buchner DA. Transgenerational inheritance of metabolic disease. Semin Cell Dev Biol 2015; 43:131-40; PMID:25937492; https://doi.org/10.1016/j.semcdb.2015.04.007
-
(2015)
Semin Cell Dev Biol
, vol.43
, pp. 131-140
-
-
Stegemann, R.1
Buchner, D.A.2
-
62
-
-
51749105253
-
Transmission of raised blood pressure and endothelial dysfunction to the F2 generation induced by maternal protein restriction in the F0, in the absence of dietary challenge in the F1 generation
-
18304387
-
Torrens C, Poston L, Hanson MA. Transmission of raised blood pressure and endothelial dysfunction to the F2 generation induced by maternal protein restriction in the F0, in the absence of dietary challenge in the F1 generation. Br J Nutr 2008; 100:760-6; PMID:18304387; https://doi.org/10.1017/S0007114508921747
-
(2008)
Br J Nutr
, vol.100
, pp. 760-766
-
-
Torrens, C.1
Poston, L.2
Hanson, M.A.3
-
63
-
-
84903221662
-
Cardiovascular disease and transgenerational epigenetic effects
-
Tollefsbol T., (ed), In, editor, San Diego: Academic Press
-
Zullo A, Casamassimi A, Mancini FP, Napoli C. Cardiovascular disease and transgenerational epigenetic effects. In:Tollefsbol T, editor. Transgenerational Epigenetics. Evidence and Debate, San Diego:Academic Press; 2014, p. 321-341; https://doi.org/10.1016/B978-0-12-405944-3.01001-1
-
(2014)
Transgenerational Epigenetics. Evidence and Debate
, pp. 321-341
-
-
Zullo, A.1
Casamassimi, A.2
Mancini, F.P.3
Napoli, C.4
-
64
-
-
0027529974
-
Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth
-
8436255
-
Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X):relation to reduced fetal growth. Diabetologia 1993; 36:62-7; PMID:8436255; https://doi.org/10.1007/BF00399095
-
(1993)
Diabetologia
, vol.36
, pp. 62-67
-
-
Barker, D.J.1
Hales, C.N.2
Fall, C.H.3
Osmond, C.4
Phipps, K.5
Clark, P.M.6
-
65
-
-
4544366928
-
Living with the past: evolution, development, and patterns of disease
-
15375258
-
Gluckman PD, Hanson MA. Living with the past:evolution, development, and patterns of disease. Science 2004; 305:1733-6; PMID:15375258; https://doi.org/10.1126/science.1095292
-
(2004)
Science
, vol.305
, pp. 1733-1736
-
-
Gluckman, P.D.1
Hanson, M.A.2
-
66
-
-
84930537439
-
Maternal diabetes, gestational diabetes and the role of epigenetics in their long term effects on offspring
-
25792090
-
Ma RC, Tutino GE, Lillycrop KA, Hanson MA, Tam WH. Maternal diabetes, gestational diabetes and the role of epigenetics in their long term effects on offspring. Prog Biophys Mol Biol 2015; 118:55-68; PMID:25792090; https://doi.org/10.1016/j.pbiomolbio.2015.02.010
-
(2015)
Prog Biophys Mol Biol
, vol.118
, pp. 55-68
-
-
Ma, R.C.1
Tutino, G.E.2
Lillycrop, K.A.3
Hanson, M.A.4
Tam, W.H.5
-
67
-
-
84956683168
-
Endocrinology of pregnancy: Gestational diabetes mellitus: definition, aetiological and clinical aspects
-
26431552
-
Baz B, Riveline JP, Gautier JF. Endocrinology of pregnancy:Gestational diabetes mellitus:definition, aetiological and clinical aspects. Eur J Endocrinol 2016; 174:R43-51; PMID:26431552; https://doi.org/10.1530/EJE-15-0378
-
(2016)
Eur J Endocrinol
, vol.174
, pp. R43-R51
-
-
Baz, B.1
Riveline, J.P.2
Gautier, J.F.3
-
68
-
-
84961572632
-
Developing discriminate model and comparative analysis of differentially expressed genes and pathways for bloodstream samples of diabetes mellitus type 2
-
