메뉴 건너뛰기




Volumn 20, Issue 5, 2017, Pages 637-647

Cell transplantation therapy for spinal cord injury

Author keywords

[No Author keywords available]

Indexed keywords

ANGIOGENESIS; BLOOD VESSEL INJURY; CELL JUNCTION; CELL REGENERATION; CELL TRANSPLANTATION; HUMAN; IMMUNOMODULATION; INTERNEURON; MESENCHYMAL STEM CELL; MYELINATION; NERVE FIBER REGENERATION; NERVE GROWTH; NERVE SPROUTING; NERVOUS SYSTEM FUNCTION; NEURAL STEM CELL; NEURITE OUTGROWTH; NEUROPROTECTION; NONHUMAN; OLFACTORY ENSHEATHING CELL; OLIGODENDROCYTE PROGENITOR; PRIORITY JOURNAL; REVIEW; SCAR; SCHWANN CELL; SPINAL CORD INJURY; ANIMAL; CONVALESCENCE; CYTOLOGY; NERVE REGENERATION; PHYSIOLOGY; PROCEDURES; SPINAL CORD INJURIES;

EID: 85018183101     PISSN: 10976256     EISSN: 15461726     Source Type: Journal    
DOI: 10.1038/nn.4541     Document Type: Review
Times cited : (669)

References (149)
  • 1
    • 84893859636 scopus 로고    scopus 로고
    • The global map for traumatic spinal cord injury epidemiology: Update 2011, global incidence rate
    • Lee, B.B., Cripps, R.A., Fitzharris, M. & Wing, P.C. The global map for traumatic spinal cord injury epidemiology: update 2011, global incidence rate. Spinal Cord 52, 110-116 (2014).
    • (2014) Spinal Cord , vol.52 , pp. 110-116
    • Lee, B.B.1    Cripps, R.A.2    Fitzharris, M.3    Wing, P.C.4
  • 2
    • 79955483220 scopus 로고    scopus 로고
    • Olfactory ensheathing cells from the nose: Clinical application in human spinal cord injuries
    • Mackay-Sim, A. & St John, J.A. Olfactory ensheathing cells from the nose: clinical application in human spinal cord injuries. Exp. Neurol. 229, 174-180 (2011).
    • (2011) Exp. Neurol. , vol.229 , pp. 174-180
    • Mackay-Sim, A.1    St John, J.A.2
  • 3
    • 80655147964 scopus 로고    scopus 로고
    • Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases
    • Saberi, H. et al. Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases. J. Neurosurg. Spine 15, 515-525 (2011).
    • (2011) J. Neurosurg. Spine , vol.15 , pp. 515-525
    • Saberi, H.1
  • 5
    • 0019856865 scopus 로고
    • Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats
    • David, S. & Aguayo, A.J. Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats. Science 214, 931-933 (1981).
    • (1981) Science , vol.214 , pp. 931-933
    • David, S.1    Aguayo, A.J.2
  • 6
    • 84977505204 scopus 로고    scopus 로고
    • Efficacy of Schwann Cell (SC) transplantation for spinal cord repair is improved with combinatorial strategies
    • Bunge, M.B. Efficacy of Schwann Cell (SC) transplantation for spinal cord repair is improved with combinatorial strategies. J. Physiol. (Lond.) 594, 3533-3538 (2016).
    • (2016) J. Physiol. (Lond.) , vol.594 , pp. 3533-3538
    • Bunge, M.B.1
  • 7
    • 0025668652 scopus 로고
    • Neural transplantation: An historical perspective
    • Das, G.D. Neural transplantation: an historical perspective. Neurosci. Biobehav. Rev. 14, 389-401 (1990).
    • (1990) Neurosci. Biobehav. Rev. , vol.14 , pp. 389-401
    • Das, G.D.1
  • 8
    • 0034032642 scopus 로고    scopus 로고
    • Cell replacement therapies for central nervous system disorders
    • Björklund, A. & Lindvall, O. Cell replacement therapies for central nervous system disorders. Nat. Neurosci. 3, 537-544 (2000).
