-
1
-
-
84874194072
-
DNA methylation: roles in mammalian development
-
Smith Z.D., Meissner A. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 2013, 14:204-220. 10.1038/nrg3354.
-
(2013)
Nat. Rev. Genet.
, vol.14
, pp. 204-220
-
-
Smith, Z.D.1
Meissner, A.2
-
2
-
-
0026708177
-
Targeted mutation of the DNA methyltransferase gene results in embryonic lethality
-
Li E., Bestor T.H., Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992, 69:915-926.
-
(1992)
Cell
, vol.69
, pp. 915-926
-
-
Li, E.1
Bestor, T.H.2
Jaenisch, R.3
-
3
-
-
0033615717
-
DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development
-
Okano M., Bell D.W., Haber D.A., Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999, 99:247-257.
-
(1999)
Cell
, vol.99
, pp. 247-257
-
-
Okano, M.1
Bell, D.W.2
Haber, D.A.3
Li, E.4
-
4
-
-
0036274359
-
The fundamental role of epigenetic events in cancer
-
Jones P.A., Baylin S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 2002, 3:415-428. 10.1038/nrg816.
-
(2002)
Nat. Rev. Genet.
, vol.3
, pp. 415-428
-
-
Jones, P.A.1
Baylin, S.B.2
-
5
-
-
0033166375
-
Principal causes of hot spots for cytosine to thymine mutations at sites of cytosine methylation in growing cells. A model, its experimental support and implications
-
Lutsenko E., Bhagwat A.S. Principal causes of hot spots for cytosine to thymine mutations at sites of cytosine methylation in growing cells. A model, its experimental support and implications. Mutat. Res. 1999, 437:11-20.
-
(1999)
Mutat. Res.
, vol.437
, pp. 11-20
-
-
Lutsenko, E.1
Bhagwat, A.S.2
-
6
-
-
0023853921
-
The CpG dinucleotide and human genetic disease
-
Cooper D.N., Youssoufian H. The CpG dinucleotide and human genetic disease. Hum. Genet. 1988, 78:151-155. 10.1007/BF00278187.
-
(1988)
Hum. Genet.
, vol.78
, pp. 151-155
-
-
Cooper, D.N.1
Youssoufian, H.2
-
7
-
-
79956330964
-
CpG islands and the regulation of transcription
-
Deaton A.M., Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011, 25:1010-1022. 10.1101/gad.2037511.
-
(2011)
Genes Dev.
, vol.25
, pp. 1010-1022
-
-
Deaton, A.M.1
Bird, A.2
-
8
-
-
84892763878
-
Reversing DNA methylation: mechanisms, genomics, and biological functions
-
Wu H., Zhang Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 2014, 156:45-68. 10.1016/j.cell.2013.12.019.
-
(2014)
Cell
, vol.156
, pp. 45-68
-
-
Wu, H.1
Zhang, Y.2
-
9
-
-
84873570094
-
Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice
-
Kagiwada S., Kurimoto K., Hirota T., Yamaji M., Saitou M. Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice. EMBO J. 2013, 32:340-353. 10.1038/emboj.2012.331.
-
(2013)
EMBO J.
, vol.32
, pp. 340-353
-
-
Kagiwada, S.1
Kurimoto, K.2
Hirota, T.3
Yamaji, M.4
Saitou, M.5
-
10
-
-
66149146320
-
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
-
Tahiliani M., Koh K.P., Shen Y., Pastor W.A., Bandukwala H., Brudno Y., et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324:930-935. 10.1126/science.1170116.
-
(2009)
Science
, vol.324
, pp. 930-935
-
-
Tahiliani, M.1
Koh, K.P.2
Shen, Y.3
Pastor, W.A.4
Bandukwala, H.5
Brudno, Y.6
-
11
-
-
66149123748
-
The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain
-
Kriaucionis S., Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 2009, 324:929-930. 10.1126/science.1169786.
-
(2009)
Science
, vol.324
, pp. 929-930
-
-
Kriaucionis, S.1
Heintz, N.2
-
12
-
-
77956189495
-
Role of tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification
-
Ito S., D'Alessio A.C., Taranova O.V., Hong K., Sowers L.C., Zhang Y. Role of tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010, 466:1129-1133. 10.1038/nature09303.
