-
1
-
-
84911874735
-
Lipids in the nervous system: From biochemistry and molecular biology to patho-physiology
-
Cermenati G, Mitro N, Audano M, Melcangi RC, Crestani M, De Fabiani E, et al. (2015). Lipids in the nervous system: from biochemistry and molecular biology to patho-physiology. Biochim Biophys Acta, 1851: 51-60
-
(2015)
Biochim Biophys Acta
, vol.1851
, pp. 51-60
-
-
Cermenati, G.1
Mitro, N.2
Audano, M.3
Melcangi, R.C.4
Crestani, M.5
De Fabiani, E.6
-
2
-
-
84930042438
-
Brain membrane lipids in major depression and anxiety disorders
-
Müller CP, Reichel M, Muhle C, Rhein C, Gulbins E, Kornhuber J (2015). Brain membrane lipids in major depression and anxiety disorders. Biochim Biophys Acta, 1851: 1052-1065
-
(2015)
Biochim Biophys Acta
, vol.1851
, pp. 1052-1065
-
-
Müller, C.P.1
Reichel, M.2
Muhle, C.3
Rhein, C.4
Gulbins, E.5
Kornhuber, J.6
-
3
-
-
84875679362
-
Mitochondria targeted therapeutic approaches in Parkinson's and Huntington's diseases
-
Chaturvedi RK, Beal MF (2013). Mitochondria targeted therapeutic approaches in Parkinson's and Huntington's diseases. Mol Cell Neurosci, 55: 101-114
-
(2013)
Mol Cell Neurosci
, vol.55
, pp. 101-114
-
-
Chaturvedi, R.K.1
Beal, M.F.2
-
4
-
-
84888083879
-
Role of the peroxisome proliferator-activated receptors (PPAR)-α, β/δ and γ triad in regulation of reactive oxygen species signaling in brain
-
Aleshin S, Reiser G (2013). Role of the peroxisome proliferator-activated receptors (PPAR)-α, β/δ and γ triad in regulation of reactive oxygen species signaling in brain. Biol Chem, 394: 1553-1570
-
(2013)
Biol Chem
, vol.394
, pp. 1553-1570
-
-
Aleshin, S.1
Reiser, G.2
-
5
-
-
84882430142
-
Peroxisome proliferator-activated receptor (PPAR)β/α, a possible nexus of PPARα-and PPARγ-dependent molecular pathways in neurodegenerative diseases: Review and novel hypotheses
-
Aleshin S, Strokin M, Sergeeva M, Reiser G (2013). Peroxisome proliferator-activated receptor (PPAR)β/α, a possible nexus of PPARα-and PPARγ-dependent molecular pathways in neurodegenerative diseases: Review and novel hypotheses. Neurochem Int, 63: 322-330
-
(2013)
Neurochem Int
, vol.63
, pp. 322-330
-
-
Aleshin, S.1
Strokin, M.2
Sergeeva, M.3
Reiser, G.4
-
6
-
-
67650792427
-
Peroxisome proliferator-activated receptor (PPAR)-γ positively controls and PPARα negatively controls cyclooxygenase-2 expression in rat brain astrocytes through a convergence on PPARβ/δ via mutual control of PPAR expression levels
-
Aleshin S, Grabeklis S, Hanck T, Sergeeva M, Reiser G (2009). Peroxisome proliferator-activated receptor (PPAR)-γ positively controls and PPARα negatively controls cyclooxygenase-2 expression in rat brain astrocytes through a convergence on PPARβ/δ via mutual control of PPAR expression levels. Mol Pharmacol, 76: 414-424
-
(2009)
Mol Pharmacol
, vol.76
, pp. 414-424
-
-
Aleshin, S.1
Grabeklis, S.2
Hanck, T.3
Sergeeva, M.4
Reiser, G.5
-
7
-
-
0033613869
-
Phytanic acid activates the peroxisome proliferator-activated receptor alpha (PPARalpha) in sterol carrier protein 2-/sterol carrier protein x-deficient mice
-
Ellinghaus P, Wolfrum C, Assmann G, Spener F, Seedorf U (1999). Phytanic acid activates the peroxisome proliferator-activated receptor alpha (PPARalpha) in sterol carrier protein 2-/sterol carrier protein x-deficient mice. J Biol Chem, 274: 2766-2772
-
(1999)
J Biol Chem
, vol.274
, pp. 2766-2772
-
-
Ellinghaus, P.1
Wolfrum, C.2
Assmann, G.3
Spener, F.4
Seedorf, U.5
-
8
-
-
0033739281
-
Pristanic acid and phytanic acid: Naturally occurring ligands for the nuclear receptor peroxisome proliferator-activated receptor α
-
