-
2
-
-
0023665017
-
Fatty acid oxidation in rat brain is limited by the low activity of 3-ketoacyl-coenzyme A thiolase
-
Yang SY, He XY, Schulz H. 1987. Fatty acid oxidation in rat brain is limited by the low activity of 3-ketoacyl-coenzyme A thiolase. J Biol Chem 262: 13027-32.
-
(1987)
J Biol Chem
, vol.262
, pp. 13027-32
-
-
Yang, S.Y.1
He, X.Y.2
Schulz, H.3
-
3
-
-
0033525924
-
Oxidative phosphorylation at the fin de siecle
-
Saraste M. 1999. Oxidative phosphorylation at the fin de siecle. Science 283: 1488-93.
-
(1999)
Science
, vol.283
, pp. 1488-93
-
-
Saraste, M.1
-
4
-
-
0034467677
-
Localization of the site of oxygen radical generation inside the complex I of heart and nonsynaptic brain mammalian mitochondria
-
Herrero A, Barja G. 2000. Localization of the site of oxygen radical generation inside the complex I of heart and nonsynaptic brain mammalian mitochondria. J Bioenerg Biomembr 32: 609-15.
-
(2000)
J Bioenerg Biomembr
, vol.32
, pp. 609-15
-
-
Herrero, A.1
Barja, G.2
-
5
-
-
77952541558
-
The sites and topology of mitochondrial superoxide production
-
Brand MD. 2010. The sites and topology of mitochondrial superoxide production. Exp Gerontol 45: 466-72.
-
(2010)
Exp Gerontol
, vol.45
, pp. 466-72
-
-
Brand, M.D.1
-
6
-
-
58249093939
-
How mitochondria produce reactive oxygen species
-
Murphy MP. 2009. How mitochondria produce reactive oxygen species. Biochem J 417: 1-13.
-
(2009)
Biochem J
, vol.417
, pp. 1-13
-
-
Murphy, M.P.1
-
7
-
-
57649233079
-
The role of mitochondria in reactive oxygen species metabolism and signaling
-
Starkov AA. 2008. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci 1147: 37-52.
-
(2008)
Ann N Y Acad Sci
, vol.1147
, pp. 37-52
-
-
Starkov, A.A.1
-
9
-
-
57049094966
-
The higher level of organization of the oxidative phosphorylation system: mitochondrial supercomplexes
-
Dudkina NV, Sunderhaus S, Boekema EJ, Braun HP. 2008. The higher level of organization of the oxidative phosphorylation system: mitochondrial supercomplexes. J Bioenerg Biomembr 40: 419-24.
-
(2008)
J Bioenerg Biomembr
, vol.40
, pp. 419-24
-
-
Dudkina, N.V.1
Sunderhaus, S.2
Boekema, E.J.3
Braun, H.P.4
-
10
-
-
0034603703
-
Proton translocation by cytochrome c oxidase: a rejoinder to recent criticism
-
Wikstrom M. 2000. Proton translocation by cytochrome c oxidase: a rejoinder to recent criticism. Biochemistry 39: 3515-9.
-
(2000)
Biochemistry
, vol.39
, pp. 3515-9
-
-
Wikstrom, M.1
-
11
-
-
77649290275
-
The genome of Naegleria gruberi illuminates early eukaryotic versatility
-
Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, et al. 2010. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140: 631-42.
-
(2010)
Cell
, vol.140
, pp. 631-42
-
-
Fritz-Laylin, L.K.1
Prochnik, S.E.2
Ginger, M.L.3
Dacks, J.B.4
-
12
-
-
77649091601
-
The incredible expanding ancestor of eukaryotes
-
Koonin EV. 2010. The incredible expanding ancestor of eukaryotes. Cell 140: 606-8.
-
(2010)
Cell
, vol.140
, pp. 606-8
-
-
Koonin, E.V.1
-
14
-
-
70349904508
-
2 release at mitochondrial complex I: negative modulation by malate, positive by cyanide
-
2 release at mitochondrial complex I: negative modulation by malate, positive by cyanide. J Bioenerg Biomembr 41: 387-93.
-
(2009)
J Bioenerg Biomembr
, vol.41
, pp. 387-93
-
-
Zoccarato, F.1
Cavallini, L.2
Alexandre, A.3
-
16
-
-
63349087445
-
Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation
-
Tahara EB, Navarete FD, Kowaltowski AJ. 2009. Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radic Biol Med 46: 1283-97.
