-
1
-
-
84895125306
-
The pathogenesis of cardiac fibrosis
-
[1] Kong, P., Christia, P., Frangogiannis, N.G., The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 71 (2014), 549–574.
-
(2014)
Cell Mol Life Sci
, vol.71
, pp. 549-574
-
-
Kong, P.1
Christia, P.2
Frangogiannis, N.G.3
-
2
-
-
84873344021
-
Cellular mechanisms of tissue fibrosis. Common and organ-specific mechanisms associated with tissue fibrosis
-
[2] Zeisberg, M., Kalluri, R., Cellular mechanisms of tissue fibrosis. Common and organ-specific mechanisms associated with tissue fibrosis. Am J Physiol Cell Physiol 304 (2013), C216–C225.
-
(2013)
Am J Physiol Cell Physiol
, vol.304
, pp. C216-C225
-
-
Zeisberg, M.1
Kalluri, R.2
-
3
-
-
84959212256
-
Epigenetic regulation of cardiac fibrosis
-
[3] Stratton, M.S., McKinsey, T.A., Epigenetic regulation of cardiac fibrosis. J Mol Cell Cardiol 92 (2016), 206–213.
-
(2016)
J Mol Cell Cardiol
, vol.92
, pp. 206-213
-
-
Stratton, M.S.1
McKinsey, T.A.2
-
4
-
-
84973324576
-
Novel epigenetic-based therapies useful in cardiovascular medicine
-
[4] Napoli, C., Grimaldi, V., De Pascale, M.R., Sommese, L., Infante, T., Soricelli, A., Novel epigenetic-based therapies useful in cardiovascular medicine. World J Cardiol 8 (2016), 211–219.
-
(2016)
World J Cardiol
, vol.8
, pp. 211-219
-
-
Napoli, C.1
Grimaldi, V.2
De Pascale, M.R.3
Sommese, L.4
Infante, T.5
Soricelli, A.6
-
5
-
-
84940005171
-
Epigenetic-related therapeutic challenges in cardiovascular disease
-
[5] Schiano, C., Vietri, M.T., Grimaldi, V., Picascia, A., Pascale, M.R., Napoli, C., Epigenetic-related therapeutic challenges in cardiovascular disease. Trends Pharmacol Sci 36 (2015), 226–235.
-
(2015)
Trends Pharmacol Sci
, vol.36
, pp. 226-235
-
-
Schiano, C.1
Vietri, M.T.2
Grimaldi, V.3
Picascia, A.4
Pascale, M.R.5
Napoli, C.6
-
6
-
-
84949092787
-
Linking genes to cardiovascular diseases: gene action and gene–environment interactions
-
[6] Pasipoularides, A., Linking genes to cardiovascular diseases: gene action and gene–environment interactions. J Cardiovasc Transl Res 8 (2015), 506–527.
-
(2015)
J Cardiovasc Transl Res
, vol.8
, pp. 506-527
-
-
Pasipoularides, A.1
-
7
-
-
84947426318
-
Impact of maternal diet on the epigenome during in utero life and the developmental programming of diseases in childhood and adulthood
-
[7] Lee, H.S., Impact of maternal diet on the epigenome during in utero life and the developmental programming of diseases in childhood and adulthood. Nutrients 7 (2015), 9492–9507.
-
(2015)
Nutrients
, vol.7
, pp. 9492-9507
-
-
Lee, H.S.1
-
8
-
-
84971615204
-
Epigenetic regulation in cardiac fibrosis
-
[8] Yu, L.M., Xu, Y., Epigenetic regulation in cardiac fibrosis. World J Cardiol 7 (2015), 784–791.
-
(2015)
World J Cardiol
, vol.7
, pp. 784-791
-
-
Yu, L.M.1
Xu, Y.2
-
9
-
-
84908053819
-
Obesity, metabolic dysfunction, and cardiac fibrosis: pathophysiological pathways, molecular mechanisms, and therapeutic opportunities
-
[9] Cavalera, M., Wang, J., Frangogiannis, N.G., Obesity, metabolic dysfunction, and cardiac fibrosis: pathophysiological pathways, molecular mechanisms, and therapeutic opportunities. Transl Res 164 (2014), 323–335.
-
(2014)
Transl Res
, vol.164
, pp. 323-335
-
-
Cavalera, M.1
Wang, J.2
Frangogiannis, N.G.3
-
10
-
-
85016378667
-
Reduction of c-kit positive cardiac stem cells in patients with atrial fibrillation
-
[Epub ahead of print]
-
[10] Shinohara, D., Matsushita, S., Yamamoto, T., Inaba, H., Kuwaki, K., Shimada, A., Amano, A., Reduction of c-kit positive cardiac stem cells in patients with atrial fibrillation. J Cardiol, 2016 [Epub ahead of print].
-
(2016)
J Cardiol
-
-
Shinohara, D.1
Matsushita, S.2
Yamamoto, T.3
Inaba, H.4
Kuwaki, K.5
Shimada, A.6
Amano, A.7
-
11
-
-
84958559113
-
Revisiting cardiac cellular composition
-
[11] Pinto, A.R., Ilinykh, A., Ivey, M.J., Kuwabara, J.T., D'Antoni, M.L., Debuque, R., Chandraker, A., Wang, L., Arora, K., Rosenthal, N.A., Tallquist, M.D., Revisiting cardiac cellular composition. Circ Res 118 (2016), 400–409.
-
(2016)
Circ Res
, vol.118
, pp. 400-409
-
-
Pinto, A.R.1
Ilinykh, A.2
Ivey, M.J.3
Kuwabara, J.T.4
D'Antoni, M.L.5
Debuque, R.6
Chandraker, A.7
Wang, L.8
Arora, K.9
Rosenthal, N.A.10
Tallquist, M.D.11
-
12
-
-
84961778300
-
Cardiac fibrosis: the fibroblast awakens
-
[12] Travers, J.G., Kamal, F.A., Robbins, J., Yutzey, K.E., Blaxall, B.C., Cardiac fibrosis: the fibroblast awakens. Circ Res 118 (2016), 1021–1040.
-
(2016)
Circ Res
, vol.118
, pp. 1021-1040
-
-
Travers, J.G.1
Kamal, F.A.2
Robbins, J.3
Yutzey, K.E.4
Blaxall, B.C.5
-
13
-
-
73349122017
-
Cardiac fibroblast: the renaissance cell
-
[13] Souders, C.A., Bowers, S.L., Baudino, T.A., Cardiac fibroblast: the renaissance cell. Circ Res 105 (2009), 1164–1176.
-
(2009)
Circ Res
, vol.105
, pp. 1164-1176
-
-
Souders, C.A.1
Bowers, S.L.2
Baudino, T.A.3
-
14
-
-
84884467594
-
Melatonin-induced augmentation of collagen deposition in cultures of fibroblasts and myofibroblasts is blocked by luzindole – a melatonin membrane receptors inhibitor
-
[14] Drobnik, J., Owczarek, K., Piera, L., Tosik, D., Olczak, S., Ciosek, J., Hrabec, E., Melatonin-induced augmentation of collagen deposition in cultures of fibroblasts and myofibroblasts is blocked by luzindole – a melatonin membrane receptors inhibitor. Pharmacol Rep 65 (2013), 642–649.
-
(2013)
Pharmacol Rep
, vol.65
, pp. 642-649
-
-
Drobnik, J.1
Owczarek, K.2
Piera, L.3
Tosik, D.4
Olczak, S.5
Ciosek, J.6
Hrabec, E.7
-
15
-
-
84859073207
-
Recent developments in myofibroblast biology: paradigms for connective tissue remodeling
-
[15] Hinz, B., Phan, S.H., Thannickal, V.J., Prunotto, M., Desmoulière, A., Varga, J., De Wever, O., Mareel, M., Gabbiani, G., Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol 180 (2012), 1340–1355.
-
(2012)
Am J Pathol
, vol.180
, pp. 1340-1355
-
-
Hinz, B.1
Phan, S.H.2
Thannickal, V.J.3
Prunotto, M.4
Desmoulière, A.5
Varga, J.6
De Wever, O.7
Mareel, M.8
Gabbiani, G.9
-
16
-
-
34547676391
-
Endothelial-to-mesenchymal transition contributes to cardiac fibrosis
-
[16] Zeisberg, E.M., Tarnavski, O., Zeisberg, M., Dorfman, A.L., McMullen, J.R., Gustafsson, E., Chandraker, A., Yuan, X., Pu, W.T., Roberts, A.B., Neilson, E.G., Sayegh, M.H., Izumo, S., Kalluri, R., Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13 (2007), 952–961.