Zomer AW, van Der Burg B, Jansen GA, Wanders RJ, Poll-The BT, van Der Saag PT (2000). Pristanic acid and phytanic acid: naturally occurring ligands for the nuclear receptor peroxisome proliferator-activated receptor α. J Lipid Res, 41: 1801-1807
-
(2000)
J Lipid Res
, vol.41
, pp. 1801-1807
-
-
Zomer, A.W.1
Van Der Burg, B.2
Jansen, G.A.3
Wanders, R.J.4
Poll-The, B.T.5
Van Der Saag, P.T.6
-
9
-
-
21744450600
-
A phytol-enriched diet induces changes in fatty acid metabolism in mice both via PPARα-dependent and-independent pathways
-
Gloerich J, van Vlies N, Jansen GA, Denis S, Ruiter JP, van Werkhoven MA, et al. (2005). A phytol-enriched diet induces changes in fatty acid metabolism in mice both via PPARα-dependent and-independent pathways. J Lipid Res, 46: 716-726
-
(2005)
J Lipid Res
, vol.46
, pp. 716-726
-
-
Gloerich, J.1
Van Vlies, N.2
Jansen, G.A.3
Denis, S.4
Ruiter, J.P.5
Van Werkhoven, M.A.6
-
10
-
-
84892144705
-
Regulation of energy metabolism by long-chain fatty acids
-
Nakamura MT, Yudell BE, Loor JJ (2014). Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res, 53: 124-144
-
(2014)
Prog Lipid Res
, vol.53
, pp. 124-144
-
-
Nakamura, M.T.1
Yudell, B.E.2
Loor, J.J.3
-
11
-
-
84864042465
-
X-linked adrenoleukodystrophy: Clinical, metabolic, genetic and pathophysiological aspects
-
Kemp S, Berger J, Aubourg P (2012). X-linked adrenoleukodystrophy: clinical, metabolic, genetic and pathophysiological aspects. Biochim Biophys Acta, 1822: 1465-1474
-
(2012)
Biochim Biophys Acta
, vol.1822
, pp. 1465-1474
-
-
Kemp, S.1
Berger, J.2
Aubourg, P.3
-
12
-
-
0001435689
-
On the presence of 3,7,11,15-tetramethylhexadecanoic acid (phytanic acid) in the cholesterol esters and other lipoid fractions of the organs in a case of a disease of unknown origin (possibly heredopathia atactica polyneuritiformis, refsum's syndrome)
-
Klenk E, Kahike W (1963). [On The Presence Of 3,7,11,15-Tetramethylhexadecanoic Acid (Phytanic Acid) In The Cholesterol Esters And Other Lipoid Fractions Of The Organs In A Case Of A Disease Of Unknown Origin (Possibly Heredopathia Atactica Polyneuritiformis, Refsum's Syndrome)]. Hoppe Seylers Z Physiol Chem, 333: 133-139
-
(1963)
Hoppe Seylers Z Physiol Chem
, vol.333
, pp. 133-139
-
-
Klenk, E.1
Kahike, W.2
-
13
-
-
80054704470
-
Peroxisomal alterations in Alzheimer's disease
-
Kou J, Kovacs GG, Hoftberger R, Kulik W, Brodde A, Forss-Petter S, et al. (2011). Peroxisomal alterations in Alzheimer's disease. Acta neuropathol, 122: 271-283
-
(2011)
Acta Neuropathol
, vol.122
, pp. 271-283
-
-
Kou, J.1
Kovacs, G.G.2
Hoftberger, R.3
Kulik, W.4
Brodde, A.5
Forss-Petter, S.6
-
14
-
-
0027384310
-
Effect of fatty acids on energy coupling processes in mitochondria
-
Wojtczak L, Schönfeld P (1993). Effect of fatty acids on energy coupling processes in mitochondria. Biochim Biophys Acta, 1183: 41-57
-
(1993)
Biochim Biophys Acta
, vol.1183
, pp. 41-57
-
-
Wojtczak, L.1
Schönfeld, P.2
-
15
-
-
46449087496
-
Fatty acids as modulators of the cellular production of reactive oxygen species
-
Schönfeld P, Wojtczak L (2008). Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic Biol Med, 45: 231-241
-
(2008)
Free Radic Biol Med
, vol.45
, pp. 231-241
-
-
Schönfeld, P.1
Wojtczak, L.2
-
16
-
-
77956631199
-
The mitochondria permeability transition pore complex in the brain with interacting proteins-promising targets for protection in neurodegenerative diseases
-
Azarashvili T, Stricker R, Reiser G (2010). The mitochondria permeability transition pore complex in the brain with interacting proteins-promising targets for protection in neurodegenerative diseases. Biol Chem, 391: 619-629
-
(2010)
Biol Chem
, vol.391
, pp. 619-629
-
-
Azarashvili, T.1
Stricker, R.2
Reiser, G.3
-
17
-
-
84883776628
-
The mitochondrial permeability transition pore: A mystery solved?