-
(2010)
Nature
, vol.466
, pp. 1129-1133
-
-
Ito, S.1
D'Alessio, A.C.2
Taranova, O.V.3
Hong, K.4
Sowers, L.C.5
Zhang, Y.6
-
13
-
-
0015298215
-
The presence of 5-hydroxymethylcytosine in animal deoxyribonucleic acid
-
Penn N.W., Suwalski R., O'Riley C., Bojanowski K., Yura R. The presence of 5-hydroxymethylcytosine in animal deoxyribonucleic acid. Biochem. J. 1972, 126:781-790.
-
(1972)
Biochem. J.
, vol.126
, pp. 781-790
-
-
Penn, N.W.1
Suwalski, R.2
O'Riley, C.3
Bojanowski, K.4
Yura, R.5
-
14
-
-
80052495940
-
Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
-
He Y.-F., Li B.-Z., Li Z., Liu P., Wang Y., Tang Q., et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011, 333:1303-1307. 10.1126/science.1210944.
-
(2011)
Science
, vol.333
, pp. 1303-1307
-
-
He, Y.-F.1
Li, B.-Z.2
Li, Z.3
Liu, P.4
Wang, Y.5
Tang, Q.6
-
15
-
-
80052461558
-
Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
-
Ito S., Shen L., Dai Q., Wu S.C., Collins L.B., Swenberg J.A., et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011, 333:1300-1303. 10.1126/science.1210597.
-
(2011)
Science
, vol.333
, pp. 1300-1303
-
-
Ito, S.1
Shen, L.2
Dai, Q.3
Wu, S.C.4
Collins, L.B.5
Swenberg, J.A.6
-
16
-
-
80053917872
-
Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites
-
Maiti A., Drohat A.C. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J. Biol. Chem. 2011, 286:35334-35338. 10.1074/jbc.C111.284620.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 35334-35338
-
-
Maiti, A.1
Drohat, A.C.2
-
17
-
-
84876946045
-
Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics
-
Shen L., Wu H., Diep D., Yamaguchi S., D'Alessio A.C., Fung H.-L., et al. Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 2013, 153:692-706. 10.1016/j.cell.2013.04.002.
-
(2013)
Cell
, vol.153
, pp. 692-706
-
-
Shen, L.1
Wu, H.2
Diep, D.3
Yamaguchi, S.4
D'Alessio, A.C.5
Fung, H.-L.6
-
18
-
-
79955948324
-
Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells
-
Xu Y., Wu F., Tan L., Kong L., Xiong L., Deng J., et al. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol. Cell 2011, 42:451-464. 10.1016/j.molcel.2011.04.005.
-
(2011)
Mol. Cell
, vol.42
, pp. 451-464
-
-
Xu, Y.1
Wu, F.2
Tan, L.3
Kong, L.4
Xiong, L.5
Deng, J.6
-
19
-
-
79956302047
-
TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity
-
Williams K., Christensen J., Pedersen M.T., Johansen J.V., Cloos P.A.C., Rappsilber J., et al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 2011, 473:343-348. 10.1038/nature10066.
-
(2011)
Nature
, vol.473
, pp. 343-348
-
-
Williams, K.1
Christensen, J.2
Pedersen, M.T.3
Johansen, J.V.4
Cloos, P.A.C.5
Rappsilber, J.6
-
20
-
-
79956292024
-
Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells
-
Wu H., D'Alessio A.C., Ito S., Xia K., Wang Z., Cui K., et al. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 2011, 473:389-393. 10.1038/nature09934.
-
(2011)
Nature
, vol.473
, pp. 389-393
-
-
Wu, H.1
D'Alessio, A.C.2
Ito, S.3
Xia, K.4
Wang, Z.5
Cui, K.6
-
21
-
-
84876907152
-
Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming
-
Song C.-X., Szulwach K.E., Dai Q., Fu Y., Mao S.-Q., Lin L., et al. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 2013, 153:678-691. 10.1016/j.cell.2013.04.001.
-
(2013)
Cell
, vol.153
, pp. 678-691
-
-
Song, C.-X.1
Szulwach, K.E.2
Dai, Q.3
Fu, Y.4
Mao, S.-Q.5
Lin, L.6
-
22
-
-
78650826181
-
Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates
-
Globisch D., Münzel M., Müller M., Michalakis S., Wagner M., Koch S., et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 2010, 5:e15367. 10.1371/journal.pone.0015367.