Liu C, Lu L, Kong Q, Li Y, Wu H, Yang W, Xu S, Yang X, Song X, Yang JY, et al. Developing discriminate model and comparative analysis of differentially expressed genes and pathways for bloodstream samples of diabetes mellitus type 2. BMC Bioinformatics 2014; 15(Suppl 17):S5; PMID:25559614; https://doi.org/10.1186/1471-2105-15-S17-S5
-
(2014)
BMC Bioinformatics
, vol.15
, pp. S5
-
-
Liu, C.1
Lu, L.2
Kong, Q.3
Li, Y.4
Wu, H.5
Yang, W.6
Xu, S.7
Yang, X.8
Song, X.9
Yang, J.Y.10
-
69
-
-
79955099476
-
Domain RBF: a Bayesian regression approach to the prioritization of candidate domains for complex diseases
-
21504591
-
Zhang W, Chen Y, Sun F, Jiang R. Domain RBF:a Bayesian regression approach to the prioritization of candidate domains for complex diseases. BMC Syst Biol 2011; 5:55; PMID:21504591; https://doi.org/10.1186/1752-0509-5-55
-
(2011)
BMC Syst Biol
, vol.5
, pp. 55
-
-
Zhang, W.1
Chen, Y.2
Sun, F.3
Jiang, R.4
-
70
-
-
77953245699
-
Prioritisation of associations between protein domains and complex diseases using domain-domain interaction networks
-
20500001
-
Wang W, Zhang W, Jiang R, Luan Y. Prioritisation of associations between protein domains and complex diseases using domain-domain interaction networks. IET Syst Biol 2010; 4:212-22; PMID:20500001; https://doi.org/10.1049/iet-syb.2009.0037
-
(2010)
IET Syst Biol
, vol.4
, pp. 212-222
-
-
Wang, W.1
Zhang, W.2
Jiang, R.3
Luan, Y.4
-
71
-
-
84872963322
-
Integrated lipidomics and transcriptomic analysis of peripheral blood reveals significantly enriched pathways in type 2 diabetes mellitus
-
Zhao C, Mao J, Ai J, Shenwu M, Shi T, Zhang D, Wang X, Wang Y, Deng Y. Integrated lipidomics and transcriptomic analysis of peripheral blood reveals significantly enriched pathways in type 2 diabetes mellitus. BMC Med Genomics 2013; 6(Suppl 1):S12; PMID:23369247; https://doi.org/10.1186/1755-8794-6-S1-S12
-
(2013)
BMC Med Genomics
, vol.6
, pp. S12
-
-
Zhao, C.1
Mao, J.2
Ai, J.3
Shenwu, M.4
Shi, T.5
Zhang, D.6
Wang, X.7
Wang, Y.8
Deng, Y.9
-
72
-
-
84904113579
-
MPINet: metabolite pathway identification via coupling of global metabolite network structure and metabolomic profile
-
25057481
-
Li F, Xu Y, Shang D, Yang H, Liu W, Han J, Sun Z, Yao Q, Zhang C, Ma J, et al. MPINet:metabolite pathway identification via coupling of global metabolite network structure and metabolomic profile. Biomed Res Int 2014; 2014:325697; PMID:25057481; https://doi.org/10.1155/2014/325697
-
(2014)
Biomed Res Int
, vol.2014
, pp. 325697
-
-
Li, F.1
Xu, Y.2
Shang, D.3
Yang, H.4
Liu, W.5
Han, J.6
Sun, Z.7
Yao, Q.8
Zhang, C.9
Ma, J.10
-
73
-
-
84937518347
-
A systems view of type 2 diabetes-associated metabolic perturbations in saliva, blood and urine at different timescales of glycaemic control
-
26049400
-
Yousri NA, Mook-Kanamori DO, Selim MM, Takiddin AH, Al-Homsi H, Al-Mahmoud KA, Karoly ED, Krumsiek J, Do KT, Neumaier U, et al. A systems view of type 2 diabetes-associated metabolic perturbations in saliva, blood and urine at different timescales of glycaemic control. Diabetologia 2015; 58:1855-67; PMID:26049400; https://doi.org/10.1007/s00125-015-3636-2
-
(2015)
Diabetologia
, vol.58
, pp. 1855-1867
-
-
Yousri, N.A.1
Mook-Kanamori, D.O.2
Selim, M.M.3
Takiddin, A.H.4
Al-Homsi, H.5
Al-Mahmoud, K.A.6
Karoly, E.D.7
Krumsiek, J.8
Do, K.T.9
Neumaier, U.10
-
74
-
-
84927127461
-
An epigenetic map of age-associated autosomal loci in northern European families at high risk for the metabolic syndrome
-
25806089
-