-
Bernardi P (2013). The mitochondrial permeability transition pore: a mystery solved? Frontiers physiol, 4: 95
-
(2013)
Frontiers Physiol
, vol.4
, pp. 95
-
-
Bernardi, P.1
-
18
-
-
84885023188
-
Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain
-
Schönfeld P, Reiser G (2013). Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain. J Cereb Blood Flow Metab, 33: 1493-1499
-
(2013)
J Cereb Blood Flow Metab
, vol.33
, pp. 1493-1499
-
-
Schönfeld, P.1
Reiser, G.2
-
19
-
-
78651427556
-
Oxygen radicals shaping evolution: Why fatty acid catabolism leads to peroxisomes while neurons do without it: FADH2/NADH flux ratios determining mitochondrial radical formation were crucial for the eukaryotic invention of peroxisomes and catabolic tissue differentiation
-
Speijer D (2011). Oxygen radicals shaping evolution: why fatty acid catabolism leads to peroxisomes while neurons do without it: FADH2/NADH flux ratios determining mitochondrial radical formation were crucial for the eukaryotic invention of peroxisomes and catabolic tissue differentiation. BioEssays, 33: 88-94
-
(2011)
BioEssays
, vol.33
, pp. 88-94
-
-
Speijer, D.1
-
20
-
-
0023665017
-
Fatty acid oxidation in rat brain is limited by the low activity of 3-ketoacyl-coenzyme A thiolase
-
Yang SY, He XY, Schulz H (1987). Fatty acid oxidation in rat brain is limited by the low activity of 3-ketoacyl-coenzyme A thiolase. J Biol Chem, 262: 13027-13032
-
(1987)
J Biol Chem
, vol.262
, pp. 13027-13032
-
-
Yang, S.Y.1
He, X.Y.2
Schulz, H.3
-
21
-
-
0036421318
-
A novel brain-expressed protein related to carnitine palmitoyltransferase i
-
Price N, van der Leij F, Jackson V, Corstorphine C, Thomson R, Sorensen A, et al. (2002). A novel brain-expressed protein related to carnitine palmitoyltransferase I. Genomics, 80: 433-442
-
(2002)
Genomics
, vol.80
, pp. 433-442
-
-
Price, N.1
Van Der Leij, F.2
Jackson, V.3
Corstorphine, C.4
Thomson, R.5
Sorensen, A.6
-
22
-
-
33646576512
-
The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis
-
Wolfgang MJ, Kurama T, Dai Y, Suwa A, Asaumi M, Matsumoto S, et al. (2006). The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis. Proc Natl Acad Sci U S A, 103: 7282-7287
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 7282-7287
-
-
Wolfgang, M.J.1
Kurama, T.2
Dai, Y.3
Suwa, A.4
Asaumi, M.5
Matsumoto, S.6
-
23
-
-
33746366462
-
Biochemistry of mammalian peroxisomes revisited
-
Wanders RJ, Waterham HR (2006). Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem, 75: 295-332
-
(2006)
Annu Rev Biochem
, vol.75
, pp. 295-332
-
-
Wanders, R.J.1
Waterham, H.R.2
-
24
-
-
77956867734
-
Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism
-
Van Veldhoven PP (2010). Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J Lipid Res, 51: 2863-2895
-
(2010)
J Lipid Res
, vol.51
, pp. 2863-2895
-
-
Van Veldhoven, P.P.1
-
25
-
-
84862874864
-
The peroxisome: An update on mysteries
-
Islinger M, Grille S, Fahimi HD, Schrader M (2012). The peroxisome: an update on mysteries. Histochem Cell Biol, 137: 547-574
-
(2012)
Histochem Cell Biol
, vol.137
, pp. 547-574
-
-
Islinger, M.1
Grille, S.2
Fahimi, H.D.3
Schrader, M.4
-
26
-
-
84895164102
-
Brain peroxisomes
-
Trompier D, Vejux A, Zarrouk A, Gondcaille C, Geillon F, Nury T, et al. (2014). Brain peroxisomes. Biochimie, 98: 102-110
-
(2014)
Biochimie
, vol.98
, pp. 102-110
-
-
Trompier, D.1
Vejux, A.2
Zarrouk, A.3
Gondcaille, C.4
Geillon, F.5
Nury, T.6
-
28
-
-
84895152385
-
Pathophysiology of X-linked adrenoleukodystrophy
-
Berger J, Forss-Petter S, Eichler FS (2014). Pathophysiology of X-linked adrenoleukodystrophy. Biochimie, 98: 135-142
-
(2014)
Biochimie
, vol.98
, pp. 135-142
-
-
Berger, J.1
Forss-Petter, S.2
Eichler, F.S.3
-
29
-
-
0023201793
-
Adrenoleukodystrophy: Biochemical procedures in diagnosis, prevention and treatment
-
Watkins PA, Naidu S, Moser HW (1987). Adrenoleukodystrophy: biochemical procedures in diagnosis, prevention and treatment. J Inherit Metab Dis, 10 Suppl 1: 46-53
-
(1987)
J Inherit Metab Dis
, vol.10
, pp. 46-53
-
-
Watkins, P.A.1
Naidu, S.2
Moser, H.W.3
-
30
-
-
84862011841
-
Phytanic acid disturbs mitochondrial homeostasis in heart of young rats: A possible pathomechanism of cardiomyopathy in Refsum disease
-
Grings M, Tonin AM, Knebel LA, Zanatta A, Moura AP, Filho CS, et al. (2012). Phytanic acid disturbs mitochondrial homeostasis in heart of young rats: a possible pathomechanism of cardiomyopathy in Refsum disease. Mol Cell Biochem, 366: 335-343
-
(2012)
Mol Cell Biochem
, vol.366
, pp. 335-343
-
-
Grings, M.1
Tonin, A.M.2
Knebel, L.A.3
Zanatta, A.4
Moura, A.P.5
Filho, C.S.6
-
31
-
-
84864032314
-
Oxidative stress underlying axonal degeneration in adrenoleukodystrophy: A paradigm for multifactorial neurodegenerative diseases?