-
(2010)
PLoS One
, vol.5
, pp. e15367
-
-
Globisch, D.1
Münzel, M.2
Müller, M.3
Michalakis, S.4
Wagner, M.5
Koch, S.6
-
23
-
-
84874771985
-
Dynamic readers for 5-(hydroxy) methylcytosine and its oxidized derivatives
-
Spruijt C.G., Gnerlich F., Smits A.H., Pfaffeneder T., Jansen P.W.T.C., Bauer C., et al. Dynamic readers for 5-(hydroxy) methylcytosine and its oxidized derivatives. Cell 2013, 152:1146-1159. 10.1016/j.cell.2013.02.004.
-
(2013)
Cell
, vol.152
, pp. 1146-1159
-
-
Spruijt, C.G.1
Gnerlich, F.2
Smits, A.H.3
Pfaffeneder, T.4
Jansen, P.W.T.C.5
Bauer, C.6
-
24
-
-
0037099537
-
LCX leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11) (q22;q23)
-
Ono R., Taki T., Taketani T., Taniwaki M., Kobayashi H., Hayashi Y. LCX leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11) (q22;q23). Cancer Res. 2002, 62:4075-4080.
-
(2002)
Cancer Res.
, vol.62
, pp. 4075-4080
-
-
Ono, R.1
Taki, T.2
Taketani, T.3
Taniwaki, M.4
Kobayashi, H.5
Hayashi, Y.6
-
25
-
-
67651065502
-
Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies
-
Abdel-Wahab O., Mullally A., Hedvat C., Garcia-Manero G., Patel J., Wadleigh M., et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 2009, 114:114-147. 10.1182/blood-2009-03-210039.
-
(2009)
Blood
, vol.114
, pp. 114-147
-
-
Abdel-Wahab, O.1
Mullally, A.2
Hedvat, C.3
Garcia-Manero, G.4
Patel, J.5
Wadleigh, M.6
-
26
-
-
78650175023
-
Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2
-
Ko M., Huang Y., Jankowska A.M., Pape U.J., Tahiliani M., Bandukwala H.S., et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 2010, 468:839-843. 10.1038/nature09586.
-
(2010)
Nature
, vol.468
, pp. 839-843
-
-
Ko, M.1
Huang, Y.2
Jankowska, A.M.3
Pape, U.J.4
Tahiliani, M.5
Bandukwala, H.S.6
-
27
-
-
84866419591
-
Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma
-
Lian C.G., Xu Y., Ceol C., Wu F., Larson A., Dresser K. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 2012, 150:1135-1146.
-
(2012)
Cell
, vol.150
, pp. 1135-1146
-
-
Lian, C.G.1
Xu, Y.2
Ceol, C.3
Wu, F.4
Larson, A.5
Dresser, K.6
-
28
-
-
84873411803
-
Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation
-
Yang H., Liu Y., Bai F., Zhang J.-Y., Ma S.-H., Liu J., et al. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene 2013, 32:663-669. 10.1038/onc.2012.67.
-
(2013)
Oncogene
, vol.32
, pp. 663-669
-
-
Yang, H.1
Liu, Y.2
Bai, F.3
Zhang, J.-Y.4
Ma, S.-H.5
Liu, J.6
-
29
-
-
84863393235
-
Loss of 5-hydroxymethylcytosine is accompanied with malignant cellular transformation
-
Kudo Y., Tateishi K., Yamamoto K., Yamamoto S., Asaoka Y., Ijichi H., et al. Loss of 5-hydroxymethylcytosine is accompanied with malignant cellular transformation. Cancer Sci. 2012, 103:670-676. 10.1111/j.1349-7006.2012.02213.x.
-
(2012)
Cancer Sci.