Ali O, Cerjak D, Kent JW, Jr, James R, Blangero J, Carless MA, Zhang Y. An epigenetic map of age-associated autosomal loci in northern European families at high risk for the metabolic syndrome. Clin Epigenetics 2015; 7:12; PMID:25806089; https://doi.org/10.1186/s13148-015-0048-6
-
(2015)
Clin Epigenetics
, vol.7
, pp. 12
-
-
Ali, O.1
Cerjak, D.2
Kent, J.W.3
James, R.4
Blangero, J.5
Carless, M.A.6
Zhang, Y.7
-
75
-
-
84910112508
-
Detection of type 2 diabetes related modules and genes based on epigenetic networks
-
Liu H, Wang T, Liu H, Wei Y, Zhao G, Su J, Wu Q, Qiao H, Zhang Y. Detection of type 2 diabetes related modules and genes based on epigenetic networks. BMC Syst Biol 2014; 8(Suppl 1):S5; PMID:24565181; https://doi.org/10.1186/1752-0509-8-5
-
(2014)
BMC Syst Biol
, vol.8
, pp. S5
-
-
Liu, H.1
Wang, T.2
Liu, H.3
Wei, Y.4
Zhao, G.5
Su, J.6
Wu, Q.7
Qiao, H.8
Zhang, Y.9
-
76
-
-
84938744924
-
Assessment of DNA damage and mRNA/miRNA transcriptional expression profiles in hyperglycemic versus non-hyperglycemic patients with type 2 diabetes mellitus
-
26364207
-
Xavier DJ, Takahashi P, Evangelista AF, Foss-Freitas MC, Foss MC, Donadi EA, Passos GA, Sakamoto-Hojo ET. Assessment of DNA damage and mRNA/miRNA transcriptional expression profiles in hyperglycemic versus non-hyperglycemic patients with type 2 diabetes mellitus. Mutat Res 2015; 776:98-110; PMID:26364207; https://doi.org/10.1016/j.mrfmmm.2015.01.016
-
(2015)
Mutat Res
, vol.776
, pp. 98-110
-
-
Xavier, D.J.1
Takahashi, P.2
Evangelista, A.F.3
Foss-Freitas, M.C.4
Foss, M.C.5
Donadi, E.A.6
Passos, G.A.7
Sakamoto-Hojo, E.T.8
-
77
-
-
84955599201
-
A bioinformatics approach to the identification of variants associated with Type 1 and Type 2 diabetes mellitus that reside in functionally validated mirnas binding sites
-
26820452
-
Ghaedi H, Bastami M, Jahani MM, Alipoor B, Tabasinezhad M, Ghaderi O, Nariman-Saleh-Fam Z, Mirfakhraie R, Movafagh A, Omrani MD, et al. A bioinformatics approach to the identification of variants associated with Type 1 and Type 2 diabetes mellitus that reside in functionally validated mirnas binding sites. Biochem Genet 2016; 54:211-21; PMID:26820452; https://doi.org/10.1007/s10528-016-9713-5
-
(2016)
Biochem Genet
, vol.54
, pp. 211-221
-
-
Ghaedi, H.1
Bastami, M.2
Jahani, M.M.3
Alipoor, B.4
Tabasinezhad, M.5
Ghaderi, O.6
Nariman-Saleh-Fam, Z.7
Mirfakhraie, R.8
Movafagh, A.9
Omrani, M.D.10
-
78
-
-
84950971713
-
Are epigenetic drugs for diabetes and obesity at our door step?
-
26697737
-
Arguelles AO, Meruvu S, Bowman JD, Choudhury M. Are epigenetic drugs for diabetes and obesity at our door step? Drug Discov Today 2016; 21:499-509; PMID:26697737; https://doi.org/10.1016/j.drudis.2015.12.001
-
(2016)
Drug Discov Today
, vol.21
, pp. 499-509
-
-
Arguelles, A.O.1
Meruvu, S.2
Bowman, J.D.3
Choudhury, M.4
-
79
-
-
4043146501
-
Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression
-
15155757
-
Balasubramanyam K, Altaf M, Varier RA, Swaminathan V, Ravindran A, Sadhale PP, Kundu TK. Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J Biol Chem 2004; 279:33716-26; PMID:15155757; https://doi.org/10.1074/jbc.M402839200
-
(2004)
J Biol Chem
, vol.279
, pp. 33716-33726
-
-
Balasubramanyam, K.1
Altaf, M.2
Varier, R.A.3
Swaminathan, V.4
Ravindran, A.5
Sadhale, P.P.6
Kundu, T.K.7
-
80
-
-
84864389693
-
Acetylation of retinal histones in diabetes increases inflammatory proteins: effects of minocycline and manipulation of histone acetyltransferase (HAT) and histone deacetylase (HDAC)
-
22648458
-