-
Galea E, Launay N, Portero-Otin M, Ruiz M, Pamplona R, Aubourg P, et al. (2012). Oxidative stress underlying axonal degeneration in adrenoleukodystrophy: a paradigm for multifactorial neurodegenerative diseases? Biochim Biophys Acta, 1822: 1475-1488
-
(2012)
Biochim Biophys Acta
, vol.1822
, pp. 1475-1488
-
-
Galea, E.1
Launay, N.2
Portero-Otin, M.3
Ruiz, M.4
Pamplona, R.5
Aubourg, P.6
-
32
-
-
84895106927
-
Mitochondrial dysfunction and oxidative damage cooperatively fuel axonal degeneration in X-linked adrenoleukodystrophy
-
Fourcade S, Lopez-Erauskin J, Ruiz M, Ferrer I, Pujol A (2014). Mitochondrial dysfunction and oxidative damage cooperatively fuel axonal degeneration in X-linked adrenoleukodystrophy. Biochimie, 98: 143-149
-
(2014)
Biochimie
, vol.98
, pp. 143-149
-
-
Fourcade, S.1
Lopez-Erauskin, J.2
Ruiz, M.3
Ferrer, I.4
Pujol, A.5
-
33
-
-
77950274760
-
Phytanic acid-an overlooked bioactive fatty acid in dairy fat?
-
Hellgren LI (2010). Phytanic acid-an overlooked bioactive fatty acid in dairy fat? Ann N Y Acad Sci, 1190: 42-49
-
(2010)
Ann N y Acad Sci
, vol.1190
, pp. 42-49
-
-
Hellgren, L.I.1
-
34
-
-
1542724509
-
Molecular basis of Refsum disease: Sequence variations in phytanoyl-CoA hydroxylase (PHYH) and the PTS2 receptor (PEX7)
-
Jansen GA, Waterham HR, Wanders RJ (2004). Molecular basis of Refsum disease: sequence variations in phytanoyl-CoA hydroxylase (PHYH) and the PTS2 receptor (PEX7). Hum Mutat, 23: 209-218
-
(2004)
Hum Mutat
, vol.23
, pp. 209-218
-
-
Jansen, G.A.1
Waterham, H.R.2
Wanders, R.J.3
-
35
-
-
3843053654
-
Liver fatty acid-binding protein gene ablation inhibits branched-chain fatty acid metabolism in cultured primary hepatocytes
-
Atshaves BP, McIntosh AM, Lyuksyutova OI, Zipfel W, Webb WW, Schroeder F (2004). Liver fatty acid-binding protein gene ablation inhibits branched-chain fatty acid metabolism in cultured primary hepatocytes. J Biol Chem, 279: 30954-30965
-
(2004)
J Biol Chem
, vol.279
, pp. 30954-30965
-
-
Atshaves, B.P.1
McIntosh, A.M.2
Lyuksyutova, O.I.3
Zipfel, W.4
Webb, W.W.5
Schroeder, F.6
-
36
-
-
0036720505
-
Expression of fatty acid binding proteins inhibits lipid accumulation and alters toxicity in L cell fibroblasts
-
Atshaves BP, Storey SM, Petrescu A, Greenberg CC, Lyuksyutova OI, Smith R, 3rd, et al. (2002). Expression of fatty acid binding proteins inhibits lipid accumulation and alters toxicity in L cell fibroblasts. Am J Physiol Cell Physiol, 283: C688-703
-
(2002)
Am J Physiol Cell Physiol
, vol.283
, pp. C688-C703
-
-
Atshaves, B.P.1
Storey, S.M.2
Petrescu, A.3
Greenberg, C.C.4
Lyuksyutova, O.I.5
Smith, R.6
-
37
-
-
0020058875
-
Role of lipids in the Neurospora crassa membrane: IV. Biochemical and electrophysiological changes caused by growth on phytanic acid
-
Friedman KJ, Glick D (1982). Role of lipids in the Neurospora crassa membrane: IV. Biochemical and electrophysiological changes caused by growth on phytanic acid. J Membr Biol, 64: 1-9
-
(1982)
J Membr Biol
, vol.64
, pp. 1-9
-
-
Friedman, K.J.1
Glick, D.2
-
38
-
-
0023790651
-
Proton conductance caused by long-chain fatty acids in phospholipid bilayer membranes
-
Gutknecht J (1988). Proton conductance caused by long-chain fatty acids in phospholipid bilayer membranes. J Membr Biol, 106: 83-93
-
(1988)
J Membr Biol
, vol.106
, pp. 83-93
-
-
Gutknecht, J.1
-
39
-
-
0343835826
-
Refsum disease diagnostic marker phytanic acid alters the physical state of membrane proteins of liver mitochondria
-
Schönfeld P, Struy H (1999). Refsum disease diagnostic marker phytanic acid alters the physical state of membrane proteins of liver mitochondria. FEBS Lett, 457: 179-183
-
(1999)
FEBS Lett
, vol.457
, pp. 179-183
-
-
Schönfeld, P.1
Struy, H.2
-
40
-
-
84868600772
-
Very long-chain fatty acids: Elongation, physiology and related disorders
-
Kihara A (2012). Very long-chain fatty acids: elongation, physiology and related disorders. J biochem, 152: 387-395
-
(2012)
J Biochem
, vol.152