, vol.103
, pp. 670-676
-
-
Kudo, Y.1
Tateishi, K.2
Yamamoto, K.3
Yamamoto, S.4
Asaoka, Y.5
Ijichi, H.6
-
30
-
-
84904431235
-
Cellular levels of 8-oxoguanine in either DNA or the nucleotide pool play pivotal roles in carcinogenesis and survival of cancer cells
-
Nakabeppu Y. Cellular levels of 8-oxoguanine in either DNA or the nucleotide pool play pivotal roles in carcinogenesis and survival of cancer cells. Int. J. Mol. Sci. 2014, 15:12543-12557. 10.3390/ijms150712543.
-
(2014)
Int. J. Mol. Sci.
, vol.15
, pp. 12543-12557
-
-
Nakabeppu, Y.1
-
31
-
-
0037470158
-
Effects of endogenous DNA base lesions on transcription elongation by mammalian RNA polymerase II. Implications for transcription-coupled DNA repair and transcriptional mutagenesis
-
Kuraoka I., Endou M., Yamaguchi Y., Wada T., Handa H., Tanaka K. Effects of endogenous DNA base lesions on transcription elongation by mammalian RNA polymerase II. Implications for transcription-coupled DNA repair and transcriptional mutagenesis. J. Biol. Chem. 2003, 278:7294-7299. 10.1074/jbc.M208102200.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 7294-7299
-
-
Kuraoka, I.1
Endou, M.2
Yamaguchi, Y.3
Wada, T.4
Handa, H.5
Tanaka, K.6
-
32
-
-
0037076519
-
Translesion synthesis by human DNA polymerase eta across thymine glycol lesions
-
Kusumoto R., Masutani C., Iwai S., Hanaoka F. Translesion synthesis by human DNA polymerase eta across thymine glycol lesions. Biochemistry 2002, 41:6090-6099.
-
(2002)
Biochemistry
, vol.41
, pp. 6090-6099
-
-
Kusumoto, R.1
Masutani, C.2
Iwai, S.3
Hanaoka, F.4
-
33
-
-
0033571236
-
Formation of 5-formyl-2-deoxycytidine from 5-methyl-2-deoxycytidine in duplex DNA by Fenton-type reactions and gamma-irradiation
-
Murata-Kamiya N., Kamiya H., Karino N., Ueno Y., Kaji H., Matsuda A., et al. Formation of 5-formyl-2-deoxycytidine from 5-methyl-2-deoxycytidine in duplex DNA by Fenton-type reactions and gamma-irradiation. Nucleic Acids Res. 1999, 27:4385-4390.
-
(1999)
Nucleic Acids Res.
, vol.27
, pp. 4385-4390
-
-
Murata-Kamiya, N.1
Kamiya, H.2
Karino, N.3
Ueno, Y.4
Kaji, H.5
Matsuda, A.6
-
34
-
-
84880554318
-
Quantitative assessment of tet-induced oxidation products of 5-methylcytosine in cellular and tissue DNA
-
Liu S., Wang J., Su Y., Guerrero C., Zeng Y., Mitra D., et al. Quantitative assessment of tet-induced oxidation products of 5-methylcytosine in cellular and tissue DNA. Nucleic Acids Res. 2013, 41:6421-6429. 10.1093/nar/gkt360.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 6421-6429
-
-
Liu, S.1
Wang, J.2
Su, Y.3
Guerrero, C.4
Zeng, Y.5
Mitra, D.6
-
35
-
-
82455192844
-
Improved synthesis and mutagenicity of oligonucleotides containing 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine
-
Münzel M., Lischke U., Stathis D., Pfaffeneder T., Gnerlich F.A., Deiml C.A., et al. Improved synthesis and mutagenicity of oligonucleotides containing 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine. Chemistry 2011, 17:13782-13788. 10.1002/chem.201102782.
-
(2011)
Chemistry
, vol.17
, pp. 13782-13788
-
-
Münzel, M.1
Lischke, U.2
Stathis, D.3
Pfaffeneder, T.4
Gnerlich, F.A.5
Deiml, C.A.6
-
36
-
-
0036773784
-
Mutagenicity of 5-formylcytosine an oxidation product of 5-methylcytosine, in DNA in mammalian cells
-
Kamiya H., Tsuchiya H., Karino N., Ueno Y., Matsuda A., Harashima H. Mutagenicity of 5-formylcytosine an oxidation product of 5-methylcytosine, in DNA in mammalian cells. J. Biochem. 2002, 132:551-555.