-
(2009)
Free Radic Biol Med
, vol.46
, pp. 1283-97
-
-
Tahara, E.B.1
Navarete, F.D.2
Kowaltowski, A.J.3
-
18
-
-
38749087624
-
High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates
-
Muller FL, Liu Y, Abdul-Ghani MA, Lustgarten MS, et al. 2008. High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates. Biochem J 409: 491-9.
-
(2008)
Biochem J
, vol.409
, pp. 491-9
-
-
Muller, F.L.1
Liu, Y.2
Abdul-Ghani, M.A.3
Lustgarten, M.S.4
-
19
-
-
0037160091
-
Topology of superoxide production from different sites in the mitochondrial electron transport chain
-
St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. 2002. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277: 44784-90.
-
(2002)
J Biol Chem
, vol.277
, pp. 44784-90
-
-
St-Pierre, J.1
Buckingham, J.A.2
Roebuck, S.J.3
Brand, M.D.4
-
20
-
-
66349132325
-
Mobility and function of coenzyme Q (ubiquinone) in the mitochondrial respiratory chain
-
Lenaz G, Genova ML. 2009. Mobility and function of coenzyme Q (ubiquinone) in the mitochondrial respiratory chain. Biochim Biophys Acta 1787: 563-73.
-
(2009)
Biochim Biophys Acta
, vol.1787
, pp. 563-73
-
-
Lenaz, G.1
Genova, M.L.2
-
21
-
-
77953809888
-
Mitochondrial fatty acid oxidation and oxidative stress: lack of reverse electron transfer-associated production of reactive oxygen species
-
Schonfeld P, Wieckowski MR, Lebiedzinska M, Wojtczak L. 2010. Mitochondrial fatty acid oxidation and oxidative stress: lack of reverse electron transfer-associated production of reactive oxygen species. Biochim Biophys Acta 1797: 929-38.
-
(2010)
Biochim Biophys Acta
, vol.1797
, pp. 929-38
-
-
Schonfeld, P.1
Wieckowski, M.R.2
Lebiedzinska, M.3
Wojtczak, L.4
-
22
-
-
0141815741
-
Production of reactive oxygen species by mitochondria: central role of complex III
-
Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, et al. 2003. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 278: 36027-31.
-
(2003)
J Biol Chem
, vol.278
, pp. 36027-31
-
-
Chen, Q.1
Vazquez, E.J.2
Moghaddas, S.3
Hoppel, C.L.4
-
23
-
-
0034650763
-
The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP
-
345 Pt 2:
-
Ricquier D, Bouillaud F. 2000. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J 345 Pt 2: 161-79.
-
(2000)
Biochem J
, pp. 161-79
-
-
Ricquier, D.1
Bouillaud, F.2
-
24
-
-
77951457202
-
Fibrates, glitazones, and peroxisome proliferator-activated receptors
-
Lalloyer F, Staels B. 2010. Fibrates, glitazones, and peroxisome proliferator-activated receptors. Arterioscler, Thromb, Vasc Biol 30: 894-9.
-
(2010)
Arterioscler, Thromb, Vasc Biol
, vol.30
, pp. 894-9
-
-
Lalloyer, F.1
Staels, B.2
-
26
-
-
56949102616
-
Predation and eukaryote cell origins: a coevolutionary perspective
-
Cavalier-Smith T. 2009. Predation and eukaryote cell origins: a coevolutionary perspective. Int J Biochem Cell Biol 41: 307-22.
-
(2009)
Int J Biochem Cell Biol
, vol.41
, pp. 307-22
-
-
Cavalier-Smith, T.1
-
27
-
-
33747893546
-
Origin and evolution of the peroxisomal proteome
-
Gabaldon T, Snel B, van ZF, Hemrika W, et al. 2006. Origin and evolution of the peroxisomal proteome. Biol Direct 1: 8.
-
(2006)
Biol Direct
, vol.1
, pp. 8
-
-
Gabaldon, T.1
Snel, B.2
van, Z.F.3
Hemrika, W.4
-
28
-
-
77955039174
-
The origin and early evolution of eukaryotes in the light of phylogenomics
-
Koonin EV. 2010. The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biol 11: 209.
-
(2010)
Genome Biol
, vol.11
, pp. 209
-
-
Koonin, E.V.1
-
29
-
-
34247180015
-
The origin of eukaryotes: a reappraisal
-
de Duve C. 2007. The origin of eukaryotes: a reappraisal. Nat Rev Genet 8: 395-403.
-
(2007)
Nat Rev Genet
, vol.8
, pp. 395-403
-
-
de Duve, C.1
-
30
-
-
0038107461
-
Involvement of the endoplasmic reticulum in peroxisome formation
-
Geuze HJ, Murk JL, Stroobants AK, Griffith JM, et al. 2003. Involvement of the endoplasmic reticulum in peroxisome formation. Mol Biol Cell 14: 2900-7.