, pp. 387-395
-
-
Kihara, A.1
-
41
-
-
0031730433
-
Gene redundancy and pharmacological gene therapy: Implications for X-linked adrenoleukodystrophy
-
Kemp S, Wei HM, Lu JF, Braiterman LT, McGuinness MC, Moser AB, et al. (1998). Gene redundancy and pharmacological gene therapy: implications for X-linked adrenoleukodystrophy. Nat Med, 4: 1261-1268
-
(1998)
Nat Med
, vol.4
, pp. 1261-1268
-
-
Kemp, S.1
Wei, H.M.2
Lu, J.F.3
Braiterman, L.T.4
McGuinness, M.C.5
Moser, A.B.6
-
42
-
-
64449084971
-
Organelle dynamics and dysfunction: A closer link between peroxisomes and mitochondria
-
Camões F, Bonekamp NA, Delille HK, Schrader M (2009). Organelle dynamics and dysfunction: A closer link between peroxisomes and mitochondria. J Inherit Metab Dis, 32: 163-180
-
(2009)
J Inherit Metab Dis
, vol.32
, pp. 163-180
-
-
Camões, F.1
Bonekamp, N.A.2
Delille, H.K.3
Schrader, M.4
-
43
-
-
0029094333
-
Interactions of a very long chain fatty acid with model membranes and serum albumin. Implications for the pathogenesis of adrenoleukodystrophy
-
Ho JK, Moser H, Kishimoto Y, Hamilton JA (1995). Interactions of a very long chain fatty acid with model membranes and serum albumin. Implications for the pathogenesis of adrenoleukodystrophy. J Clin Invest, 96: 1455-1463
-
(1995)
J Clin Invest
, vol.96
, pp. 1455-1463
-
-
Ho, J.K.1
Moser, H.2
Kishimoto, Y.3
Hamilton, J.A.4
-
44
-
-
0032202154
-
Accumulation of very-long-chain fatty acids in membrane glycerolipids is associated with dramatic alterations in plant morphology
-
Millar AA, Wrischer M, Kunst L (1998). Accumulation of very-long-chain fatty acids in membrane glycerolipids is associated with dramatic alterations in plant morphology. The Plant cell, 10: 1889-1902
-
(1998)
The Plant Cell
, vol.10
, pp. 1889-1902
-
-
Millar, A.A.1
Wrischer, M.2
Kunst, L.3
-
45
-
-
6344243204
-
In brain mitochondria the branched-chain fatty acid phytanic acid impairs energy transduction and sensitizes for permeability transition
-
Schönfeld P, Kahlert S, Reiser G (2004). In brain mitochondria the branched-chain fatty acid phytanic acid impairs energy transduction and sensitizes for permeability transition. Biochem J, 383: 121-128
-
(2004)
Biochem J
, vol.383
, pp. 121-128
-
-
Schönfeld, P.1
Kahlert, S.2
Reiser, G.3
-
46
-
-
0031590634
-
Fatty acid-promoted mitochondrial permeability transition by membrane depolarization and binding to the ADP/ATP carrier
-
Schönfeld P, Bohnensack R (1997). Fatty acid-promoted mitochondrial permeability transition by membrane depolarization and binding to the ADP/ATP carrier. FEBS Lett, 420: 167-170
-
(1997)
FEBS Lett
, vol.420
, pp. 167-170
-
-
Schönfeld, P.1
Bohnensack, R.2
-
47
-
-
0342601449
-
Thyroid hormone-induced expression of the ADP/ATP carrier and its effect on fatty acid-induced uncoupling of oxidative phosphorylation
-
Schönfeld P, Wieckowski MR, Wojtczak L (1997). Thyroid hormone-induced expression of the ADP/ATP carrier and its effect on fatty acid-induced uncoupling of oxidative phosphorylation. FEBS Lett, 416: 19-22
-
(1997)
FEBS Lett
, vol.416
, pp. 19-22
-
-
Schönfeld, P.1
Wieckowski, M.R.2
Wojtczak, L.3
-
48
-
-
0027945163
-
The reconstituted ADP/ATP carrier can mediate H+ transport by free fatty acids, which is further stimulated by mersalyl
-
Brustovetsky N, Klingenberg M (1994). The reconstituted ADP/ATP carrier can mediate H+ transport by free fatty acids, which is further stimulated by mersalyl. J Biol Chem, 269: 27329-27336
-
(1994)
J Biol Chem
, vol.269
, pp. 27329-27336
-
-
Brustovetsky, N.1
Klingenberg, M.2
-
49
-
-
0025930608
-
Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation
-
Skulachev VP (1991). Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation. FEBS Lett, 294: 158-162
-
(1991)
FEBS Lett
, vol.294
, pp. 158-162
-
-
Skulachev, V.P.1
-
50
-
-
39749127916
-
Phytanic acid impairs mitochondrial respiration through protonophoric action
-