-
(2002)
J. Biochem.
, vol.132
, pp. 551-555
-
-
Kamiya, H.1
Tsuchiya, H.2
Karino, N.3
Ueno, Y.4
Matsuda, A.5
Harashima, H.6
-
37
-
-
84922598841
-
5-Formylcytosine alters the structure of the DNA double helix
-
Raiber E.-A., Murat P., Chirgadze D.Y., Beraldi D., Luisi B.F., Balasubramanian S. 5-Formylcytosine alters the structure of the DNA double helix. Nat. Struct. Mol. Biol. 2014, 10.1038/nsmb.2936.
-
(2014)
Nat. Struct. Mol. Biol.
-
-
Raiber, E.-A.1
Murat, P.2
Chirgadze, D.Y.3
Beraldi, D.4
Luisi, B.F.5
Balasubramanian, S.6
-
38
-
-
84864722177
-
5-Formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity of RNA polymerase II transcription
-
Kellinger M.W., Song C.-X., Chong J., Lu X.-Y., He C., Wang D. 5-Formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity of RNA polymerase II transcription. Nat. Struct. Mol. Biol. 2012, 19:831-833. 10.1038/nsmb.2346.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 831-833
-
-
Kellinger, M.W.1
Song, C.-X.2
Chong, J.3
Lu, X.-Y.4
He, C.5
Wang, D.6
-
39
-
-
84869044795
-
Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the thymine DNA glycosylase domain: its structural basis and implications for active DNA demethylation
-
Hashimoto H., Hong S., Bhagwat A.S., Zhang X., Cheng X. Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the thymine DNA glycosylase domain: its structural basis and implications for active DNA demethylation. Nucleic Acids Res. 2012, 40:10203-10214. 10.1093/nar/gks845.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 10203-10214
-
-
Hashimoto, H.1
Hong, S.2
Bhagwat, A.S.3
Zhang, X.4
Cheng, X.5
-
40
-
-
0027383758
-
The purification of a mismatch-specific thymine-DNA glycosylase from HeLa cells
-
Neddermann P., Jiricny J. The purification of a mismatch-specific thymine-DNA glycosylase from HeLa cells. J. Biol. Chem. 1993, 268:21218-21224.
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 21218-21224
-
-
Neddermann, P.1
Jiricny, J.2
-
41
-
-
0028201737
-
Efficient removal of uracil from G.U. mispairs by the mismatch-specific thymine DNA glycosylase from HeLa cells
-
Neddermann P., Jiricny J. Efficient removal of uracil from G.U. mispairs by the mismatch-specific thymine DNA glycosylase from HeLa cells. Proc. Natl. Acad. Sci. U. S. A. 1994, 91:1642-1646.
-
(1994)
Proc. Natl. Acad. Sci. U. S. A.
, vol.91
, pp. 1642-1646
-
-
Neddermann, P.1
Jiricny, J.2
-
42
-
-
84862776719
-
Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA
-
Zhang L., Lu X., Lu J., Liang H., Dai Q., Xu G.-L., et al. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat. Chem. Biol. 2012, 8:328-330. 10.1038/nchembio.914.
-
(2012)
Nat. Chem. Biol.
, vol.8
, pp. 328-330
-
-
Zhang, L.1
Lu, X.2
Lu, J.3
Liang, H.4
Dai, Q.5
Xu, G.-L.6
-
43
-
-
79951810964
-
Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability
-
Cortázar D., Kunz C., Selfridge J., Lettieri T., Saito Y., MacDougall E., et al. Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature 2011, 470:419-423. 10.1038/nature09672.
-
(2011)
Nature
, vol.470
, pp. 419-423
-
-
Cortázar, D.1
Kunz, C.2
Selfridge, J.3
Lettieri, T.4
Saito, Y.5
MacDougall, E.6
-
44
-
-
79959937861
-
Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair
-
Cortellino S., Xu J., Sannai M., Moore R., Caretti E., Cigliano A., et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 2011, 146:67-79. 10.1016/j.cell.2011.06.020.
-
(2011)
Cell
, vol.146
, pp. 67-79
-
-
Cortellino, S.1
Xu, J.2
Sannai, M.3
Moore, R.4
Caretti, E.5
Cigliano, A.6
-
45
-
-
0037135130
-
Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice
-
Millar C.B., Guy J., Sansom O.J., Selfridge J., MacDougall E., Hendrich B., et al. Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice. Science 2002, 297:403-405. 10.1126/science.1073354.