-
(2007)
Nat Med
, vol.13
, pp. 952-961
-
-
Zeisberg, E.M.1
Tarnavski, O.2
Zeisberg, M.3
Dorfman, A.L.4
McMullen, J.R.5
Gustafsson, E.6
Chandraker, A.7
Yuan, X.8
Pu, W.T.9
Roberts, A.B.10
Neilson, E.G.11
Sayegh, M.H.12
Izumo, S.13
Kalluri, R.14
-
17
-
-
84857111170
-
Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): differential expression of microRNAs during EndMT
-
[17] Ghosh, A.K., Nagpal, V., Covington, J.W., Michaels, M.A., Vaughan, D.E., Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): differential expression of microRNAs during EndMT. Cell Signal 24 (2012), 1031–1036.
-
(2012)
Cell Signal
, vol.24
, pp. 1031-1036
-
-
Ghosh, A.K.1
Nagpal, V.2
Covington, J.W.3
Michaels, M.A.4
Vaughan, D.E.5
-
18
-
-
84895464034
-
Epigenetic regulation of fibrocyte differentiation
-
[18] Lishnevsky, M., Haudek, S.B., Epigenetic regulation of fibrocyte differentiation. J Mol Cell Cardiol 69 (2014), 85–87.
-
(2014)
J Mol Cell Cardiol
, vol.69
, pp. 85-87
-
-
Lishnevsky, M.1
Haudek, S.B.2
-
19
-
-
84942088525
-
Epigenetic balance of aberrant Rasal1 promoter methylation and hydroxymethylation regulates cardiac fibrosis
-
[19] Xu, X., Tan, X., Tampe, B., Nyamsuren, G., Liu, X., Maier, L.S., Sossalla, S., Kalluri, R., Zeisberg, M., Hasenfuss, G., Zeisberg, E.M., Epigenetic balance of aberrant Rasal1 promoter methylation and hydroxymethylation regulates cardiac fibrosis. Cardiovasc Res 105 (2015), 279–291.
-
(2015)
Cardiovasc Res
, vol.105
, pp. 279-291
-
-
Xu, X.1
Tan, X.2
Tampe, B.3
Nyamsuren, G.4
Liu, X.5
Maier, L.S.6
Sossalla, S.7
Kalluri, R.8
Zeisberg, M.9
Hasenfuss, G.10
Zeisberg, E.M.11
-
20
-
-
84964483762
-
Hypoxia-induced endothelial-mesenchymal transition is associated with RASAL1 promoter hypermethylation in human coronary endothelial cells
-
[20] Xu, X., Tan, X., Hulshoff, M.S., Wilhelmi, T., Zeisberg, M., Zeisberg, E.M., Hypoxia-induced endothelial-mesenchymal transition is associated with RASAL1 promoter hypermethylation in human coronary endothelial cells. FEBS Lett 590 (2016), 1222–1233.
-
(2016)
FEBS Lett
, vol.590
, pp. 1222-1233
-
-
Xu, X.1
Tan, X.2
Hulshoff, M.S.3
Wilhelmi, T.4
Zeisberg, M.5
Zeisberg, E.M.6
-
21
-
-
84897879302
-
Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype
-
[21] Watson, C.J., Collier, P., Tea, I., Neary, R., Watson, J.A., Robinson, C., Phelan, D., Ledwidge, M.T., McDonald, K.M., McCann, A., Sharaf, O., Baugh, J.A., Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Adv Hum Mol Genet 23 (2014), 2176–2188.
-
(2014)
Adv Hum Mol Genet
, vol.23
, pp. 2176-2188
-
-
Watson, C.J.1
Collier, P.2
Tea, I.3
Neary, R.4
Watson, J.A.5
Robinson, C.6
Phelan, D.7
Ledwidge, M.T.8
McDonald, K.M.9
McCann, A.10
Sharaf, O.11
Baugh, J.A.12
-
22
-
-
84902971042
-
DNMT3A silencing RASSF1A promotes cardiac fibrosis through upregulation of ERK1/2
-
[22] Tao, H., Yang, J.J., Chen, Z.W., Xu, S.S., Zhou, X., Zhan, H.Y., Shi, K.H., DNMT3A silencing RASSF1A promotes cardiac fibrosis through upregulation of ERK1/2. Toxicology 323 (2014), 42–50.
-
(2014)
Toxicology
, vol.323
, pp. 42-50
-
-
Tao, H.1
Yang, J.J.2
Chen, Z.W.3
Xu, S.S.4
Zhou, X.5
Zhan, H.Y.6
Shi, K.H.7
-
23
-
-
84951335544
-
Epigenetic therapy for the treatment of hypertension-induced cardiac hypertrophy and fibrosis
-
[23] Watson, C.J., Horgan, S., Neary, R., Glezeva, N., Tea, I., Corrigan, N., McDonald, K., Ledwidge, M., Baugh, J., Epigenetic therapy for the treatment of hypertension-induced cardiac hypertrophy and fibrosis. J Cardiovasc Pharmacol Ther 21 (2016), 127–137.
-
(2016)
J Cardiovasc Pharmacol Ther
, vol.21
, pp. 127-137
-
-
Watson, C.J.1
Horgan, S.2
Neary, R.3
Glezeva, N.4
Tea, I.5
Corrigan, N.6
McDonald, K.7
Ledwidge, M.8
Baugh, J.9
-
24
-
-
84884828422
-
Recommendations for the design and analysis of epigenome-wide association studies
-
[24] Michels, K.B., Binder, A.M., Dedeurwaerder, S., Epstein, C.B., Greally, J.M., Gut, I., Houseman, E.A., Izzi, B., Kelsey, K.T., Meissner, A., Milosavljevic, A., Siegmund, K.D., Bock, C., Irizarry, R.A., Recommendations for the design and analysis of epigenome-wide association studies. Nat Methods 10 (2013), 949–955.
-
(2013)
Nat Methods
, vol.10
, pp. 949-955
-
-
Michels, K.B.1
Binder, A.M.2
Dedeurwaerder, S.3
Epstein, C.B.4
Greally, J.M.5
Gut, I.6
Houseman, E.A.7
Izzi, B.8
Kelsey, K.T.9
Meissner, A.10
Milosavljevic, A.11
Siegmund, K.D.12
Bock, C.13
Irizarry, R.A.14
-
25
-
-
84886307237
-
Histone deacetylase inhibition improved cardiac functions with direct antifibrotic activity in heart failure
-
[25] Kao, Y.H., Liou, J.P., Chung, C.C., Lien, G.S., Kuo, C.C., Chen, S.A., Chen, Y.J., Histone deacetylase inhibition improved cardiac functions with direct antifibrotic activity in heart failure. Int J Cardiol 168 (2013), 4178–4183.
-
(2013)
Int J Cardiol
, vol.168
, pp. 4178-4183
-
-
Kao, Y.H.1
Liou, J.P.2
Chung, C.C.3
Lien, G.S.4
Kuo, C.C.5
Chen, S.A.6
Chen, Y.J.7
-
26
-
-
84880036835
-
HDAC-dependent ventricular remodeling
-
[26] Xie, M., Hill, J.A., HDAC-dependent ventricular remodeling. Trends Cardiovasc Med 23 (2013), 229–235.
-
(2013)
Trends Cardiovasc Med
, vol.23
, pp. 229-235
-
-
Xie, M.1
Hill, J.A.2
-
27
-
-
78149267015
-
Histone deacetylase: a potential therapeutic target for fibrotic disorders
-
[27] Pang, M., Zhuang, S., Histone deacetylase: a potential therapeutic target for fibrotic disorders. J Pharmacol Exp Ther 335 (2010), 266–272.
-
(2010)
J Pharmacol Exp Ther
, vol.335
, pp. 266-272
-
-
Pang, M.1
Zhuang, S.2
-
28
-
-
34547886153
-
Inhibition of histone deacetylase on ventricular remodeling in infarcted rats
-
[28] Lee, T.M., Lin, M.S., Chang, N.C., Inhibition of histone deacetylase on ventricular remodeling in infarcted rats. Am J Physiol Heart Circ Physiol 293 (2007), H968–H977.