    • (2000) Nat. Neurosci. , vol.3 , pp. 537-544
    • Björklund, A.1    Lindvall, O.2
  • 9
    • 0027504205 scopus 로고
    • Recovery of function after spinal cord injury: Mechanisms underlying transplant-mediated recovery of function differ after spinal cord injury in newborn and adult rats
    • Bregman, B.S. et al. Recovery of function after spinal cord injury: mechanisms underlying transplant-mediated recovery of function differ after spinal cord injury in newborn and adult rats. Exp. Neurol. 123, 3-16 (1993).
    • (1993) Exp. Neurol. , vol.123 , pp. 3-16
    • Bregman, B.S.1
  • 10
    • 0034856706 scopus 로고    scopus 로고
    • Feasibility and safety of neural tissue transplantation in patients with syringomyelia
    • Wirth, E.D. III et al. Feasibility and safety of neural tissue transplantation in patients with syringomyelia. J. Neurotrauma 18, 911-929 (2001).
    • (2001) J. Neurotrauma , vol.18 , pp. 911-929
    • Wirth, E.D.1
  • 11
    • 79960832807 scopus 로고    scopus 로고
    • A systematic review of cellular transplantation therapies for spinal cord injury
    • Tetzlaff, W. et al. A systematic review of cellular transplantation therapies for spinal cord injury. J. Neurotrauma 28, 1611-1682 (2011).
    • (2011) J. Neurotrauma , vol.28 , pp. 1611-1682
    • Tetzlaff, W.1
  • 12
    • 84907597775 scopus 로고    scopus 로고
    • Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury
    • Lu, P. et al. Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron 83, 789-796 (2014).
    • (2014) Neuron , vol.83 , pp. 789-796
    • Lu, P.1
  • 13
    • 84877329018 scopus 로고    scopus 로고
    • Generation of oligodendroglial cells by direct lineage conversion
    • Yang, N. et al. Generation of oligodendroglial cells by direct lineage conversion. Nat. Biotechnol. 31, 434-439 (2013).
    • (2013) Nat. Biotechnol. , vol.31 , pp. 434-439
    • Yang, N.1
  • 14
    • 84875116168 scopus 로고    scopus 로고
    • Safety of epicenter versus intact parenchyma as a transplantation site for human neural stem cells for spinal cord injury therapy
    • Piltti, K.M., Salazar, D.L., Uchida, N., Cummings, B.J. & Anderson, A.J. Safety of epicenter versus intact parenchyma as a transplantation site for human neural stem cells for spinal cord injury therapy. Stem Cells Transl. Med. 2, 204-216 (2013).
    • (2013) Stem Cells Transl. Med. , vol.2 , pp. 204-216
    • Piltti, K.M.1    Salazar, D.L.2    Uchida, N.3    Cummings, B.J.4    Anderson, A.J.5
  • 15
    • 3342967871 scopus 로고    scopus 로고
    • Pathophysiology and pharmacologic treatment of acute spinal cord injury
    • Kwon, B.K., Tetzlaff, W., Grauer, J.N., Beiner, J. & Vaccaro, A.R. Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J. 4, 451-464 (2004).
    • (2004) Spine J. , vol.4 , pp. 451-464
    • Kwon, B.K.1    Tetzlaff, W.2    Grauer, J.N.3    Beiner, J.4    Vaccaro, A.R.5
  • 16
    • 1942425481 scopus 로고    scopus 로고
    • The pathology of human spinal cord injury: Defining the problems
    • Norenberg, M.D., Smith, J. & Marcillo, A. The pathology of human spinal cord injury: defining the problems. J. Neurotrauma 21, 429-440 (2004).
    • (2004) J. Neurotrauma , vol.21 , pp. 429-440
    • Norenberg, M.D.1    Smith, J.2    Marcillo, A.3
  • 17
    • 79960102657 scopus 로고    scopus 로고
    • Secondary injury mechanisms in traumatic spinal cord injury: A nugget of this multiply cascade
    • Oyinbo, C.A. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol. Exp. (Warsz.) 71, 281-299 (2011).