Kadiyala CS, Zheng L, Du Y, Yohannes E, Kao HY, Miyagi M, Kern TS. Acetylation of retinal histones in diabetes increases inflammatory proteins:effects of minocycline and manipulation of histone acetyltransferase (HAT) and histone deacetylase (HDAC). J Biol Chem 2012; 287:25869-80; PMID:22648458; https://doi.org/10.1074/jbc.M112.375204
-
(2012)
J Biol Chem
, vol.287
, pp. 25869-25880
-
-
Kadiyala, C.S.1
Zheng, L.2
Du, Y.3
Yohannes, E.4
Kao, H.Y.5
Miyagi, M.6
Kern, T.S.7
-
81
-
-
78649895807
-
Hydro-ethanolic extract of cashew tree (Anacardium occidentale) nut and its principal compound, anacardic acid, stimulate glucose uptake in C2C12 muscle cells
-
Tedong L, Madiraju P, Martineau LC, Vallerand D, Arnason JT, Desire DD, Lavoie L, Kamtchouing P, Haddad PS. Hydro-ethanolic extract of cashew tree (Anacardium occidentale) nut and its principal compound, anacardic acid, stimulate glucose uptake in C2C12 muscle cells. Mol Nutr Food Res 2010; 54:1753-62; PMID:20603833; https://doi.org/10.1002/mnfr.201000045
-
(2010)
Mol Nutr Food Res
, vol.54
, pp. 1753-1762
-
-
Tedong, L.1
Madiraju, P.2
Martineau, L.C.3
Vallerand, D.4
Arnason, J.T.5
Desire, D.D.6
Lavoie, L.7
Kamtchouing, P.8
Haddad, P.S.9
-
83
-
-
79954602833
-
Epigenetic regulation of high glucose-induced proinflammatory cytokine production in monocytes by curcumin
-
20655188
-
Yun JM, Jialal I, Devaraj S. Epigenetic regulation of high glucose-induced proinflammatory cytokine production in monocytes by curcumin. J Nutr Biochem 2011; 22:450-8; PMID:20655188; https://doi.org/10.1016/j.jnutbio.2010.03.014
-
(2011)
J Nutr Biochem
, vol.22
, pp. 450-458
-
-
Yun, J.M.1
Jialal, I.2
Devaraj, S.3
-
84
-
-
77957740137
-
Effects of Curcuma longa (turmeric) on postprandial plasma glucose and insulin in healthy subjects
-
20937162
-
Wickenberg J, Ingemansson SL, Hlebowicz J. Effects of Curcuma longa (turmeric) on postprandial plasma glucose and insulin in healthy subjects. Nutr J 2010; 9:43; PMID:20937162; https://doi.org/10.1186/1475-2891-9-43
-
(2010)
Nutr J
, vol.9
, pp. 43
-
-
Wickenberg, J.1
Ingemansson, S.L.2
Hlebowicz, J.3
-
85
-
-
84956579924
-
The Diabetes Visual Function Supplement Study (DiVFuSS)
-
26089210
-
Chous AP, Richer SP, Gerson JD, Kowluru RA. The Diabetes Visual Function Supplement Study (DiVFuSS). Br J Ophthalmol 2016; 100(2):227-34; PMID:26089210; https://doi.org/10.1136/bjophthalmol-2014-306534
-
(2016)
Br J Ophthalmol
, vol.100
, Issue.2
, pp. 227-234
-
-
Chous, A.P.1
Richer, S.P.2
Gerson, J.D.3
Kowluru, R.A.4
-
86
-
-
79957944601
-
Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus
-
21274504
-
Christensen DP, Dahllöf M, Lundh M, Rasmussen DN, Nielsen MD, Billestrup N, Grunnet LG, Mandrup-Poulsen T. Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus. Mol Med 2011; 17:378-90; PMID:21274504; https://doi.org/10.2119/molmed.2011.00021
-
(2011)
Mol Med
, vol.17
, pp. 378-390
-
-
Christensen, D.P.1
Dahllöf, M.2
Lundh, M.3
Rasmussen, D.N.4
Nielsen, M.D.5
Billestrup, N.6
Grunnet, L.G.7
Mandrup-Poulsen, T.8
-
87
-
-
84869106554
-
Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue
-
23069623
-
Galmozzi A, Mitro N, Ferrari A, Gers E, Gilardi F, Godio C, Cermenati G, Gualerzi A, Donetti E, Rotili D, et al. Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue. Diabetes 2013; 62:732-42; PMID:23069623; https://doi.org/10.2337/db12-0548
-
(2013)
Diabetes
, vol.62
, pp. 732-742
-
-
Galmozzi, A.1
Mitro, N.2
Ferrari, A.3
Gers, E.4
Gilardi, F.5
Godio, C.6
Cermenati, G.7
Gualerzi, A.8