-
(2007)
Am J Physiol Heart Circ Physiol
, vol.293
, pp. H968-H977
-
-
Lee, T.M.1
Lin, M.S.2
Chang, N.C.3
-
29
-
-
84929940868
-
Histone deacetylase inhibition attenuates cardiac hypertrophy and fibrosis through acetylation of mineralocorticoid receptor in spontaneously hypertensive rats
-
[29] Kang, S.H., Seok, Y.M., Song, M.J., Lee, H.A., Kurz, T., Kim, I., Histone deacetylase inhibition attenuates cardiac hypertrophy and fibrosis through acetylation of mineralocorticoid receptor in spontaneously hypertensive rats. Mol Pharmacol 87 (2015), 782–791.
-
(2015)
Mol Pharmacol
, vol.87
, pp. 782-791
-
-
Kang, S.H.1
Seok, Y.M.2
Song, M.J.3
Lee, H.A.4
Kurz, T.5
Kim, I.6
-
30
-
-
84891135858
-
Histone deacetylases in cardiac fibrosis: current perspectives for therapy
-
[30] Tao, H., Shi, K.H., Yang, J.J., Huang, C., Zhan, H.Y., Li, J., Histone deacetylases in cardiac fibrosis: current perspectives for therapy. Cell Signal 26 (2014), 521–527.
-
(2014)
Cell Signal
, vol.26
, pp. 521-527
-
-
Tao, H.1
Shi, K.H.2
Yang, J.J.3
Huang, C.4
Zhan, H.Y.5
Li, J.6
-
31
-
-
84928262932
-
Role of histone deacetylase 2 and its posttranslational modifications in cardiac hypertrophy
-
[31] Eom, G.H., Kook, H., Role of histone deacetylase 2 and its posttranslational modifications in cardiac hypertrophy. BMB Rep 48 (2015), 131–138.
-
(2015)
BMB Rep
, vol.48
, pp. 131-138
-
-
Eom, G.H.1
Kook, H.2
-
32
-
-
33847695362
-
Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity
-
[32] Trivedi, C.M., Luo, Y., Yin, Z., Zhang, M., Zhu, W., Wang, T., Floss, T., Goettlicher, M., Noppinger, P.R., Wurst, W., Ferrari, V.A., Abrams, C.S., Gruber, P.J., Epstein, J.A., Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med 13 (2007), 324–331.
-
(2007)
Nat Med
, vol.13
, pp. 324-331
-
-
Trivedi, C.M.1
Luo, Y.2
Yin, Z.3
Zhang, M.4
Zhu, W.5
Wang, T.6
Floss, T.7
Goettlicher, M.8
Noppinger, P.R.9
Wurst, W.10
Ferrari, V.A.11
Abrams, C.S.12
Gruber, P.J.13
Epstein, J.A.14
-
33
-
-
84892850549
-
Class I HDACs regulate angiotensin II-dependent cardiac fibrosis via fibroblasts and circulating fibrocytes
-
[33] Williams, S.M., Golden-Mason, L., Ferguson, B.S., Schuetze, K.B., Cavasin, M.A., Demos-Davies, K., Yeager, M.E., Stenmark, K.R., McKinsey, T.A., Class I HDACs regulate angiotensin II-dependent cardiac fibrosis via fibroblasts and circulating fibrocytes. J Mol Cell Cardiol 67 (2014), 112–125.
-
(2014)
J Mol Cell Cardiol
, vol.67
, pp. 112-125
-
-
Williams, S.M.1
Golden-Mason, L.2
Ferguson, B.S.3
Schuetze, K.B.4
Cavasin, M.A.5
Demos-Davies, K.6
Yeager, M.E.7
Stenmark, K.R.8
McKinsey, T.A.9
-
34
-
-
84942235091
-
HDAC6 promotes cardiac fibrosis progression through suppressing RASSF1A expression
-
[34] Tao, H., Yang, J.J., Hu, W., Shi, K.H., Li, J., HDAC6 promotes cardiac fibrosis progression through suppressing RASSF1A expression. Cardiology 133 (2016), 18–26.
-
(2016)
Cardiology
, vol.133
, pp. 18-26
-
-
Tao, H.1
Yang, J.J.2
Hu, W.3
Shi, K.H.4
Li, J.5
-
35
-
-
84903411670
-
HDAC class I inhibitor, mocetinostat, reverses cardiac fibrosis in heart failure and diminishes CD90+ cardiac myofibroblast activation
-
[35] Nural-Guvener, H.F., Zakharova, L., Nimlos, J., Popovic, S., Mastroeni, D., Gaballa, M.A., HDAC class I inhibitor, mocetinostat, reverses cardiac fibrosis in heart failure and diminishes CD90+ cardiac myofibroblast activation. Fibrogenesis Tissue Repair, 7, 2014, 10.
-
(2014)
Fibrogenesis Tissue Repair
, vol.7
, pp. 10
-
-
Nural-Guvener, H.F.1
Zakharova, L.2
Nimlos, J.3
Popovic, S.4
Mastroeni, D.5
Gaballa, M.A.6
-
36
-
-
84930615677
-
Anti-fibrotic effects of class I HDAC inhibitor, mocetinostat is associated with IL-6/Stat3 signaling in ischemic heart failure
-
[36] Nural-Guvener, H., Zakharova, L., Feehery, L., Sljukic, S., Gaballa, M., Anti-fibrotic effects of class I HDAC inhibitor, mocetinostat is associated with IL-6/Stat3 signaling in ischemic heart failure. Int J Mol Sci 16 (2015), 11482–11499.
-
(2015)
Int J Mol Sci
, vol.16
, pp. 11482-11499
-
-
Nural-Guvener, H.1
Zakharova, L.2
Feehery, L.3
Sljukic, S.4
Gaballa, M.5
-
37
-
-
55649123444
-
Histone-deacetylase inhibition reverses atrial arrhythmia inducibility and fibrosis in cardiac hypertrophy independent of angiotensin
-
[37] Liu, F., Levin, M.D., Petrenko, N.B., Lu, M.M., Wang, T., Yuan, L.J., Stout, A.L., Epstein, J.A., Patel, V.V., Histone-deacetylase inhibition reverses atrial arrhythmia inducibility and fibrosis in cardiac hypertrophy independent of angiotensin. J Mol Cell Cardiol 45 (2008), 715–723.
-
(2008)
J Mol Cell Cardiol
, vol.45
, pp. 715-723
-
-
Liu, F.1
Levin, M.D.2
Petrenko, N.B.3
Lu, M.M.4
Wang, T.5
Yuan, L.J.6
Stout, A.L.7
Epstein, J.A.8
Patel, V.V.9
-
38
-
-
84921289122
-
SIRT1 functions as an important regulator of estrogen-mediated cardiomyocyte protection in angiotensin II-induced heart hypertrophy
-
[38] Shen, T., Ding, L., Ruan, Y., Qin, W., Lin, Y., Xi, C., Lu, Y., Dou, L., Zhu, Y., Cao, Y., Man, Y., Bian, Y., Wang, S., Xiao, C., Li, J., SIRT1 functions as an important regulator of estrogen-mediated cardiomyocyte protection in angiotensin II-induced heart hypertrophy. Oxid Med Cell Longev, 2014, 2014, 713894.
-
(2014)
Oxid Med Cell Longev
, vol.2014
, pp. 713894
-
-
Shen, T.1
Ding, L.2
Ruan, Y.3
Qin, W.4
Lin, Y.5
Xi, C.6
Lu, Y.7
Dou, L.8
Zhu, Y.9
Cao, Y.10
Man, Y.11
Bian, Y.12
Wang, S.13
Xiao, C.14
Li, J.15
-
39
-
-
84918587309
-
A novel role for SIRT-1 in L-arginine protection against STZ induced myocardial fibrosis in rats
-
[39] Rizk, S.M., El-Maraghy, S.A., Nassar, N.N., A novel role for SIRT-1 in L-arginine protection against STZ induced myocardial fibrosis in rats. PLOS ONE, 9, 2014, e114560.