Komen JC, Distelmaier F, Koopman WJ, Wanders RJ, Smeitink J, Willems PH (2007). Phytanic acid impairs mitochondrial respiration through protonophoric action. Cell Mol Life Sci, 64: 3271-3281
-
(2007)
Cell Mol Life Sci
, vol.64
, pp. 3271-3281
-
-
Komen, J.C.1
Distelmaier, F.2
Koopman, W.J.3
Wanders, R.J.4
Smeitink, J.5
Willems, P.H.6
-
51
-
-
33745085492
-
A study of the cytotoxicity of branched-chain phytanic acid with mitochondria and rat brain astrocytes
-
Schönfeld P, Kahlert S, Reiser G (2006). A study of the cytotoxicity of branched-chain phytanic acid with mitochondria and rat brain astrocytes. Exp Gerontol, 41: 688-696
-
(2006)
Exp Gerontol
, vol.41
, pp. 688-696
-
-
Schönfeld, P.1
Kahlert, S.2
Reiser, G.3
-
52
-
-
0029116916
-
The mitochondrial permeability transition
-
Zoratti M, Szabo I (1995). The mitochondrial permeability transition. Biochim Biophys Acta, 1241: 139-176
-
(1995)
Biochim Biophys Acta
, vol.1241
, pp. 139-176
-
-
Zoratti, M.1
Szabo, I.2
-
53
-
-
0029953927
-
Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+
-
Brustovetsky N, Klingenberg M (1996). Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+. Biochemistry, 35: 8483-8488
-
(1996)
Biochemistry
, vol.35
, pp. 8483-8488
-
-
Brustovetsky, N.1
Klingenberg, M.2
-
54
-
-
33646354917
-
Rotenone-like action of the branched-chain phytanic acid induces oxidative stress in mitochondria
-
Schönfeld P, Reiser G (2006). Rotenone-like action of the branched-chain phytanic acid induces oxidative stress in mitochondria. J Biol Chem, 281: 7136-7142
-
(2006)
J Biol Chem
, vol.281
, pp. 7136-7142
-
-
Schönfeld, P.1
Reiser, G.2
-
55
-
-
34547098640
-
Fatty acids decrease mitochondrial generation of reactive oxygen species at the reverse electron transport but increase it at the forward transport
-
Schönfeld P, Wojtczak L (2007). Fatty acids decrease mitochondrial generation of reactive oxygen species at the reverse electron transport but increase it at the forward transport. Biochim Biophys Acta, 1767: 1032-1040
-
(2007)
Biochim Biophys Acta
, vol.1767
, pp. 1032-1040
-
-
Schönfeld, P.1
Wojtczak, L.2
-
56
-
-
33644508363
-
Mechanism of toxicity of the branched-chain fatty acid phytanic acid, a marker of Refsum disease, in astrocytes involves mitochondrial impairment
-
Reiser G, Schönfeld P, Kahlert S (2006). Mechanism of toxicity of the branched-chain fatty acid phytanic acid, a marker of Refsum disease, in astrocytes involves mitochondrial impairment. Int J Dev Neurosci, 24: 113-122
-
(2006)
Int J Dev Neurosci
, vol.24
, pp. 113-122
-
-
Reiser, G.1
Schönfeld, P.2
Kahlert, S.3
-
57
-
-
11844255781
-
The Refsum disease marker phytanic acid, a branched chain fatty acid, affects Ca2+ homeostasis and mitochondria, and reduces cell viability in rat hippocampal astrocytes
-
Kahlert S, Schönfeld P, Reiser G (2005). The Refsum disease marker phytanic acid, a branched chain fatty acid, affects Ca2+ homeostasis and mitochondria, and reduces cell viability in rat hippocampal astrocytes. Neurobiol Dis, 18: 110-118
-
(2005)
Neurobiol Dis
, vol.18
, pp. 110-118
-
-
Kahlert, S.1
Schönfeld, P.2
Reiser, G.3
-
58
-
-
70349783629
-
The influence of the branched-chain fatty acids pristanic acid and Refsum disease-associated phytanic acid on mitochondrial functions and calcium regulation of hippocampal neurons, astrocytes, and oligodendrocytes
-
Rönicke S, Kruska N, Kahlert S, Reiser G (2009). The influence of the branched-chain fatty acids pristanic acid and Refsum disease-associated phytanic acid on mitochondrial functions and calcium regulation of hippocampal neurons, astrocytes, and oligodendrocytes. Neurobiol Dis, 36: 401-410
-
(2009)
Neurobiol Dis
, vol.36
, pp. 401-410
-
-
Rönicke, S.1
Kruska, N.2
Kahlert, S.3
Reiser, G.4
-
59
-
-
0037838892
-
The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids
-
Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, et al. (2003). The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem, 278: 11303-11311
-
(2003)
J Biol Chem
, vol.278
, pp. 11303-11311
-