    • (2011) Acta Neurobiol. Exp. (Warsz.) , vol.71 , pp. 281-299
    • Oyinbo, C.A.1
  • 18
    • 0035348490 scopus 로고    scopus 로고
    • Olfactory ensheathing cells-another miracle cure for spinal cord injury?
    • Raisman, G. Olfactory ensheathing cells-another miracle cure for spinal cord injury? Nat. Rev. Neurosci. 2, 369-375 (2001).
    • (2001) Nat. Rev. Neurosci. , vol.2 , pp. 369-375
    • Raisman, G.1
  • 19
    • 41449093906 scopus 로고    scopus 로고
    • A graded forceps crush spinal cord injury model in mice
    • Plemel, J.R. et al. A graded forceps crush spinal cord injury model in mice. J. Neurotrauma 25, 350-370 (2008).
    • (2008) J. Neurotrauma , vol.25 , pp. 350-370
    • Plemel, J.R.1
  • 20
    • 0030157694 scopus 로고    scopus 로고
    • Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection
    • Basso, D.M., Beattie, M.S. & Bresnahan, J.C. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp. Neurol. 139, 244-256 (1996).
    • (1996) Exp. Neurol. , vol.139 , pp. 244-256
    • Basso, D.M.1    Beattie, M.S.2    Bresnahan, J.C.3
  • 21
    • 0036311466 scopus 로고    scopus 로고
    • Anatomical correlates of locomotor recovery following dorsal and ventral lesions of the rat spinal cord
    • Schucht, P., Raineteau, O., Schwab, M.E. & Fouad, K. Anatomical correlates of locomotor recovery following dorsal and ventral lesions of the rat spinal cord. Exp. Neurol. 176, 143-153 (2002).
    • (2002) Exp. Neurol. , vol.176 , pp. 143-153
    • Schucht, P.1    Raineteau, O.2    Schwab, M.E.3    Fouad, K.4
  • 22
    • 6344250448 scopus 로고    scopus 로고
    • Neuropathology: The foundation for new treatments in spinal cord injury
    • Kakulas, B.A. Neuropathology: the foundation for new treatments in spinal cord injury. Spinal Cord 42, 549-563 (2004).
    • (2004) Spinal Cord , vol.42 , pp. 549-563
    • Kakulas, B.A.1
  • 24
    • 79960764840 scopus 로고    scopus 로고
    • A systematic review of non-invasive pharmacologic neuroprotective treatments for acute spinal cord injury
    • Kwon, B.K. et al. A systematic review of non-invasive pharmacologic neuroprotective treatments for acute spinal cord injury. J. Neurotrauma 28, 1545-1588 (2011).
    • (2011) J. Neurotrauma , vol.28 , pp. 1545-1588
    • Kwon, B.K.1
  • 25
    • 2942720519 scopus 로고    scopus 로고
    • CAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury
    • Pearse, D.D. et al. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat. Med. 10, 610-616 (2004).
    • (2004) Nat. Med. , vol.10 , pp. 610-616
    • Pearse, D.D.1
  • 26
    • 34848854789 scopus 로고    scopus 로고
    • Skin-derived precursors generate myelinating Schwann cells that promote remyelination and functional recovery after contusion spinal cord injury
    • Biernaskie, J. et al. Skin-derived precursors generate myelinating Schwann cells that promote remyelination and functional recovery after contusion spinal cord injury. J. Neurosci. 27, 9545-9559 (2007).
    • (2007) J. Neurosci. , vol.27 , pp. 9545-9559
    • Biernaskie, J.1
  • 27
    • 84884606253 scopus 로고    scopus 로고
    • Tissue sparing, behavioral recovery, supraspinal axonal sparing/regeneration following sub-acute glial transplantation in a model of spinal cord contusion
    • Barbour, H.R., Plant, C.D., Harvey, A.R. & Plant, G.W. Tissue sparing, behavioral recovery, supraspinal axonal sparing/regeneration following sub-acute glial transplantation in a model of spinal cord contusion. BMC Neurosci. 14, 106 (2013).