-
(2002)
Science
, vol.297
, pp. 403-405
-
-
Millar, C.B.1
Guy, J.2
Sansom, O.J.3
Selfridge, J.4
MacDougall, E.5
Hendrich, B.6
-
46
-
-
84864452214
-
Germline ablation of SMUG1 DNA glycosylase causes loss of 5-hydroxymethyluracil- and UNG-backup uracil-excision activities and increases cancer predisposition of Ung-/-Msh2-/- mice
-
Kemmerich K., Dingler F.A., Rada C., Neuberger M.S. Germline ablation of SMUG1 DNA glycosylase causes loss of 5-hydroxymethyluracil- and UNG-backup uracil-excision activities and increases cancer predisposition of Ung-/-Msh2-/- mice. Nucleic Acids Res. 2012, 40:6016-6025. 10.1093/nar/gks259.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 6016-6025
-
-
Kemmerich, K.1
Dingler, F.A.2
Rada, C.3
Neuberger, M.S.4
-
47
-
-
84905582980
-
TET-mediated oxidation of methylcytosine causes TDG or NEIL glycosylase dependent gene reactivation
-
Müller U., Bauer C., Siegl M., Rottach A., Leonhardt H. TET-mediated oxidation of methylcytosine causes TDG or NEIL glycosylase dependent gene reactivation. Nucleic Acids Res. 2014, 42:8592-8604. 10.1093/nar/gku552.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 8592-8604
-
-
Müller, U.1
Bauer, C.2
Siegl, M.3
Rottach, A.4
Leonhardt, H.5
-
48
-
-
0037162995
-
Identification and characterization of a novel human DNA glycosylase for repair of cytosine-derived lesions
-
Hazra T.K., Kow Y.W., Hatahet Z., Imhoff B., Boldogh I., Mokkapati S.K., et al. Identification and characterization of a novel human DNA glycosylase for repair of cytosine-derived lesions. J. Biol. Chem. 2002, 277:30417-30420. 10.1074/jbc.C200355200.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 30417-30420
-
-
Hazra, T.K.1
Kow, Y.W.2
Hatahet, Z.3
Imhoff, B.4
Boldogh, I.5
Mokkapati, S.K.6
-
49
-
-
84888129884
-
Human NEIL3 is mainly a monofunctional DNA glycosylase removing spiroimindiohydantoin and guanidinohydantoin
-
Krokeide S.Z., Laerdahl J.K., Salah M., Luna L., Cederkvist F.H., Fleming A.M., et al. Human NEIL3 is mainly a monofunctional DNA glycosylase removing spiroimindiohydantoin and guanidinohydantoin. DNA Repair (Amst.) 2013, 12:1159-1164. 10.1016/j.dnarep.2013.04.026.
-
(2013)
DNA Repair (Amst.)
, vol.12
, pp. 1159-1164
-
-
Krokeide, S.Z.1
Laerdahl, J.K.2
Salah, M.3
Luna, L.4
Cederkvist, F.H.5
Fleming, A.M.6
-
50
-
-
0032951710
-
Human thymine DNA glycosylase binds to apurinic sites in DNA but is displaced by human apurinic endonuclease 1
-
Waters T.R., Gallinari P., Jiricny J., Swann P.F. Human thymine DNA glycosylase binds to apurinic sites in DNA but is displaced by human apurinic endonuclease 1. J. Biol. Chem. 1999, 274:67-74.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 67-74
-
-
Waters, T.R.1
Gallinari, P.2
Jiricny, J.3
Swann, P.F.4
-
51
-
-
0037413689
-
Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase
-
Shimizu Y. Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase. EMBO J. 2003, 22:164-173. 10.1093/emboj/cdg016.
-
(2003)
EMBO J.
, vol.22
, pp. 164-173
-
-
Shimizu, Y.1
-
52
-
-
84902153677
-
Guanine-5-carboxylcytosine base pairs mimic mismatches during DNA replication
-
Shibutani T., Ito S., Toda M., Kanao R., Collins L.B., Shibata M., et al. Guanine-5-carboxylcytosine base pairs mimic mismatches during DNA replication. Sci. Rep. 2014, 4. 10.1038/srep05220.