-
(2014)
PLOS ONE
, vol.9
, pp. e114560
-
-
Rizk, S.M.1
El-Maraghy, S.A.2
Nassar, N.N.3
-
40
-
-
84924528336
-
Sirtuin-6 inhibits cardiac fibroblasts differentiation into myofibroblasts via inactivation of nuclear factor κB signaling
-
[40] Tian, K., Liu, Z., Wang, J., Xu, S., You, T., Liu, P., Sirtuin-6 inhibits cardiac fibroblasts differentiation into myofibroblasts via inactivation of nuclear factor κB signaling. Transl Res 165 (2015), 374–386.
-
(2015)
Transl Res
, vol.165
, pp. 374-386
-
-
Tian, K.1
Liu, Z.2
Wang, J.3
Xu, S.4
You, T.5
Liu, P.6
-
41
-
-
70349208608
-
Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
-
[41] Sundaresan, N.R., Gupta, M., Kim, G., Rajamohan, S.B., Isbatan, A., Gupta, M.P., Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 119 (2009), 2758–2771.
-
(2009)
J Clin Invest
, vol.119
, pp. 2758-2771
-
-
Sundaresan, N.R.1
Gupta, M.2
Kim, G.3
Rajamohan, S.B.4
Isbatan, A.5
Gupta, M.P.6
-
42
-
-
84928635872
-
Activation of SIRT3 by resveratrol ameliorates cardiac fibrosis and improves cardiac function via the TGF-β/Smad3 pathway
-
[42] Chen, T., Li, J., Liu, J., Li, N., Wang, S., Liu, H., Zeng, M., Zhang, Y., Bu, P., Activation of SIRT3 by resveratrol ameliorates cardiac fibrosis and improves cardiac function via the TGF-β/Smad3 pathway. Am J Physiol Heart Circ Physiol 308 (2015), H424–H434.
-
(2015)
Am J Physiol Heart Circ Physiol
, vol.308
, pp. H424-H434
-
-
Chen, T.1
Li, J.2
Liu, J.3
Li, N.4
Wang, S.5
Liu, H.6
Zeng, M.7
Zhang, Y.8
Bu, P.9
-
43
-
-
84933055429
-
Histone methyltransferase SET1 mediates angiotensin II-induced endothelin-1 transcription and cardiac hypertrophy in mice
-
[43] Yu, L., Yang, G., Weng, X., Liang, P., Li, L., Li, J., Fan, Z., Tian, W., Wu, X., Xu, H., Fang, M., Ji, Y., Li, Y., Chen, Q., Xu, Y., Histone methyltransferase SET1 mediates angiotensin II-induced endothelin-1 transcription and cardiac hypertrophy in mice. Arterioscler Thromb Vasc Biol 35 (2015), 1207–1217.
-
(2015)
Arterioscler Thromb Vasc Biol
, vol.35
, pp. 1207-1217
-
-
Yu, L.1
Yang, G.2
Weng, X.3
Liang, P.4
Li, L.5
Li, J.6
Fan, Z.7
Tian, W.8
Wu, X.9
Xu, H.10
Fang, M.11
Ji, Y.12
Li, Y.13
Chen, Q.14
Xu, Y.15
-
44
-
-
84924612344
-
A crosstalk between chromatin remodeling and histone H3K4 methyltransferase complexes in endothelial cells regulates angiotensin II-induced cardiac hypertrophy
-
[44] Weng, X., Yu, L., Liang, P., Li, L., Dai, X., Zhou, B., Wu, X., Xu, H., Fang, M., Chen, Q., Xu, Y., A crosstalk between chromatin remodeling and histone H3K4 methyltransferase complexes in endothelial cells regulates angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol 82 (2015), 48–58.
-
(2015)
J Mol Cell Cardiol
, vol.82
, pp. 48-58
-
-
Weng, X.1
Yu, L.2
Liang, P.3
Li, L.4
Dai, X.5
Zhou, B.6
Wu, X.7
Xu, H.8
Fang, M.9
Chen, Q.10
Xu, Y.11
-
45
-
-
84957586420
-
Non-coding RNAs as modulators of the cardiac fibroblast phenotype
-
[45] Piccoli, M.T., Bär, C., Thum, T., Non-coding RNAs as modulators of the cardiac fibroblast phenotype. J Mol Cell Cardiol 92 (2016), 75–81.
-
(2016)
J Mol Cell Cardiol
, vol.92
, pp. 75-81
-
-
Piccoli, M.T.1
Bär, C.2
Thum, T.3
-
46
-
-
84954545012
-
Noncoding RNA as regulators of cardiac fibrosis: current insight and the road ahead
-
[Epub ahead of print]
-
[46] Tao, H., Yang, J.J., Hu, W., Shi, K.H., Deng, Z.Y., Li, J., Noncoding RNA as regulators of cardiac fibrosis: current insight and the road ahead. Pflugers Arch, 2016 [Epub ahead of print].
-
(2016)
Pflugers Arch
-
-
Tao, H.1
Yang, J.J.2
Hu, W.3
Shi, K.H.4
Deng, Z.Y.5
Li, J.6
-
47
-
-
84891375969
-
MicroRNA-122 down-regulation may play a role in severe myocardial fibrosis in human aortic stenosis through TGF-β1 up-regulation
-
[47] Beaumont, J., López, B., Hermida, N., Schroen, B., San José, G., Heymans, S., Valencia, F., Gómez-Doblas, J.J., De Teresa, E., Díez, J., González, A., MicroRNA-122 down-regulation may play a role in severe myocardial fibrosis in human aortic stenosis through TGF-β1 up-regulation. Clin Sci (Lond) 126 (2014), 497–506.
-
(2014)
Clin Sci (Lond)
, vol.126
, pp. 497-506
-
-
Beaumont, J.1
López, B.2
Hermida, N.3
Schroen, B.4
San José, G.5
Heymans, S.6
Valencia, F.7
Gómez-Doblas, J.J.8
De Teresa, E.9
Díez, J.10
González, A.11
-
48
-
-
84887207559
-
Extracellular matrix secretion by cardiac fibroblasts: role of microRNA-29b and microRNA-30c
-
[48] Abonnenc, M., Nabeebaccus, A.A., Mayr, U., Barallobre-Barreiro, J., Dong, X., Cuello, F., Sur, S., Drozdov, I., Langley, S.R., Lu, R., Stathopoulou, K., Didangelos, A., Yin, X., Zimmermann, W.H., Shah, A.M., et al. Extracellular matrix secretion by cardiac fibroblasts: role of microRNA-29b and microRNA-30c. Circ Res 113 (2013), 1138–1147.
-
(2013)
Circ Res
, vol.113
, pp. 1138-1147
-
-
Abonnenc, M.1
Nabeebaccus, A.A.2
Mayr, U.3
Barallobre-Barreiro, J.4
Dong, X.5
Cuello, F.6
Sur, S.7
Drozdov, I.8
Langley, S.R.9
Lu, R.10
Stathopoulou, K.11
Didangelos, A.12
Yin, X.13
Zimmermann, W.H.14
Shah, A.M.15
-
49
-
-
84878561148
-
MicroRNA-29 family, a crucial therapeutic target for fibrosis diseases
-
[49] He, Y., Huang, C., Lin, X., Li, J., MicroRNA-29 family, a crucial therapeutic target for fibrosis diseases. Biochimie 95 (2013), 1355–1359.
-
(2013)
Biochimie
, vol.95
, pp. 1355-1359
-
-
He, Y.1
Huang, C.2
Lin, X.3
Li, J.4
-
50
-
-
84856171521
-
Transforming growth factor-β-induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21
-
[50] Kumarswamy, R., Volkmann, I., Jazbutyte, V., Dangwal, S., Park, D.H., Thum, T., Transforming growth factor-β-induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21. Arterioscler Thromb Vasc Biol 32 (2012), 361–369.
-
(2012)
Arterioscler Thromb Vasc Biol
, vol.32
, pp. 361-369
-
-
Kumarswamy, R.1
Volkmann, I.2
Jazbutyte, V.3
Dangwal, S.4
Park, D.H.5
Thum, T.6
-
51
-
-
84899128394
-
Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy
-
[51] Bang, C., Batkai, S., Dangwal, S., Gupta, S.K., Foinquinos, A., Holzmann, A., Just, A., Remke, J., Zimmer, K., Zeug, A., Ponimaskin, E., Schmiedl, A., Yin, X., Mayr, M., Halder, R., et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest 124 (2014), 2136–2146.