    • (2013) BMC Neurosci. , vol.14 , pp. 106
    • Barbour, H.R.1    Plant, C.D.2    Harvey, A.R.3    Plant, G.W.4
  • 28
    • 0031015075 scopus 로고    scopus 로고
    • Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys
    • Crowe, M.J., Bresnahan, J.C., Shuman, S.L., Masters, J.N. & Beattie, M.S. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat. Med. 3, 73-76 (1997).
    • (1997) Nat. Med. , vol.3 , pp. 73-76
    • Crowe, M.J.1    Bresnahan, J.C.2    Shuman, S.L.3    Masters, J.N.4    Beattie, M.S.5
  • 29
    • 0037059878 scopus 로고    scopus 로고
    • A quantitative morphometric analysis of rat spinal cord remyelination following transplantation of allogenic Schwann cells
    • Lankford, K.L., Imaizumi, T., Honmou, O. & Kocsis, J.D. A quantitative morphometric analysis of rat spinal cord remyelination following transplantation of allogenic Schwann cells. J. Comp. Neurol. 443, 259-274 (2002).
    • (2002) J. Comp. Neurol. , vol.443 , pp. 259-274
    • Lankford, K.L.1    Imaizumi, T.2    Honmou, O.3    Kocsis, J.D.4
  • 30
    • 84863029363 scopus 로고    scopus 로고
    • An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury
    • Hawryluk, G.W. et al. An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury. Stem Cells Dev. 21, 2222-2238 (2012).
    • (2012) Stem Cells Dev. , vol.21 , pp. 2222-2238
    • Hawryluk, G.W.1
  • 31
    • 84883205797 scopus 로고    scopus 로고
    • Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: An original strategy to avoid cell transplantation
    • Cantinieaux, D. et al. Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PLoS One 8, e69515 (2013).
    • (2013) PLoS One , vol.8 , pp. e69515
    • Cantinieaux, D.1
  • 32
    • 75349113016 scopus 로고    scopus 로고
    • Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury
    • Sharp, J., Frame, J., Siegenthaler, M., Nistor, G. & Keirstead, H.S. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells 28, 152-163 (2010).
    • (2010) Stem Cells , vol.28 , pp. 152-163
    • Sharp, J.1    Frame, J.2    Siegenthaler, M.3    Nistor, G.4    Keirstead, H.S.5
  • 33
    • 77952910880 scopus 로고    scopus 로고
    • Transplantation of bone marrow mesenchymal stem cells reduces lesion volume and induces axonal regrowth of injured spinal cord
    • Gu, W.D. et al. Transplantation of bone marrow mesenchymal stem cells reduces lesion volume and induces axonal regrowth of injured spinal cord. Neuropathology 30, 205-217 (2010).
    • (2010) Neuropathology , vol.30 , pp. 205-217
    • Gu, W.D.1
  • 34
    • 84925616620 scopus 로고    scopus 로고
    • Role of endogenous Schwann cells in tissue repair after spinal cord injury
    • Zhang, S.X., Huang, F., Gates, M. & Holmberg, E.G. Role of endogenous Schwann cells in tissue repair after spinal cord injury. Neural Regen. Res. 8, 177-185 (2013).
    • (2013) Neural Regen. Res. , vol.8 , pp. 177-185
    • Zhang, S.X.1    Huang, F.2    Gates, M.3    Holmberg, E.G.4
  • 35
    • 84945955734 scopus 로고    scopus 로고
    • The role of brain-derived neurotrophic factor in bone marrow stromal cell-mediated spinal cord repair
    • Ritfeld, G.J. et al. The role of brain-derived neurotrophic factor in bone marrow stromal cell-mediated spinal cord repair. Cell Transplant. 24, 2209-2220 (2015).