-
(2003)
Mol Biol Cell
, vol.14
, pp. 2900-7
-
-
Geuze, H.J.1
Murk, J.L.2
Stroobants, A.K.3
Griffith, J.M.4
-
31
-
-
22144465170
-
Contribution of the endoplasmic reticulum to peroxisome formation
-
Hoepfner D, Schildknegt D, Braakman I, Philippsen P, et al. 2005. Contribution of the endoplasmic reticulum to peroxisome formation. Cell 122: 85-95.
-
(2005)
Cell
, vol.122
, pp. 85-95
-
-
Hoepfner, D.1
Schildknegt, D.2
Braakman, I.3
Philippsen, P.4
-
32
-
-
72449125106
-
The origin of peroxisomes: the possibility of an actinobacterial symbiosis
-
Duhita N, Le HA, Satoshi S, Kazuo H, et al. 2010. The origin of peroxisomes: the possibility of an actinobacterial symbiosis. Gene 450: 18-24.
-
(2010)
Gene
, vol.450
, pp. 18-24
-
-
Duhita, N.1
Le, H.A.2
Satoshi, S.3
Kazuo, H.4
-
33
-
-
33845308244
-
Formation of peroxisomes: present and past
-
Tabak HF, Hoepfner D, Zand A, Geuze HJ, et al. 2006. Formation of peroxisomes: present and past. Biochim Biophys Acta 1763: 1647-54.
-
(2006)
Biochim Biophys Acta
, vol.1763
, pp. 1647-54
-
-
Tabak, H.F.1
Hoepfner, D.2
Zand, A.3
Geuze, H.J.4
-
35
-
-
77953507085
-
Peroxisomal membrane proteins insert into the endoplasmic reticulum
-
van der Zand A, Braakman I, Tabak HF. 2010. Peroxisomal membrane proteins insert into the endoplasmic reticulum. Mol Biol Cell 21: 2057-65.
-
(2010)
Mol Biol Cell
, vol.21
, pp. 2057-65
-
-
van der Zand, A.1
Braakman, I.2
Tabak, H.F.3
-
36
-
-
0028789409
-
Bacillus subtilis vegetative catalase is an extracellular enzyme
-
Naclerio G, Baccigalupi L, Caruso C, De FM, et al. 1995. Bacillus subtilis vegetative catalase is an extracellular enzyme. Appl Environ Microbiol 61: 4471-3.
-
(1995)
Appl Environ Microbiol
, vol.61
, pp. 4471-3
-
-
Naclerio, G.1
Baccigalupi, L.2
Caruso, C.3
De, F.M.4
-
37
-
-
41949131504
-
Unusual properties of catalase A (KatA) of Pseudomonas aeruginosa PA14 are associated with its biofilm peroxide resistance
-
Shin DH, Choi YS, Cho YH. 2008. Unusual properties of catalase A (KatA) of Pseudomonas aeruginosa PA14 are associated with its biofilm peroxide resistance. J Bacteriol 190: 2663-70.
-
(2008)
J Bacteriol
, vol.190
, pp. 2663-70
-
-
Shin, D.H.1
Choi, Y.S.2
Cho, Y.H.3
-
38
-
-
77349099958
-
Evolutionary origins of metabolic compartmentalization in eukaryotes
-
Martin W. 2010. Evolutionary origins of metabolic compartmentalization in eukaryotes. Philos Trans R Soc Lond B Biol Sci 365: 847-55.
-
(2010)
Philos Trans R Soc Lond B Biol Sci
, vol.365
, pp. 847-55
-
-
Martin, W.1
-
39
-
-
33746366462
-
Biochemistry of mammalian peroxisomes revisited
-
Wanders RJ, Waterham HR. 2006. Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem 75: 295-332.
-
(2006)
Annu Rev Biochem
, vol.75
, pp. 295-332
-
-
Wanders, R.J.1
Waterham, H.R.2
-
40
-
-
67649875371
-
Organelle interplay in peroxisomal disorders
-
Thoms S, Gronborg S, Gartner J. 2009. Organelle interplay in peroxisomal disorders. Trends Mol Med 15: 293-302.
-
(2009)
Trends Mol Med
, vol.15
, pp. 293-302
-
-
Thoms, S.1
Gronborg, S.2
Gartner, J.3
-
42
-
-
27744523622
-
Peroxisomal matrix protein import: the transient pore model
-
Erdmann R, Schliebs W. 2005. Peroxisomal matrix protein import: the transient pore model. Nat Rev Mol Cell Biol 6: 738-42.