-
(2014)
J Clin Invest
, vol.124
, pp. 2136-2146
-
-
Bang, C.1
Batkai, S.2
Dangwal, S.3
Gupta, S.K.4
Foinquinos, A.5
Holzmann, A.6
Just, A.7
Remke, J.8
Zimmer, K.9
Zeug, A.10
Ponimaskin, E.11
Schmiedl, A.12
Yin, X.13
Mayr, M.14
Halder, R.15
-
52
-
-
62349141343
-
MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue
-
[52] Roy, S., Khanna, S., Hussain, S.R., Biswas, S., Azad, A., Rink, C., Gnyawali, S., Shilo, S., Nuovo, G.J., Sen, C.K., MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res 82 (2009), 21–29.
-
(2009)
Cardiovasc Res
, vol.82
, pp. 21-29
-
-
Roy, S.1
Khanna, S.2
Hussain, S.R.3
Biswas, S.4
Azad, A.5
Rink, C.6
Gnyawali, S.7
Shilo, S.8
Nuovo, G.J.9
Sen, C.K.10
-
53
-
-
57749168828
-
MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts
-
[53] Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., Galuppo, P., Just, S., Rottbauer, W., Frantz, S., Castoldi, M., Soutschek, J., Koteliansky, V., Rosenwald, A., Basson, M.A., et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456 (2008), 980–984.
-
(2008)
Nature
, vol.456
, pp. 980-984
-
-
Thum, T.1
Gross, C.2
Fiedler, J.3
Fischer, T.4
Kissler, S.5
Bussen, M.6
Galuppo, P.7
Just, S.8
Rottbauer, W.9
Frantz, S.10
Castoldi, M.11
Soutschek, J.12
Koteliansky, V.13
Rosenwald, A.14
Basson, M.A.15
-
54
-
-
84899912204
-
A long noncoding RNA, CHRF regulates cardiac hypertrophy by targeting miR-489
-
[54] Wang, K., Liu, F., Zhou, L.Y., Long, B., Yuan, S.M., Wang, Y., Liu, C.Y., Sun, T., Zhang, X.J., Li, P.F., A long noncoding RNA, CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 114 (2014), 1377–1388.
-
(2014)
Circ Res
, vol.114
, pp. 1377-1388
-
-
Wang, K.1
Liu, F.2
Zhou, L.Y.3
Long, B.4
Yuan, S.M.5
Wang, Y.6
Liu, C.Y.7
Sun, T.8
Zhang, X.J.9
Li, P.F.10
-
55
-
-
84865439215
-
MicroRNA-24 regulates cardiac fibrosis after myocardial infarction
-
[55] Wang, J., Huang, W., Xu, R., Nie, Y., Cao, X., Meng, J., Xu, X., Hu, S., Zheng, Z., MicroRNA-24 regulates cardiac fibrosis after myocardial infarction. J Cell Mol Med 16 (2012), 2150–2160.
-
(2012)
J Cell Mol Med
, vol.16
, pp. 2150-2160
-
-
Wang, J.1
Huang, W.2
Xu, R.3
Nie, Y.4
Cao, X.5
Meng, J.6
Xu, X.7
Hu, S.8
Zheng, Z.9
-
56
-
-
84970024035
-
MiR-19b controls cardiac fibroblast proliferation and migration
-
[Epub ahead of print]
-
[56] Zhong, C., Wang, K., Liu, Y., Lv, D., Zheng, B., Zhou, Q., Sun, Q., Chen, P., Ding, S., Xu, Y., Huang, H., MiR-19b controls cardiac fibroblast proliferation and migration. J Cell Mol Med, 2016 [Epub ahead of print].
-
(2016)
J Cell Mol Med
-
-
Zhong, C.1
Wang, K.2
Liu, Y.3
Lv, D.4
Zheng, B.5
Zhou, Q.6
Sun, Q.7
Chen, P.8
Ding, S.9
Xu, Y.10
Huang, H.11
-
57
-
-
59849128881
-
MiR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling
-
[57] Duisters, R.F., Tijsen, A.J., Schroen, B., Leenders, J.J., Lentink, V., van der Made, I., Herias, V., van Leeuwen, R.E., Schellings, M.W., Barenbrug, P., Maessen, J.G., Heymans, S., Pinto, Y.M., Creemers, E.E., MiR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 104 (2009), 170–178.
-
(2009)
Circ Res
, vol.104
, pp. 170-178
-
-
Duisters, R.F.1
Tijsen, A.J.2
Schroen, B.3
Leenders, J.J.4
Lentink, V.5
van der Made, I.6
Herias, V.7
van Leeuwen, R.E.8
Schellings, M.W.9
Barenbrug, P.10
Maessen, J.G.11
Heymans, S.12
Pinto, Y.M.13
Creemers, E.E.14
-
58
-
-
84904580766
-
MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures
-
[58] Muraoka, N., Yamakawa, H., Miyamoto, K., Sadahiro, T., Umei, T., Isomi, M., Nakashima, H., Akiyama, M., Wada, R., Inagawa, K., Nishiyama, T., Kaneda, R., Fukuda, T., Takeda, S., Tohyama, S., et al. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures. EMBO J 33 (2014), 1565–1581.
-
(2014)
EMBO J
, vol.33
, pp. 1565-1581
-
-
Muraoka, N.1
Yamakawa, H.2
Miyamoto, K.3
Sadahiro, T.4
Umei, T.5
Isomi, M.6
Nakashima, H.7
Akiyama, M.8
Wada, R.9
Inagawa, K.10
Nishiyama, T.11
Kaneda, R.12
Fukuda, T.13
Takeda, S.14
Tohyama, S.15
-
59
-
-
82155163832
-
MiR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension
-
[59] Castoldi, G., Di Gioia, C.R., Bombardi, C., Catalucci, D., Corradi, B., Gualazzi, M.G., Leopizzi, M., Mancini, M., Zerbini, G., Condorelli, G., Stella, A., MiR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. J Cell Physiol 227 (2012), 850–856.
-
(2012)
J Cell Physiol
, vol.227
, pp. 850-856
-
-
Castoldi, G.1
Di Gioia, C.R.2
Bombardi, C.3
Catalucci, D.4
Corradi, B.5
Gualazzi, M.G.6
Leopizzi, M.7
Mancini, M.8
Zerbini, G.9
Condorelli, G.10
Stella, A.11
-
60
-
-
74049096307
-
MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts
-
[60] Matkovich, S.J., Wang, W., Tu, Y., Eschenbacher, W.H., Dorn, L.E., Condorelli, G., Diwan, A., Nerbonne, J.M., Dorn, G.W. 2nd, MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res 106 (2010), 166–175.
-
(2010)
Circ Res
, vol.106
, pp. 166-175
-
-
Matkovich, S.J.1
Wang, W.2
Tu, Y.3
Eschenbacher, W.H.4
Dorn, L.E.5
Condorelli, G.6
Diwan, A.7
Nerbonne, J.M.8
Dorn, G.W.9
-
61
-
-
84894577814
-
Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes
-
[61] Chen, S., Puthanveetil, P., Feng, B., Matkovich, S.J., Dorn, G.W. 2nd, Chakrabarti, S., Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes. J Cell Mol Med 18 (2014), 415–421.
-
(2014)
J Cell Mol Med
, vol.18
, pp. 415-421
-
-
Chen, S.1
Puthanveetil, P.2
Feng, B.3
Matkovich, S.J.4
Dorn, G.W.5
Chakrabarti, S.6
-
62
-
-
84871242226
-
Mechanical stretch via transforming growth factor-beta1 activates microRNA208a to regulate endoglin expression in cultured rat cardiac myoblasts
-
[62] Shyu, K.G., Wang, B.W., Wu, G.J., Lin, C.M., Chang, H., Mechanical stretch via transforming growth factor-beta1 activates microRNA208a to regulate endoglin expression in cultured rat cardiac myoblasts. Eur J Heart Fail 15 (2013), 36–45.