-
(2014)
Sci. Rep.
, vol.4
-
-
Shibutani, T.1
Ito, S.2
Toda, M.3
Kanao, R.4
Collins, L.B.5
Shibata, M.6
-
53
-
-
0029007870
-
DNA mismatch binding defects, DNA damage tolerance, and mutator phenotypes in human colorectal carcinoma cell lines
-
Branch P., Hampson R., Karran P. DNA mismatch binding defects, DNA damage tolerance, and mutator phenotypes in human colorectal carcinoma cell lines. Cancer Res. 1995, 55:2304-2309.
-
(1995)
Cancer Res.
, vol.55
, pp. 2304-2309
-
-
Branch, P.1
Hampson, R.2
Karran, P.3
-
54
-
-
0030294633
-
Drug-related killings: a case of mistaken identity
-
Karran P., Bignami M. Drug-related killings: a case of mistaken identity. Chem. Biol. 1996, 3:875-879.
-
(1996)
Chem. Biol.
, vol.3
, pp. 875-879
-
-
Karran, P.1
Bignami, M.2
-
55
-
-
84862681459
-
Mechanism and stem-cell activity of 5-carboxycytosine decarboxylation determined by isotope tracing
-
Schiesser S., Hackner B., Pfaffeneder T., Müller M., Hagemeier C., Truss M., et al. Mechanism and stem-cell activity of 5-carboxycytosine decarboxylation determined by isotope tracing. Angew. Chem. Int. Ed. Engl. 2012, 51:6516-6520. 10.1002/anie.201202583.
-
(2012)
Angew. Chem. Int. Ed. Engl.
, vol.51
, pp. 6516-6520
-
-
Schiesser, S.1
Hackner, B.2
Pfaffeneder, T.3
Müller, M.4
Hagemeier, C.5
Truss, M.6
-
56
-
-
82655187105
-
Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development
-
Inoue A., Shen L., Dai Q., He C., Zhang Y. Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Cell Res. 2011, 21:1670-1676. 10.1038/cr.2011.189.
-
(2011)
Cell Res.
, vol.21
, pp. 1670-1676
-
-
Inoue, A.1
Shen, L.2
Dai, Q.3
He, C.4
Zhang, Y.5
-
57
-
-
77954345408
-
Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway
-
Hajkova P., Jeffries S.J., Lee C., Miller N., Jackson S.P., Surani M.A. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 2010, 329:78-82. 10.1126/science.1187945.
-
(2010)
Science
, vol.329
, pp. 78-82
-
-
Hajkova, P.1
Jeffries, S.J.2
Lee, C.3
Miller, N.4
Jackson, S.P.5
Surani, M.A.6
-
59
-
-
0026443296
-
Methylation, mutation and cancer
-
Jones P.A., Rideout W.M., Shen J.C., Spruck C.H., Tsai Y.C. Methylation, mutation and cancer. BioEssays 1992, 14:33-36. 10.1002/bies.950140107.
-
(1992)
BioEssays
, vol.14
, pp. 33-36
-
-
Jones, P.A.1
Rideout, W.M.2
Shen, J.C.3
Spruck, C.H.4
Tsai, Y.C.5
-
60
-
-
10644282845
-
Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming
-
Morgan H.D., Dean W., Coker H.A., Reik W., Petersen-Mahrt S.K. Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J. Biol. Chem. 2004, 279:52353-52360. 10.1074/jbc.M407695200.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 52353-52360
-
-
Morgan, H.D.1
Dean, W.2
Coker, H.A.3
Reik, W.4
Petersen-Mahrt, S.K.5
-
61
-
-
84865329141
-
AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation
-
Nabel C.S., Jia H., Ye Y., Shen L., Goldschmidt H.L., Stivers J.T., et al. AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation. Nat. Chem. Biol. 2012, 8:751-758. 10.1038/nchembio.1042.
-
(2012)
Nat. Chem. Biol.
, vol.8
, pp. 751-758
-
-
Nabel, C.S.1
Jia, H.2
Ye, Y.3
Shen, L.4
Goldschmidt, H.L.5
Stivers, J.T.6
|