    • (2015) Cell Transplant. , vol.24 , pp. 2209-2220
    • Ritfeld, G.J.1
  • 36
    • 0026326449 scopus 로고
    • Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms
    • Tator, C.H. & Fehlings, M.G. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J. Neurosurg. 75, 15-26 (1991).
    • (1991) J. Neurosurg. , vol.75 , pp. 15-26
    • Tator, C.H.1    Fehlings, M.G.2
  • 37
    • 84883027639 scopus 로고    scopus 로고
    • Intraparenchymal microdialysis after acute spinal cord injury reveals differential metabolic responses to contusive versus compressive mechanisms of injury
    • Okon, E.B. et al. Intraparenchymal microdialysis after acute spinal cord injury reveals differential metabolic responses to contusive versus compressive mechanisms of injury. J. Neurotrauma 30, 1564-1576 (2013).
    • (2013) J. Neurotrauma , vol.30 , pp. 1564-1576
    • Okon, E.B.1
  • 38
    • 84896381322 scopus 로고    scopus 로고
    • Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury
    • Figley, S.A., Khosravi, R., Legasto, J.M., Tseng, Y.F. & Fehlings, M.G. Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury. J. Neurotrauma 31, 541-552 (2014).
    • (2014) J. Neurotrauma , vol.31 , pp. 541-552
    • Figley, S.A.1    Khosravi, R.2    Legasto, J.M.3    Tseng, Y.F.4    Fehlings, M.G.5
  • 39
    • 0026032180 scopus 로고
    • Oxygen transport in intraspinal fetal grafts: Graft-host relations
    • Stokes, B.T. & Reier, P.J. Oxygen transport in intraspinal fetal grafts: graft-host relations. Exp. Neurol. 111, 312-323 (1991).
    • (1991) Exp. Neurol. , vol.111 , pp. 312-323
    • Stokes, B.T.1    Reier, P.J.2
  • 40
    • 0030045043 scopus 로고    scopus 로고
    • Quantitative analysis of vascularization and cytochrome oxidase following fetal transplantation in the contused rat spinal cord
    • Horner, P.J., Reier, P.J. & Stokes, B.T. Quantitative analysis of vascularization and cytochrome oxidase following fetal transplantation in the contused rat spinal cord. J. Comp. Neurol. 364, 690-703 (1996).
    • (1996) J. Comp. Neurol. , vol.364 , pp. 690-703
    • Horner, P.J.1    Reier, P.J.2    Stokes, B.T.3
  • 41
    • 0029127355 scopus 로고
    • Fetal transplantation following spinal contusion injury results in chronic alterations in CNS glucose metabolism
    • Horner, P.J. & Stokes, B.T. Fetal transplantation following spinal contusion injury results in chronic alterations in CNS glucose metabolism. Exp. Neurol. 133, 231-243 (1995).
    • (1995) Exp. Neurol. , vol.133 , pp. 231-243
    • Horner, P.J.1    Stokes, B.T.2
  • 42
    • 4143113383 scopus 로고    scopus 로고
    • Increased expression of cyclo-oxygenase 2 and vascular endothelial growth factor in lesioned spinal cord by transplanted olfactory ensheathing cells
    • López-Vales, R., Garcia-Alias, G., Fores, J., Navarro, X. & Verdu, E. Increased expression of cyclo-oxygenase 2 and vascular endothelial growth factor in lesioned spinal cord by transplanted olfactory ensheathing cells. J. Neurotrauma 21, 1031-1043 (2004).
    • (2004) J. Neurotrauma , vol.21 , pp. 1031-1043
    • López-Vales, R.1    Garcia-Alias, G.2    Fores, J.3    Navarro, X.4    Verdu, E.5
  • 43
    • 27944469011 scopus 로고    scopus 로고
    • Lamina propria and olfactory bulb ensheathing cells exhibit differential integration and migration and promote differential axon sprouting in the lesioned spinal cord
    • Richter, M.W., Fletcher, P.A., Liu, J., Tetzlaff, W. & Roskams, A.J. Lamina propria and olfactory bulb ensheathing cells exhibit differential integration and migration and promote differential axon sprouting in the lesioned spinal cord. J. Neurosci. 25, 10700-10711 (2005).