Donetti, E.9
Rotili, D.10
-
88
-
-
67649238355
-
Butyrate improves insulin sensitivity and increases energy expenditure in mice
-
19366864
-
Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, Cefalu WT, Ye J. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009; 58:1509-17; PMID:19366864; https://doi.org/10.2337/db08-1637
-
(2009)
Diabetes
, vol.58
, pp. 1509-1517
-
-
Gao, Z.1
Yin, J.2
Zhang, J.3
Ward, R.E.4
Martin, R.J.5
Lefevre, M.6
Cefalu, W.T.7
Ye, J.8
-
89
-
-
84929223275
-
Sodium butyrate epigenetically modulates high fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning
-
25559882
-
Henagan TM, Stefanska B, Fang Z, Navard AM, Ye J, Lenard NR, Devarshi PP. Sodium butyrate epigenetically modulates high fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning. Br J Pharmacol 2015; 172:2782-98; PMID:25559882; https://doi.org/10.1111/bph.13058
-
(2015)
Br J Pharmacol
, vol.172
, pp. 2782-2798
-
-
Henagan, T.M.1
Stefanska, B.2
Fang, Z.3
Navard, A.M.4
Ye, J.5
Lenard, N.R.6
Devarshi, P.P.7
-
90
-
-
80755168896
-
Specific control of pancreatic endocrine β- and δ-cell mass by class IIa histone deacetylases HDAC4, HDAC5, and HDAC9
-
21953612
-
Lenoir O, Flosseau K, Ma FX, Blondeau B, Mai A, Bassel-Duby R, Ravassard P, Olson EN, Haumaitre C, Scharfmann R. Specific control of pancreatic endocrine β- and δ-cell mass by class IIa histone deacetylases HDAC4, HDAC5, and HDAC9. Diabetes 2011; 60:2861-71; PMID:21953612; https://doi.org/10.2337/db11-0440
-
(2011)
Diabetes
, vol.60
, pp. 2861-2871
-
-
Lenoir, O.1
Flosseau, K.2
Ma, F.X.3
Blondeau, B.4
Mai, A.5
Bassel-Duby, R.6
Ravassard, P.7
Olson, E.N.8
Haumaitre, C.9
Scharfmann, R.10
-
91
-
-
84876250667
-
The lysine deacetylase inhibitor Givinostat inhibits β-cell IL-1β induced IL-1β transcription and processing
-
23486342
-
Dahllöf MS, Christensen DP, Lundh M, Dinarello CA, Mascagni P, Grunnet LG, Mandrup-Poulsen T. The lysine deacetylase inhibitor Givinostat inhibits β-cell IL-1β induced IL-1β transcription and processing. Islets 2012; 4:417-22; PMID:23486342; https://doi.org/10.4161/isl.23541
-
(2012)
Islets
, vol.4
, pp. 417-422
-
-
Dahllöf, M.S.1
Christensen, D.P.2
Lundh, M.3
Dinarello, C.A.4
Mascagni, P.5
Grunnet, L.G.6
Mandrup-Poulsen, T.7
-
92
-
-
85006459117
-
Multiple pathways of SIRT6 at the crossroads in the control of longevity, cancer, and cardiovascular diseases
-
Vitiello M, Zullo A, Servillo L, Mancini FP, Borriello A, Giovane A, Della Ragione F, D'Onofrio N, Balestrieri ML. Multiple pathways of SIRT6 at the crossroads in the control of longevity, cancer, and cardiovascular diseases. Ageing Res Rev 2016 pii:S1568-1637(16)30181-7; PMID:27829173
-
(2016)
Ageing Res Rev
-
-
Vitiello, M.1
Zullo, A.2
Servillo, L.3
Mancini, F.P.4
Borriello, A.5
Giovane, A.6
Della Ragione, F.7
D'Onofrio, N.8
Balestrieri, M.L.9
-
93
-
-
77956176874
-
Regulation of SIRT1 in cellular functions: role of polyphenols
-
20450879
-
Chung S, Yao H, Caito S, Hwang JW, Arunachalam G, Rahman I. Regulation of SIRT1 in cellular functions:role of polyphenols. Arch Biochem Biophys 2010; 501:79-90; PMID:20450879; https://doi.org/10.1016/j.abb.2010.05.003
-
(2010)
Arch Biochem Biophys
, vol.501
, pp. 79-90
-
-
Chung, S.1
Yao, H.2
Caito, S.3
Hwang, J.W.4
Arunachalam, G.5
Rahman, I.6
-
94
-
-
77949493599
-
Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5
-
20093281
-
Caton PW, Nayuni NK, Kieswich J, Khan NQ, Yaqoob MM, Corder R. Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5. J Endocrinol 2010; 205:97-106; PMID:20093281; https://doi.org/10.1677/JOE-09-0345