-
Briscoe, C.P.1
Tadayyon, M.2
Andrews, J.L.3
Benson, W.G.4
Chambers, J.K.5
Eilert, M.M.6
-
60
-
-
0037434991
-
Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40
-
Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, et al. (2003). Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40. Nature, 422: 173-176
-
(2003)
Nature
, vol.422
, pp. 173-176
-
-
Itoh, Y.1
Kawamata, Y.2
Harada, M.3
Kobayashi, M.4
Fujii, R.5
Fukusumi, S.6
-
61
-
-
25144470087
-
Oleic acid interacts with GPR40 to induce Ca2+ signaling in rat islet β-cells: Mediation by PLC and L-type Ca2+ channel and link to insulin release
-
Fujiwara K, Maekawa F, Yada T (2005). Oleic acid interacts with GPR40 to induce Ca2+ signaling in rat islet β-cells: mediation by PLC and L-type Ca2+ channel and link to insulin release. Am J Physiol Endocrinol Metab, 289: E670-677
-
(2005)
Am J Physiol Endocrinol Metab
, vol.289
, pp. E670-E677
-
-
Fujiwara, K.1
Maekawa, F.2
Yada, T.3
-
62
-
-
57349141546
-
Linoleic acid stimulates gluconeogenesis via Ca2+/PLC, cPLA2, and PPAR pathways through GPR40 in primary cultured chicken hepatocytes
-
Suh HN, Huong HT, Song CH, Lee JH, Han HJ (2008). Linoleic acid stimulates gluconeogenesis via Ca2+/PLC, cPLA2, and PPAR pathways through GPR40 in primary cultured chicken hepatocytes. Am J Physiol Cell Physiol, 295: C1518-1527
-
(2008)
Am J Physiol Cell Physiol
, vol.295
, pp. C1518-C1527
-
-
Suh, H.N.1
Huong, H.T.2
Song, C.H.3
Lee, J.H.4
Han, H.J.5
-
63
-
-
79958185429
-
Phytanic acid and pristanic acid, branched-chain fatty acids associated with Refsum disease and other inherited peroxisomal disorders, mediate intracellular Ca2+ signaling through activation of free fatty acid receptor GPR40
-
Kruska N, Reiser G (2011). Phytanic acid and pristanic acid, branched-chain fatty acids associated with Refsum disease and other inherited peroxisomal disorders, mediate intracellular Ca2+ signaling through activation of free fatty acid receptor GPR40. Neurobiol Dis, 43: 465-472
-
(2011)
Neurobiol Dis
, vol.43
, pp. 465-472
-
-
Kruska, N.1
Reiser, G.2
-
64
-
-
0027532282
-
Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters
-
Mosser J, Douar AM, Sarde CO, Kioschis P, Feil R, Moser H, et al. (1993). Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature, 361: 726-730
-
(1993)
Nature
, vol.361
, pp. 726-730
-
-
Mosser, J.1
Douar, A.M.2
Sarde, C.O.3
Kioschis, P.4
Feil, R.5
Moser, H.6
-
65
-
-
44849118490
-
Toxic effects of X-linked adrenoleukodystrophy-associated, very long chain fatty acids on glial cells and neurons from rat hippocampus in culture
-
Hein S, Schönfeld P, Kahlert S, Reiser G (2008). Toxic effects of X-linked adrenoleukodystrophy-associated, very long chain fatty acids on glial cells and neurons from rat hippocampus in culture. Hum Mol Genet, 17: 1750-1761
-
(2008)
Hum Mol Genet
, vol.17
, pp. 1750-1761
-
-
Hein, S.1
Schönfeld, P.2
Kahlert, S.3
Reiser, G.4
-
66
-
-
84887404159
-
The role of myelin and oligodendrocytes in axonal energy metabolism
-
Saab AS, Tzvetanova ID, Nave KA (2013). The role of myelin and oligodendrocytes in axonal energy metabolism. Curr Opin Neurobiol, 23: 1065-1072
-
(2013)
Curr Opin Neurobiol
, vol.23
, pp. 1065-1072
-
-
Saab, A.S.1
Tzvetanova, I.D.2
Nave, K.A.3
-
67
-
-
84922573084
-
Astrocytes and mitochondria from adrenoleukodystrophy protein (ABCD1)-deficient mice reveal that the adrenoleukodystrophy-associated very long-chain fatty acids target several cellular energy-dependent functions
-
Kruska N, Schönfeld P, Pujol A, Reiser G (2015). Astrocytes and mitochondria from adrenoleukodystrophy protein (ABCD1)-deficient mice reveal that the adrenoleukodystrophy-associated very long-chain fatty acids target several cellular energy-dependent functions. Biochim Biophys Acta, 1852: 925-936
-
(2015)
Biochim Biophys Acta
, vol.1852
, pp. 925-936
-
-
Kruska, N.1
Schönfeld, P.2
Pujol, A.3
Reiser, G.4
-
68
-
-
0037219061
-
Role of ALDP (ABCD1) and mitochondria in X-linked adrenoleukodystrophy