-
(2013)
Eur J Heart Fail
, vol.15
, pp. 36-45
-
-
Shyu, K.G.1
Wang, B.W.2
Wu, G.J.3
Lin, C.M.4
Chang, H.5
-
63
-
-
80053567152
-
Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure
-
[63] Montgomery, R.L., Hullinger, T.G., Semus, H.M., Dickinson, B.A., Seto, A.G., Lynch, J.M., Stack, C., Latimer, P.A., Olson, E.N., van Rooij, E., Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 124 (2011), 1537–1547.
-
(2011)
Circulation
, vol.124
, pp. 1537-1547
-
-
Montgomery, R.L.1
Hullinger, T.G.2
Semus, H.M.3
Dickinson, B.A.4
Seto, A.G.5
Lynch, J.M.6
Stack, C.7
Latimer, P.A.8
Olson, E.N.9
van Rooij, E.10
-
64
-
-
84913580883
-
The microRNA-15 family inhibits the TGFβ-pathway in the heart
-
[64] Tijsen, A.J., van der Made, I., van den Hoogenhof, M.M., Wijnen, W.J., van Deel, E.D., de Groot, N.E., Alekseev, S., Fluiter, K., Schroen, B., Goumans, M.J., van der Velden, J., Duncker, D.J., Pinto, Y.M., Creemers, E.E., The microRNA-15 family inhibits the TGFβ-pathway in the heart. Cardiovasc Res 104 (2014), 61–71.
-
(2014)
Cardiovasc Res
, vol.104
, pp. 61-71
-
-
Tijsen, A.J.1
van der Made, I.2
van den Hoogenhof, M.M.3
Wijnen, W.J.4
van Deel, E.D.5
de Groot, N.E.6
Alekseev, S.7
Fluiter, K.8
Schroen, B.9
Goumans, M.J.10
van der Velden, J.11
Duncker, D.J.12
Pinto, Y.M.13
Creemers, E.E.14
-
65
-
-
84871992154
-
Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family
-
[65] Porrello, E.R., Mahmoud, A.I., Simpson, E., Johnson, B.A., Grinsfelder, D., Canseco, D., Mammen, P.P., Rothermel, B.A., Olson, E.N., Sadek, H.A., Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci U S A 110 (2013), 187–192.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 187-192
-
-
Porrello, E.R.1
Mahmoud, A.I.2
Simpson, E.3
Johnson, B.A.4
Grinsfelder, D.5
Canseco, D.6
Mammen, P.P.7
Rothermel, B.A.8
Olson, E.N.9
Sadek, H.A.10
-
66
-
-
84855350458
-
Inhibition of miR-15 protects against cardiac ischemic injury
-
[66] Hullinger, T.G., Montgomery, R.L., Seto, A.G., Dickinson, B.A., Semus, H.M., Lynch, J.M., Dalby, C.M., Robinson, K., Stack, C., Latimer, P.A., Hare, J.M., Olson, E.N., van Rooij, E., Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res 110 (2012), 71–81.
-
(2012)
Circ Res
, vol.110
, pp. 71-81
-
-
Hullinger, T.G.1
Montgomery, R.L.2
Seto, A.G.3
Dickinson, B.A.4
Semus, H.M.5
Lynch, J.M.6
Dalby, C.M.7
Robinson, K.8
Stack, C.9
Latimer, P.A.10
Hare, J.M.11
Olson, E.N.12
van Rooij, E.13
-
67
-
-
84907584470
-
Deficiency of cardiomyocyte-specific microRNA-378 contributes to the development of cardiac fibrosis involving a transforming growth factor β (TGFβ1)-dependent paracrine mechanism
-
[67] Nagalingam, R.S., Sundaresan, N.R., Noor, M., Gupta, M.P., Solaro, R.J., Gupta, M., Deficiency of cardiomyocyte-specific microRNA-378 contributes to the development of cardiac fibrosis involving a transforming growth factor β (TGFβ1)-dependent paracrine mechanism. J Biol Chem 289 (2014), 27199–27214.
-
(2014)
J Biol Chem
, vol.289
, pp. 27199-27214
-
-
Nagalingam, R.S.1
Sundaresan, N.R.2
Noor, M.3
Gupta, M.P.4
Solaro, R.J.5
Gupta, M.6
-
68
-
-
84879134613
-
MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart
-
[68] Jazbutyte, V., Fiedler, J., Kneitz, S., Galuppo, P., Just, A., Holzmann, A., Bauersachs, J., Thum, T., MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. Age (Dordr) 35 (2013), 747–762.
-
(2013)
Age (Dordr)
, vol.35
, pp. 747-762
-
-
Jazbutyte, V.1
Fiedler, J.2
Kneitz, S.3
Galuppo, P.4
Just, A.5
Holzmann, A.6
Bauersachs, J.7
Thum, T.8
-
69
-
-
84877583076
-
MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress
-
[69] Huang, Z.P., Chen, J., Seok, H.Y., Zhang, Z., Kataoka, M., Hu, X., Wang, D.Z., MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ Res 112 (2013), 1234–1243.
-
(2013)
Circ Res
, vol.112
, pp. 1234-1243
-
-
Huang, Z.P.1
Chen, J.2
Seok, H.Y.3
Zhang, Z.4
Kataoka, M.5
Hu, X.6
Wang, D.Z.7
-
70
-
-
84893040989
-
Impact of epigenetic dietary compounds on transgenerational prevention of human diseases
-
[70] Li, Y., Saldanha, S.N., Tollefsbol, T.O., Impact of epigenetic dietary compounds on transgenerational prevention of human diseases. AAPS J 16 (2014), 27–36.
-
(2014)
AAPS J
, vol.16
, pp. 27-36
-
-
Li, Y.1
Saldanha, S.N.2
Tollefsbol, T.O.3
-
71
-
-
84903221662
-
Cardiovascular disease and transgenerational epigenetic effects
-
T. Tollefsbol Elsevier Amsterdam
-
[71] Zullo, A., Casamassimi, A., Mancini, F.P., Napoli, C., Cardiovascular disease and transgenerational epigenetic effects. Tollefsbol, T., (eds.) Transgenerational epigenetics evidence and debate, 2013, Elsevier, Amsterdam, 321–341.
-
(2013)
Transgenerational epigenetics evidence and debate
, pp. 321-341
-
-
Zullo, A.1
Casamassimi, A.2
Mancini, F.P.3
Napoli, C.4
-
72
-
-
51349085004
-
Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome
-
[72] Aagaard-Tillery, K.M., Grove, K., Bishop, J., Ke, X., Fu, Q., McKnight, R., Lane, R.H., Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. J Mol Endocrinol 41 (2008), 91–102.
-
(2008)
J Mol Endocrinol
, vol.41
, pp. 91-102
-
-
Aagaard-Tillery, K.M.1
Grove, K.2
Bishop, J.3
Ke, X.4
Fu, Q.5
McKnight, R.6
Lane, R.H.7
-
73
-
-
84952837388
-
MicroRNA expression signature is altered in the cardiac remodeling induced by high fat diets
-
[73] Guedes, E.C., França, G.S., Lino, C.A., Koyama, F.C., Moreira, L.D., Alexandre, J.G., Barreto-Chaves, M.L., Galante, P.A., Diniz, G.P., MicroRNA expression signature is altered in the cardiac remodeling induced by high fat diets. J Cell Physiol 231 (2016), 1771–1783.
-
(2016)
J Cell Physiol
, vol.231
, pp. 1771-1783
-
-
Guedes, E.C.1
França, G.S.2
Lino, C.A.3
Koyama, F.C.4
Moreira, L.D.5
Alexandre, J.G.6
Barreto-Chaves, M.L.7
Galante, P.A.8
Diniz, G.P.9
-
74
-
-
84922104763
-
MicroRNA-451 exacerbates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy in mice through suppression of the LKB1/AMPK pathway
-
[74] Kuwabara, Y., Horie, T., Baba, O., Watanabe, S., Nishiga, M., Usami, S., Izuhara, M., Nakao, T., Nishino, T., Otsu, K., Kita, T., Kimura, T., Ono, K., MicroRNA-451 exacerbates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy in mice through suppression of the LKB1/AMPK pathway. Circ Res 116 (2015), 279–288.