-
(2005)
Nat Rev Mol Cell Biol
, vol.6
, pp. 738-42
-
-
Erdmann, R.1
Schliebs, W.2
-
43
-
-
33644783626
-
Introns and the origin of nucleus-cytosol compartmentalization
-
Martin W, Koonin EV. 2006. Introns and the origin of nucleus-cytosol compartmentalization. Nature 440: 41-5.
-
(2006)
Nature
, vol.440
, pp. 41-5
-
-
Martin, W.1
Koonin, E.V.2
-
44
-
-
33645456207
-
Eukaryotic evolution, changes and challenges
-
Embley TM, Martin W. 2006. Eukaryotic evolution, changes and challenges. Nature 440: 623-30.
-
(2006)
Nature
, vol.440
, pp. 623-30
-
-
Embley, T.M.1
Martin, W.2
-
45
-
-
33646726959
-
Genomics and the irreducible nature of eukaryote cells
-
Kurland CG, Collins LJ, Penny D. 2006. Genomics and the irreducible nature of eukaryote cells. Science 312: 1011-4.
-
(2006)
Science
, vol.312
, pp. 1011-4
-
-
Kurland, C.G.1
Collins, L.J.2
Penny, D.3
-
46
-
-
58149512792
-
The archaebacterial origin of eukaryotes
-
Cox CJ, Foster PG, Hirt RP, Harris SR, et al. 2008. The archaebacterial origin of eukaryotes. Proc Natl Acad Sci USA 105: 20356-61.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 20356-61
-
-
Cox, C.J.1
Foster, P.G.2
Hirt, R.P.3
Harris, S.R.4
-
47
-
-
67549084381
-
Superoxide is the major reactive oxygen species regulating autophagy
-
Chen Y, Azad MB, Gibson SB. 2009. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 16: 1040-52.
-
(2009)
Cell Death Differ
, vol.16
, pp. 1040-52
-
-
Chen, Y.1
Azad, M.B.2
Gibson, S.B.3
-
48
-
-
45249098139
-
Effect of synthetic dietary triglycerides: a novel research paradigm for nutrigenomics
-
Sanderson LM, de Groot PJ, Hooiveld GJ, Koppen A, et al. 2008. Effect of synthetic dietary triglycerides: a novel research paradigm for nutrigenomics. PLoS One 3: e1681.
-
(2008)
PLoS One
, vol.3
-
-
Sanderson, L.M.1
de Groot, P.J.2
Hooiveld, G.J.3
Koppen, A.4
-
49
-
-
30444437034
-
Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools
-
McKenna MC, Waagepetersen HS, Schousboe A, Sonnewald U. 2006. Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools. Biochem Pharmacol 71: 399-407.
-
(2006)
Biochem Pharmacol
, vol.71
, pp. 399-407
-
-
McKenna, M.C.1
Waagepetersen, H.S.2
Schousboe, A.3
Sonnewald, U.4
-
50
-
-
0037573545
-
Neuronal uptake and metabolism of glycerol and the neuronal expression of mitochondrial glycerol-3-phosphate dehydrogenase
-
Nguyen NH, Brathe A, Hassel B. 2003. Neuronal uptake and metabolism of glycerol and the neuronal expression of mitochondrial glycerol-3-phosphate dehydrogenase. J Neurochem 85: 831-42.
-
(2003)
J Neurochem
, vol.85
, pp. 831-42
-
-
Nguyen, N.H.1
Brathe, A.2
Hassel, B.3
-
52
-
-
77957844254
-
Reactive oxygen species, oxidative stress, and cell death correlate with level of CoQ10 deficiency
-
Quinzii CM, Lopez LC, Gilkerson RW, Dorado B, et al. 2010. Reactive oxygen species, oxidative stress, and cell death correlate with level of CoQ10 deficiency. FASEB J 24: 3733-43.
-
(2010)
FASEB J
, vol.24
, pp. 3733-43
-
-
Quinzii, C.M.1
Lopez, L.C.2
Gilkerson, R.W.3
Dorado, B.4
-
53
-
-
77956318447
-
Acyl-CoA dehydrogenase 9 is required for the biogenesis of oxidative phosphorylation complex I
-
Nouws J, Nijtmans L, Houten SM, van den Brand M, et al. 2010. Acyl-CoA dehydrogenase 9 is required for the biogenesis of oxidative phosphorylation complex I. Cell Metab 12: 283-94.
-
(2010)
Cell Metab
, vol.12
, pp. 283-94
-
-
Nouws, J.1
Nijtmans, L.2
Houten, S.M.3
van den Brand, M.4
|