-
(2010)
J Endocrinol
, vol.205
, pp. 97-106
-
-
Caton, P.W.1
Nayuni, N.K.2
Kieswich, J.3
Khan, N.Q.4
Yaqoob, M.M.5
Corder, R.6
-
95
-
-
84864216037
-
Initial combination therapy with metformin plus colesevelam improves lipoprotein particles in patients with early type 2 diabetes mellitus
-
22836068
-
Goldberg RB, Rosenson RS, Hernandez-Triana E, Misir S, Jones MR. Initial combination therapy with metformin plus colesevelam improves lipoprotein particles in patients with early type 2 diabetes mellitus. J Clin Lipidol 2012; 6:318-24; PMID:22836068; https://doi.org/10.1016/j.jacl.2012.05.005
-
(2012)
J Clin Lipidol
, vol.6
, pp. 318-324
-
-
Goldberg, R.B.1
Rosenson, R.S.2
Hernandez-Triana, E.3
Misir, S.4
Jones, M.R.5
-
96
-
-
80054991800
-
Resveratrol attenuates high-fat diet-induced insulin resistance by influencing skeletal muscle lipid transport and subsarcolemmal mitochondrial beta oxidation
-
21632075
-
Chen LL, Zhang HH, Zheng J, Hu X, Kong W, Hu D, Wang SX, Zhang P. Resveratrol attenuates high-fat diet-induced insulin resistance by influencing skeletal muscle lipid transport and subsarcolemmal mitochondrial beta oxidation. Metabolism 2011; 60:1598-609; PMID:21632075
-
(2011)
Metabolism
, vol.60
, pp. 1598-1609
-
-
Chen, L.L.1
Zhang, H.H.2
Zheng, J.3
Hu, X.4
Kong, W.5
Hu, D.6
Wang, S.X.7
Zhang, P.8
-
97
-
-
79953206276
-
Resveratrol potentiates glucose stimulated insulin secretion in INS-1E beta-cells and human islets through a SIRT1-dependent mechanism
-
21163946
-
Vetterli L, Brun T, Giovannoni L, Bosco D, Maechler P. Resveratrol potentiates glucose stimulated insulin secretion in INS-1E beta-cells and human islets through a SIRT1-dependent mechanism. J Biol Chem 2011; 286:6049-60; PMID:21163946; https://doi.org/10.1074/jbc.M110.176842
-
(2011)
J Biol Chem
, vol.286
, pp. 6049-6060
-
-
Vetterli, L.1
Brun, T.2
Giovannoni, L.3
Bosco, D.4
Maechler, P.5
-
98
-
-
84923057688
-
Resveratrol supplementation: Where are we now and where should we go?
-
25625901
-
Novelle MG, Wahl D, Diéguez C, Bernier M, de Cabo R. Resveratrol supplementation:Where are we now and where should we go? Ageing Res Rev 2015; 21:1-15; PMID:25625901; https://doi.org/10.1016/j.arr.2015.01.002
-
(2015)
Ageing Res Rev
, vol.21
, pp. 1-15
-
-
Novelle, M.G.1
Wahl, D.2
Diéguez, C.3
Bernier, M.4
de Cabo, R.5
-
99
-
-
36749087548
-
Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
-
18046409
-
Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007; 450:712-6; PMID:18046409; https://doi.org/10.1038/nature06261
-
(2007)
Nature
, vol.450
, pp. 712-716
-
-
Milne, J.C.1
Lambert, P.D.2
Schenk, S.3
Carney, D.P.4
Smith, J.J.5
Gagne, D.J.6
Jin, L.7
Boss, O.8
Perni, R.B.9
Vu, C.B.10
-
100
-
-
84899956234
-
Short-term supplementation with a specific combination of dietary polyphenols increases energy expenditure and alters substrate metabolism in overweight subjects
-
24317366
-
Most J, Goossens GH, Jocken JW, Blaak EE. Short-term supplementation with a specific combination of dietary polyphenols increases energy expenditure and alters substrate metabolism in overweight subjects. Int J Obes (Lond) 2014 May; 38(5):698-706; PMID:24317366; https://doi.org/10.1038/ijo.2013.231
-
(2014)
Int J Obes (Lond)
, vol.38
, Issue.5
, pp. 698-706
-
-
Most, J.1
Goossens, G.H.2
Jocken, J.W.3
Blaak, E.E.4
-
101
-
-
84901659368
-