-
(2015)
Circ Res
, vol.116
, pp. 279-288
-
-
Kuwabara, Y.1
Horie, T.2
Baba, O.3
Watanabe, S.4
Nishiga, M.5
Usami, S.6
Izuhara, M.7
Nakao, T.8
Nishino, T.9
Otsu, K.10
Kita, T.11
Kimura, T.12
Ono, K.13
-
75
-
-
84881178678
-
Apelin administration ameliorates high fat diet-induced cardiac hypertrophy and contractile dysfunction
-
[75] Ceylan-Isik, A.F., Kandadi, M.R., Xu, X., Hua, Y., Chicco, A.J., Ren, J., Nair, S., Apelin administration ameliorates high fat diet-induced cardiac hypertrophy and contractile dysfunction. J Mol Cell Cardiol 63 (2013), 4–13.
-
(2013)
J Mol Cell Cardiol
, vol.63
, pp. 4-13
-
-
Ceylan-Isik, A.F.1
Kandadi, M.R.2
Xu, X.3
Hua, Y.4
Chicco, A.J.5
Ren, J.6
Nair, S.7
-
76
-
-
84900428277
-
High glucose induces Smad activation via the transcriptional coregulator p300 and contributes to cardiac fibrosis and hypertrophy
-
[76] Bugyei-Twum, A., Advani, A., Advani, S.L., Zhang, Y., Thai, K., Kelly, D.J., Connelly, K.A., High glucose induces Smad activation via the transcriptional coregulator p300 and contributes to cardiac fibrosis and hypertrophy. Cardiovasc Diabetol, 13, 2014, 89.
-
(2014)
Cardiovasc Diabetol
, vol.13
, pp. 89
-
-
Bugyei-Twum, A.1
Advani, A.2
Advani, S.L.3
Zhang, Y.4
Thai, K.5
Kelly, D.J.6
Connelly, K.A.7
-
77
-
-
40549117477
-
Curcumin prevents and reverses murine cardiac hypertrophy
-
[77] Li, H.L., Liu, C., de Couto, G., Ouzounian, M., Sun, M., Wang, A.B., Huang, Y., He, C.W., Shi, Y., Chen, X., Nghiem, M.P., Liu, Y., Chen, M., Dawood, F., Fukuoka, M., et al. Curcumin prevents and reverses murine cardiac hypertrophy. J Clin Invest 118 (2008), 879–893.
-
(2008)
J Clin Invest
, vol.118
, pp. 879-893
-
-
Li, H.L.1
Liu, C.2
de Couto, G.3
Ouzounian, M.4
Sun, M.5
Wang, A.B.6
Huang, Y.7
He, C.W.8
Shi, Y.9
Chen, X.10
Nghiem, M.P.11
Liu, Y.12
Chen, M.13
Dawood, F.14
Fukuoka, M.15
-
78
-
-
84947094038
-
Attenuation of myocardial fibrosis with curcumin is mediated by modulating expression of angiotensin II AT1/AT2 receptors and ACE2 in rats
-
[78] Pang, X.F., Zhang, L.H., Bai, F., Wang, N.P., Garner, R.E., McKallip, R.J., Zhao, Z.Q., Attenuation of myocardial fibrosis with curcumin is mediated by modulating expression of angiotensin II AT1/AT2 receptors and ACE2 in rats. Drug Des Devel Ther 9 (2015), 6043–6054.
-
(2015)
Drug Des Devel Ther
, vol.9
, pp. 6043-6054
-
-
Pang, X.F.1
Zhang, L.H.2
Bai, F.3
Wang, N.P.4
Garner, R.E.5
McKallip, R.J.6
Zhao, Z.Q.7
-
79
-
-
84908094161
-
Curcumin attenuates cardiac fibrosis in spontaneously hypertensive rats through PPAR-γ activation
-
[79] Meng, Z., Yu, X.H., Chen, J., Li, L., Li, S., Curcumin attenuates cardiac fibrosis in spontaneously hypertensive rats through PPAR-γ activation. Acta Pharmacol Sin 35 (2014), 1247–1256.
-
(2014)
Acta Pharmacol Sin
, vol.35
, pp. 1247-1256
-
-
Meng, Z.1
Yu, X.H.2
Chen, J.3
Li, L.4
Li, S.5
-
80
-
-
84925624083
-
A newly designed curcumin analog Y20 mitigates cardiac injury via anti-inflammatory and anti-oxidant actions in obese rats
-
[80] Qian, Y., Zhong, P., Liang, D., Xu, Z., Skibba, M., Zeng, C., Li, X., Wei, T., Wu, L., Liang, G., A newly designed curcumin analog Y20 mitigates cardiac injury via anti-inflammatory and anti-oxidant actions in obese rats. PLOS ONE, 10, 2015, e0120215.
-
(2015)
PLOS ONE
, vol.10
, pp. e0120215
-
-
Qian, Y.1
Zhong, P.2
Liang, D.3
Xu, Z.4
Skibba, M.5
Zeng, C.6
Li, X.7
Wei, T.8
Wu, L.9
Liang, G.10
-
81
-
-
67349156421
-
Alcohol-free red wine inhibits isoproterenol-induced cardiac remodeling in rats by the regulation of Akt1 and protein kinase C alpha/beta II
-
[81] Palfi, A., Bartha, E., Copf, L., Mark, L., Gallyas, F. Jr., Veres, B., Kalman, E., Pajor, L., Toth, K., Ohmacht, R., Sumegi, B., Alcohol-free red wine inhibits isoproterenol-induced cardiac remodeling in rats by the regulation of Akt1 and protein kinase C alpha/beta II. J Nutr Biochem 20 (2009), 418–425.
-
(2009)
J Nutr Biochem
, vol.20
, pp. 418-425
-
-
Palfi, A.1
Bartha, E.2
Copf, L.3
Mark, L.4
Gallyas, F.5
Veres, B.6
Kalman, E.7
Pajor, L.8
Toth, K.9
Ohmacht, R.10
Sumegi, B.11
-
82
-
-
58849163229
-
Preventive effects of nutritional doses of polyphenolic molecules on cardiac fibrosis associated with metabolic syndrome: involvement of osteopontin and oxidative stress
-
[82] Sutra, T., Oiry, C., Azay-Milhau, J., Youl, E., Magous, R., Teissèdre, P.L., Cristol, J.P., Cros, G., Preventive effects of nutritional doses of polyphenolic molecules on cardiac fibrosis associated with metabolic syndrome: involvement of osteopontin and oxidative stress. J Agric Food Chem 56 (2008), 11683–11687.
-
(2008)
J Agric Food Chem
, vol.56
, pp. 11683-11687
-
-
Sutra, T.1
Oiry, C.2
Azay-Milhau, J.3
Youl, E.4
Magous, R.5
Teissèdre, P.L.6
Cristol, J.P.7
Cros, G.8
-
83
-
-
3843054610
-
Red wine polyphenols prevent cardiovascular alterations in L-NAME-induced hypertension
-
[83] Pechánová, O., Bernátová, I., Babál, P., Martínez, M.C., Kyselá, S., Stvrtina, S., Andriantsitohaina, R., Red wine polyphenols prevent cardiovascular alterations in L-NAME-induced hypertension. J Hypertens 22 (2004), 1551–1559.
-
(2004)
J Hypertens
, vol.22
, pp. 1551-1559
-
-
Pechánová, O.1
Bernátová, I.2
Babál, P.3
Martínez, M.C.4
Kyselá, S.5
Stvrtina, S.6
Andriantsitohaina, R.7
-
84
-
-
84870702010
-
Both selenium deficiency and modest selenium supplementation lead to myocardial fibrosis in mice via effects on redox-methylation balance
-
[84] Metes-Kosik, N., Luptak, I., Dibello, P.M., Handy, D.E., Tang, S.S., Zhi, H., Qin, F., Jacobsen, D.W., Loscalzo, J., Joseph, J., Both selenium deficiency and modest selenium supplementation lead to myocardial fibrosis in mice via effects on redox-methylation balance. Mol Nutr Food Res 56 (2012), 1812–1824.