    • (2005) J. Neurosci. , vol.25 , pp. 10700-10711
    • Richter, M.W.1    Fletcher, P.A.2    Liu, J.3    Tetzlaff, W.4    Roskams, A.J.5
  • 44
    • 1942421296 scopus 로고    scopus 로고
    • Peripheral olfactory ensheathing cells reduce scar and cavity formation and promote regeneration after spinal cord injury
    • Ramer, L.M. et al. Peripheral olfactory ensheathing cells reduce scar and cavity formation and promote regeneration after spinal cord injury. J. Comp. Neurol. 473, 1-15 (2004).
    • (2004) J. Comp. Neurol. , vol.473 , pp. 1-15
    • Ramer, L.M.1
  • 46
    • 79953016477 scopus 로고    scopus 로고
    • High resolution measurement of the glycolytic rate
    • Bittner, C.X. et al. High resolution measurement of the glycolytic rate. Front. Neuroenergetics https://doi.org/10.3389/fnene.2010.00026 (2010).
    • (2010) Front. Neuroenergetics
    • Bittner, C.X.1
  • 47
    • 84904807684 scopus 로고    scopus 로고
    • Immune modulatory therapies for spinal cord injury-past, present and future
    • Plemel, J.R., Yong, V.W. & Stirling, D.P. Immune modulatory therapies for spinal cord injury-past, present and future. Exp. Neurol. 258, 91-104 (2014).
    • (2014) Exp. Neurol. , vol.258 , pp. 91-104
    • Plemel, J.R.1    Yong, V.W.2    Stirling, D.P.3
  • 48
    • 84937410926 scopus 로고    scopus 로고
    • Dealing with danger in the CNS: The response of the immune system to injury
    • Gadani, S.P., Walsh, J.T., Lukens, J.R. & Kipnis, J. Dealing with danger in the CNS: the response of the immune system to injury. Neuron 87, 47-62 (2015).
    • (2015) Neuron , vol.87 , pp. 47-62
    • Gadani, S.P.1    Walsh, J.T.2    Lukens, J.R.3    Kipnis, J.4
  • 49
    • 16244384670 scopus 로고    scopus 로고
    • Inflammatory-mediated injury and repair in the traumatically injured spinal cord
    • Jones, T.B., McDaniel, E.E. & Popovich, P.G. Inflammatory-mediated injury and repair in the traumatically injured spinal cord. Curr. Pharm. Des. 11, 1223-1236 (2005).
    • (2005) Curr. Pharm. Des. , vol.11 , pp. 1223-1236
    • Jones, T.B.1    McDaniel, E.E.2    Popovich, P.G.3
  • 50
    • 84922051656 scopus 로고    scopus 로고
    • Macrophage activation and its role in repair and pathology after spinal cord injury
    • Gensel, J.C. & Zhang, B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res. 1619, 1-11 (2015).
    • (2015) Brain Res. , vol.1619 , pp. 1-11
    • Gensel, J.C.1    Zhang, B.2
  • 51
    • 70350558453 scopus 로고    scopus 로고
    • Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord
    • Kigerl, K.A. et al. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 29, 13435-13444 (2009).
    • (2009) J. Neurosci. , vol.29 , pp. 13435-13444
    • Kigerl, K.A.1
  • 52
    • 84883454794 scopus 로고    scopus 로고
    • M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination
    • Miron, V.E. et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16, 1211-1218 (2013).
    • (2013) Nat. Neurosci. , vol.16 , pp. 1211-1218
    • Miron, V.E.1
  • 53
    • 84894102230 scopus 로고    scopus 로고
    • Transcriptome-based network analysis reveals a spectrum model of human macrophage activation
    • Xue, J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40, 274-288 (2014).
    • (2014) Immunity , vol.40 , pp. 274-288
    • Xue, J.1
  • 54
    • 84857206115 scopus 로고    scopus 로고
    • Transplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord
    • Cusimano, M. et al. Transplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord. Brain 135, 447-460 (2012).