Effect of resveratrol on glucose control and insulin sensitivity: a meta-analysis of 11 randomized controlled trials
-
Jun
-
Liu K, Zhou R, Wang B, Mi MT. Effect of resveratrol on glucose control and insulin sensitivity:a meta-analysis of 11 randomized controlled trials. Am J Clin Nutr 2014 Jun; 99(6):1510-9; PMID:24695890; https://doi.org/10.3945/ajcn.113.082024
-
(2014)
Am J Clin Nutr
, vol.99
, Issue.6
, pp. 1510-1519
-
-
Liu, K.1
Zhou, R.2
Wang, B.3
Mi, M.T.4
-
102
-
-
83255186696
-
MicroRNA therapeutics
-
Broderick JA, Zamore PD. MicroRNA therapeutics. Gene Therapy 2011; 18:1104-10; PMID:21525952; https://doi.org/10.1038/gt.2011.50
-
(2011)
Gene Therapy
, vol.18
, pp. 1104-1110
-
-
Broderick, J.A.1
Zamore, P.D.2
-
103
-
-
70350333116
-
Role and therapeutic potential of microRNAs in diabetes
-
19817794
-
Kolfschoten IG, Roggli E, Nesca V, Regazzi R. Role and therapeutic potential of microRNAs in diabetes. Diabetes Obes Metab 2009; 11(Suppl 4):118-29; PMID:19817794; https://doi.org/10.1111/j.1463-1326.2009.01118.x
-
(2009)
Diabetes Obes Metab
, vol.11
, pp. 118-129
-
-
Kolfschoten, I.G.1
Roggli, E.2
Nesca, V.3
Regazzi, R.4
-
104
-
-
58149350343
-
miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic β-cells
-
18591395
-
El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, van Obberghen E. miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic β-cells. Diabetes 2008; 57:2708-17; PMID:18591395; https://doi.org/10.2337/db07-1614
-
(2008)
Diabetes
, vol.57
, pp. 2708-2717
-
-
El Ouaamari, A.1
Baroukh, N.2
Martens, G.A.3
Lebrun, P.4
Pipeleers, D.5
van Obberghen, E.6
-
105
-
-
79959845414
-
MicroRNAs 103 and 107 regulate insulin sensitivity
-
21654750
-
Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, Heim MH, Stoffel M. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011; 474:649-53; PMID:21654750; https://doi.org/10.1038/nature10112
-
(2011)
Nature
, vol.474
, pp. 649-653
-
-
Trajkovski, M.1
Hausser, J.2
Soutschek, J.3
Bhat, B.4
Akin, A.5
Zavolan, M.6
Heim, M.H.7
Stoffel, M.8
-
106
-
-
58149350340
-
Alterations in microRNA expression contribute to fatty acid-induced pancreatic β-cell dysfunction
-
18633110
-
Lovis P, Roggli E, Laybutt DR, Gattesco S, Yang JY, Widmann C, Abderrahmani A, Regazzi R. Alterations in microRNA expression contribute to fatty acid-induced pancreatic β-cell dysfunction. Diabetes 2008; 57:2728-36; PMID:18633110; https://doi.org/10.2337/db07-1252
-
(2008)
Diabetes
, vol.57
, pp. 2728-2736
-
-
Lovis, P.1
Roggli, E.2
Laybutt, D.R.3
Gattesco, S.4
Yang, J.Y.5
Widmann, C.6
Abderrahmani, A.7
Regazzi, R.8
-
107
-
-
84887185268
-
Potential benefits of cell therapy in coronary heart disease
-
23834957
-
Grimaldi V, Mancini FP, Casamassimi A, Al-Omran M, Zullo A, Infante T, Napoli C. Potential benefits of cell therapy in coronary heart disease. J Cardiol 2013; 62:267-76; PMID:23834957; https://doi.org/10.1016/j.jjcc.2013.05.017
-
(2013)
J Cardiol
, vol.62
, pp. 267-276
-
-
Grimaldi, V.1
Mancini, F.P.2
Casamassimi, A.3
Al-Omran, M.4
Zullo, A.5
Infante, T.6
Napoli, C.7
-
108
-
-
1242296081
-
A new reality: achieving cholesterol-lowering goals in clinical practice
-
Gaw A. A new reality:achieving cholesterol-lowering goals in clinical practice. Atherosclerosis 2002; 2:S5-S8; https://doi.org/10.1016/S1567-5688(01)00018-6
-
(2002)
Atherosclerosis
, vol.2
, pp. S5-S8
-
-
Gaw, A.1
-
109
-
-
81055147192
-
Maternal-foetal epigenetic interactions in the beginning of cardiovascular damage
-
21764886
-