-
McGuinness MC, Lu JF, Zhang HP, Dong GX, Heinzer AK, Watkins PA, et al. (2003). Role of ALDP (ABCD1) and mitochondria in X-linked adrenoleukodystrophy. Mol Cell Biol, 23: 744-753
-
(2003)
Mol Cell Biol
, vol.23
, pp. 744-753
-
-
McGuinness, M.C.1
Lu, J.F.2
Zhang, H.P.3
Dong, G.X.4
Heinzer, A.K.5
Watkins, P.A.6
-
69
-
-
0035005817
-
The dorsal root ganglia in adrenomyeloneuropathy: Neuronal atrophy and abnormal mitochondria
-
Powers JM, DeCiero DP, Cox C, Richfield EK, Ito M, Moser AB, et al. (2001). The dorsal root ganglia in adrenomyeloneuropathy: neuronal atrophy and abnormal mitochondria. J Neuropathol Exp Neurol, 60: 493-501
-
(2001)
J Neuropathol Exp Neurol
, vol.60
, pp. 493-501
-
-
Powers, J.M.1
DeCiero, D.P.2
Cox, C.3
Richfield, E.K.4
Ito, M.5
Moser, A.B.6
-
70
-
-
18144362923
-
Accumulation of very long-chain fatty acids does not affect mitochondrial function in adrenoleukodystrophy protein deficiency
-
Oezen I, Rossmanith W, Forss-Petter S, Kemp S, Voigtlander T, Moser-Thier K, et al. (2005). Accumulation of very long-chain fatty acids does not affect mitochondrial function in adrenoleukodystrophy protein deficiency. Hum Mol Genet, 14: 1127-1137
-
(2005)
Hum Mol Genet
, vol.14
, pp. 1127-1137
-
-
Oezen, I.1
Rossmanith, W.2
Forss-Petter, S.3
Kemp, S.4
Voigtlander, T.5
Moser-Thier, K.6
-
71
-
-
84881229511
-
Impaired mitochondrial oxidative phosphorylation in the peroxisomal disease X-linked adrenoleukodystrophy
-
Lopez-Erauskin J, Galino J, Ruiz M, Cuezva JM, Fabregat I, Cacabelos D, et al. (2013). Impaired mitochondrial oxidative phosphorylation in the peroxisomal disease X-linked adrenoleukodystrophy. Hum Mol Genet, 22: 3296-3305
-
(2013)
Hum Mol Genet
, vol.22
, pp. 3296-3305
-
-
Lopez-Erauskin, J.1
Galino, J.2
Ruiz, M.3
Cuezva, J.M.4
Fabregat, I.5
Cacabelos, D.6
-
72
-
-
84880960883
-
Pioglitazone halts axonal degeneration in a mouse model of X-linked adrenoleukodystrophy
-
Morató L, Galino J, Ruiz M, Calingasan NY, Starkov AA, Dumont M, et al. (2013). Pioglitazone halts axonal degeneration in a mouse model of X-linked adrenoleukodystrophy. Brain, 136: 2432-2443
-
(2013)
Brain
, vol.136
, pp. 2432-2443
-
-
Morató, L.1
Galino, J.2
Ruiz, M.3
Calingasan, N.Y.4
Starkov, A.A.5
Dumont, M.6
-
73
-
-
84874115017
-
Marked inhibition of Na+, K+-ATPase activity and the respiratory chain by phytanic acid in cerebellum from young rats: Possible underlying mechanisms of cerebellar ataxia in Refsum disease
-
Busanello EN, Zanatta A, Tonin AM, Viegas CM, Vargas CR, Leipnitz G, et al. (2013). Marked inhibition of Na+, K+-ATPase activity and the respiratory chain by phytanic acid in cerebellum from young rats: possible underlying mechanisms of cerebellar ataxia in Refsum disease. J Bioenerg Biomembr, 45: 137-144
-
(2013)
J Bioenerg Biomembr
, vol.45
, pp. 137-144
-
-
Busanello, E.N.1
Zanatta, A.2
Tonin, A.M.3
Viegas, C.M.4
Vargas, C.R.5
Leipnitz, G.6
-
74
-
-
84922032834
-
Phytanic acid induces Neuro2a cell death via histone deacetylase activation and mitochondrial dysfunction
-
Nagai K (2015). Phytanic acid induces Neuro2a cell death via histone deacetylase activation and mitochondrial dysfunction. Neurotoxicol teratol, 48: 33-39
-
(2015)
Neurotoxicol Teratol
, vol.48
, pp. 33-39
-
-
Nagai, K.1
-
75
-
-
84927125281
-
ABCD1 deletion-induced mitochondrial dysfunction is corrected by SAHA: Implication for adrenoleukodystrophy
-
Baarine M, Beeson C, Singh A, Singh I (2015). ABCD1 deletion-induced mitochondrial dysfunction is corrected by SAHA: implication for adrenoleukodystrophy. J Neurochem, 133: 380-396
-
(2015)
J Neurochem
, vol.133
, pp. 380-396
-
-
Baarine, M.1
Beeson, C.2
Singh, A.3
Singh, I.4
-
76
-
-
79952409731
-
Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection
-
Zündorf G, Reiser G (2011). Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid Redox Signal, 14: 1275-1288
-
(2011)
Antioxid Redox Signal
, vol.14
, pp. 1275-1288
-
-
Zündorf, G.1
Reiser, G.2
|