-
(2012)
Mol Nutr Food Res
, vol.56
, pp. 1812-1824
-
-
Metes-Kosik, N.1
Luptak, I.2
Dibello, P.M.3
Handy, D.E.4
Tang, S.S.5
Zhi, H.6
Qin, F.7
Jacobsen, D.W.8
Loscalzo, J.9
Joseph, J.10
-
85
-
-
84941369367
-
Endogenous contrast T1rho cardiac magnetic resonance for myocardial fibrosis in hypertrophic cardiomyopathy patients
-
[85] Wang, C., Zheng, J., Sun, J., Wang, Y., Xia, R., Yin, Q., Chen, W., Xu, Z., Liao, J., Zhang, B., Gao, F., Endogenous contrast T1rho cardiac magnetic resonance for myocardial fibrosis in hypertrophic cardiomyopathy patients. J Cardiol 66 (2015), 520–526.
-
(2015)
J Cardiol
, vol.66
, pp. 520-526
-
-
Wang, C.1
Zheng, J.2
Sun, J.3
Wang, Y.4
Xia, R.5
Yin, Q.6
Chen, W.7
Xu, Z.8
Liao, J.9
Zhang, B.10
Gao, F.11
-
86
-
-
84869412411
-
Recent advances in proteomic technologies applied to cardiovascular disease
-
[86] Napoli, C., Zullo, A., Picascia, A., Infante, T., Mancini, F.P., Recent advances in proteomic technologies applied to cardiovascular disease. J Cell Biochem 114 (2013), 7–20.
-
(2013)
J Cell Biochem
, vol.114
, pp. 7-20
-
-
Napoli, C.1
Zullo, A.2
Picascia, A.3
Infante, T.4
Mancini, F.P.5
-
87
-
-
84929149345
-
Noncoding RNA in cardiac fibrosis
-
[87] Wang, X., Liu, T., Zhao, Z., Li, G., Noncoding RNA in cardiac fibrosis. Int J Cardiol 187 (2015), 365–368.
-
(2015)
Int J Cardiol
, vol.187
, pp. 365-368
-
-
Wang, X.1
Liu, T.2
Zhao, Z.3
Li, G.4
-
88
-
-
84930966165
-
Novel microRNAs involved in regulation of cardiac fibrosis
-
[88] Mai, L., Xiao, L., Huang, Y., Mai, W., Novel microRNAs involved in regulation of cardiac fibrosis. Int J Cardiol 192 (2015), 14–15.
-
(2015)
Int J Cardiol
, vol.192
, pp. 14-15
-
-
Mai, L.1
Xiao, L.2
Huang, Y.3
Mai, W.4
-
89
-
-
84874157794
-
miR-21 promotes fibrogenic epithelial-to-mesenchymal transition of epicardial mesothelial cells involving programmed cell death 4 and sprouty-1
-
[89] Bronnum, H., Andersen, D.C., Schneider, M., Sandberg, M.B., Eskildsen, T., Nielsen, S.B., Kalluri, R., Sheikh, S.P., miR-21 promotes fibrogenic epithelial-to-mesenchymal transition of epicardial mesothelial cells involving programmed cell death 4 and sprouty-1. PLoS ONE, 8, 2013, e56280.
-
(2013)
PLoS ONE
, vol.8
, pp. e56280
-
-
Bronnum, H.1
Andersen, D.C.2
Schneider, M.3
Sandberg, M.B.4
Eskildsen, T.5
Nielsen, S.B.6
Kalluri, R.7
Sheikh, S.P.8
-
90
-
-
84875513890
-
NF-kappaB mediated miR-26a regulation in cardiac fibrosis
-
[90] Wei, C., Kim, I.K., Kumar, S., Jayasinghe, S., Hong, N., Castoldi, G., Catalucci, D., Jones, W.K., Gupta, S., NF-kappaB mediated miR-26a regulation in cardiac fibrosis. J Cell Physiol 228 (2013), 1433–1442.
-
(2013)
J Cell Physiol
, vol.228
, pp. 1433-1442
-
-
Wei, C.1
Kim, I.K.2
Kumar, S.3
Jayasinghe, S.4
Hong, N.5
Castoldi, G.6
Catalucci, D.7
Jones, W.K.8
Gupta, S.9
-
91
-
-
84867903854
-
Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function
-
[91] Bernardo, B.C., Gao, X.M., Winbanks, C.E., Boey, E.J., Tham, Y.K., Kiriazis, H., Gregorevic, P., Obad, S., Kauppinen, S., Du, X.J., Lin, R.C., McMullen, J.R., Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc Natl Acad Sci U S A 109 (2012), 17615–17620.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 17615-17620
-
-
Bernardo, B.C.1
Gao, X.M.2
Winbanks, C.E.3
Boey, E.J.4
Tham, Y.K.5
Kiriazis, H.6
Gregorevic, P.7
Obad, S.8
Kauppinen, S.9
Du, X.J.10
Lin, R.C.11
McMullen, J.R.12
-
92
-
-
84865206803
-
MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-beta1 pathway
-
[92] Pan, Z., Sun, X., Shan, H., Wang, N., Wang, J., Ren, J., Feng, S., Xie, L., Lu, C., Yuan, Y., Zhang, Y., Wang, Y., Lu, Y., Yang, B., MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-beta1 pathway. Circulation 126 (2012), 840–850.
-
(2012)
Circulation
, vol.126
, pp. 840-850
-
-
Pan, Z.1
Sun, X.2
Shan, H.3
Wang, N.4
Wang, J.5
Ren, J.6
Feng, S.7
Xie, L.8
Lu, C.9
Yuan, Y.10
Zhang, Y.11
Wang, Y.12
Lu, Y.13
Yang, B.14
-
93
-
-
84871641277
-
Angiotensin II induced differentially expressed microRNAs in adult rat cardiac fibroblasts
-
[93] Jiang, X., Ning, Q., Wang, J., Angiotensin II induced differentially expressed microRNAs in adult rat cardiac fibroblasts. J Physiol Sci 63 (2013), 31–38.
-
(2013)
J Physiol Sci
, vol.63
, pp. 31-38
-
-
Jiang, X.1
Ning, Q.2
Wang, J.3
-
94
-
-
84962808997
-
MicroRNA-29a suppresses cardiac fibroblasts proliferation via targeting VEGF-A/MAPK signal pathway
-
[94] Tao, H., Chen, Z.W., Yang, J.J., Shi, K.H., MicroRNA-29a suppresses cardiac fibroblasts proliferation via targeting VEGF-A/MAPK signal pathway. Int J Biol Macromol 88 (2016), 414–423.
-
(2016)
Int J Biol Macromol
, vol.88
, pp. 414-423
-
-
Tao, H.1
Chen, Z.W.2
Yang, J.J.3
Shi, K.H.4
-
95
-
-
81055147192
-
Maternal-foetal epigenetic interactions in the beginning of cardiovascular damage
-
[95] Napoli, C., Infante, T., Casamassimi, A., Maternal-foetal epigenetic interactions in the beginning of cardiovascular damage. Cardiovasc Res 92 (2015), 367–374.
-
(2015)
Cardiovasc Res
, vol.92
, pp. 367-374
-
-
Napoli, C.1
Infante, T.2
Casamassimi, A.3
-
96
-
-
84862095921
-
Primary prevention of atherosclerosis: a clinical challenge for the reversal of epigenetic mechanisms?
-
[96] Napoli, C., Crudele, V., Soricelli, A., Al-Omran, M., Vitale, N., Infante, T., Mancini, F.P., Primary prevention of atherosclerosis: a clinical challenge for the reversal of epigenetic mechanisms?. Circulation 125 (2012), 2363–2373.
-
(2012)
Circulation
, vol.125
, pp. 2363-2373
-
-
Napoli, C.1
Crudele, V.2
Soricelli, A.3
Al-Omran, M.4
Vitale, N.5
Infante, T.6
Mancini, F.P.7
-
97
-
-
84937214006
-
Epigenetic reprogramming in atherosclerosis
-
[97] Grimaldi, V., Vietri, M.T., Schiano, C., Picascia, A., De Pascale, M.R., Fiorito, C., Casamassimi, A., Napoli, C., Epigenetic reprogramming in atherosclerosis. Curr Atheroscler Rep., 17, 2015, 476.
-
(2015)
Curr Atheroscler Rep.
, vol.17
, pp. 476
-
-
Grimaldi, V.1
Vietri, M.T.2
Schiano, C.3
Picascia, A.4
De Pascale, M.R.5
Fiorito, C.6
Casamassimi, A.7
Napoli, C.8
|