Napoli C, Infante T, Casamassimi A. Maternal-foetal epigenetic interactions in the beginning of cardiovascular damage. Cardiovasc Res 2011; 92:367-74; PMID:21764886; https://doi.org/10.1093/cvr/cvr201
-
(2011)
Cardiovasc Res
, vol.92
, pp. 367-374
-
-
Napoli, C.1
Infante, T.2
Casamassimi, A.3
-
110
-
-
61549114350
-
Statins control oxidized LDL-mediated histone modifications and gene expression in cultured human endothelial cells
-
19122173
-
Dje N'Guessan P, Riediger F, Vardarova K, Scharf S, Eitel J, Opitz B, Slevogt H, Weichert W, Hocke AC, Schmeck B, et al. Statins control oxidized LDL-mediated histone modifications and gene expression in cultured human endothelial cells. Arterioscler Thromb Vasc Biol 2009; 29:380-6; PMID:19122173; https://doi.org/10.1161/ATVBAHA.108.178319
-
(2009)
Arterioscler Thromb Vasc Biol
, vol.29
, pp. 380-386
-
-
Dje N'Guessan, P.1
Riediger, F.2
Vardarova, K.3
Scharf, S.4
Eitel, J.5
Opitz, B.6
Slevogt, H.7
Weichert, W.8
Hocke, A.C.9
Schmeck, B.10
-
111
-
-
84955193209
-
The diabetogenic action of statins - mechanisms and clinical implications
-
26668119
-
Betteridge DJ, Carmena R. The diabetogenic action of statins - mechanisms and clinical implications. Nat Rev Endocrinol 2016; 12:99-110; PMID:26668119; https://doi.org/10.1038/nrendo.2015.194
-
(2016)
Nat Rev Endocrinol
, vol.12
, pp. 99-110
-
-
Betteridge, D.J.1
Carmena, R.2
-
112
-
-
77549087054
-
Statins and risk of incident diabetes: a collaborative meta analysis of randomised statin trials
-
20167359
-
Sattar N, Preiss D, Murray HM, Welsh P, Buckley BM, de Craen AJ, Seshasai SR, McMurray JJ, Freeman DJ, Jukema JW, et al. Statins and risk of incident diabetes:a collaborative meta analysis of randomised statin trials. Lancet 2010; 375:735-42; PMID:20167359; https://doi.org/10.1016/S0140-6736(09)61965-6
-
(2010)
Lancet
, vol.375
, pp. 735-742
-
-
Sattar, N.1
Preiss, D.2
Murray, H.M.3
Welsh, P.4
Buckley, B.M.5
de Craen, A.J.6
Seshasai, S.R.7
McMurray, J.J.8
Freeman, D.J.9
Jukema, J.W.10
-
113
-
-
49249134599
-
Statins restore ischemic limb blood flow in diabetic microangiopathy via eNOS/NO upregulation but not via PDGF-BB expression
-
18441206
-
Fujii T, Onimaru M, Yonemitsu Y, Kuwano H, Sueishi K. Statins restore ischemic limb blood flow in diabetic microangiopathy via eNOS/NO upregulation but not via PDGF-BB expression. Am J Physiol Heart Circ Physiol 2008; 294:H2785-H2791; PMID:18441206; https://doi.org/10.1152/ajpheart.00149.2008
-
(2008)
Am J Physiol Heart Circ Physiol
, vol.294
, pp. H2785-H2791
-
-
Fujii, T.1
Onimaru, M.2
Yonemitsu, Y.3
Kuwano, H.4
Sueishi, K.5
-
114
-
-
84877810900
-
Evolution of exenatide as a diabetes therapeutic
-
23256660
-
Bhavsar S, Mudaliar S, Cherrington A. Evolution of exenatide as a diabetes therapeutic. Curr Diabetes Rev 2013; 9:161-93; PMID:23256660; https://doi.org/0.2174/1573399811309020007
-
(2013)
Curr Diabetes Rev
, vol.9
, pp. 161-193
-
-
Bhavsar, S.1
Mudaliar, S.2
Cherrington, A.3
-
115
-
-
84957657688
-
Exendin-4 promotes extracellular-superoxide dismutase expression in A549 cells through DNA demethylation
-
26798195
-
Yasuda H, Mizukami K, Hayashi M, Kamiya T, Hara H, Adachi T. Exendin-4 promotes extracellular-superoxide dismutase expression in A549 cells through DNA demethylation. J Clin Biochem Nutr 2016; 58:34-9; PMID:26798195; https://doi.org/10.3164/jcbn.15-16
-
(2016)
J Clin Biochem Nutr
, vol.58
, pp. 34-39
-
-
Yasuda, H.1
Mizukami, K.2
Hayashi, M.3
Kamiya, T.4
Hara, H.5
Adachi, T.6
|