    • (2012) Brain , vol.135 , pp. 447-460
    • Cusimano, M.1
  • 55
    • 84861689886 scopus 로고    scopus 로고
    • Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury
    • Nakajima, H. et al. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J. Neurotrauma 29, 1614-1625 (2012).
    • (2012) J. Neurotrauma , vol.29 , pp. 1614-1625
    • Nakajima, H.1
  • 56
    • 70349159499 scopus 로고    scopus 로고
    • Multipotent mesenchymal stromal cells attenuate chronic inflammation and injury-induced sensitivity to mechanical stimuli in experimental spinal cord injury
    • Abrams, M.B. et al. Multipotent mesenchymal stromal cells attenuate chronic inflammation and injury-induced sensitivity to mechanical stimuli in experimental spinal cord injury. Restor. Neurol. Neurosci. 27, 307-321 (2009).
    • (2009) Restor. Neurol. Neurosci. , vol.27 , pp. 307-321
    • Abrams, M.B.1
  • 57
    • 84947593284 scopus 로고    scopus 로고
    • Intravenous multipotent adult progenitor cell treatment decreases inflammation leading to functional recovery following spinal cord injury
    • DePaul, M.A. et al. Intravenous multipotent adult progenitor cell treatment decreases inflammation leading to functional recovery following spinal cord injury. Sci. Rep. 5, 16795 (2015).
    • (2015) Sci. Rep. , vol.5 , pp. 16795
    • DePaul, M.A.1
  • 58
    • 84964587151 scopus 로고    scopus 로고
    • Targeting astrocytes in CNS injury and disease: A translational research approach
    • Filous, A.R. & Silver, J. Targeting astrocytes in CNS injury and disease: A translational research approach. Prog. Neurobiol. 144, 173-187 (2016).
    • (2016) Prog. Neurobiol. , vol.144 , pp. 173-187
    • Filous, A.R.1    Silver, J.2
  • 59
    • 84895950053 scopus 로고    scopus 로고
    • Nogo limits neural plasticity and recovery from injury
    • Schwab, M.E. & Strittmatter, S.M. Nogo limits neural plasticity and recovery from injury. Curr. Opin. Neurobiol. 27, 53-60 (2014).
    • (2014) Curr. Opin. Neurobiol. , vol.27 , pp. 53-60
    • Schwab, M.E.1    Strittmatter, S.M.2
  • 60
    • 84964746514 scopus 로고    scopus 로고
    • Intrinsic control of axon regeneration
    • He, Z. & Jin, Y. Intrinsic control of axon regeneration. Neuron 90, 437-451 (2016).
    • (2016) Neuron , vol.90 , pp. 437-451
    • He, Z.1    Jin, Y.2
  • 61
    • 0028870347 scopus 로고
    • Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult-rat spinal-cord
    • Xu, X.M., Guenard, V., Kleitman, N. & Bunge, M.B. Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult-rat spinal-cord. J. Comp. Neurol. 351, 145-160 (1995).
    • (1995) J. Comp. Neurol. , vol.351 , pp. 145-160
    • Xu, X.M.1    Guenard, V.2    Kleitman, N.3    Bunge, M.B.4
  • 62
    • 79952751269 scopus 로고    scopus 로고
    • Axon regeneration can facilitate or suppress hindlimb function after olfactory ensheathing glia transplantation
    • Takeoka, A. et al. Axon regeneration can facilitate or suppress hindlimb function after olfactory ensheathing glia transplantation. J. Neurosci. 31, 4298-4310 (2011).
    • (2011) J. Neurosci. , vol.31 , pp. 4298-4310
    • Takeoka, A.1
  • 63
    • 84866392805 scopus 로고    scopus 로고
    • Long-distance growth and connectivity of neural stem cells after severe spinal cord injury
    • Lu, P. et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 150, 1264-1273 (2012).
    • (2012) Cell , vol.150 , pp. 1264-1273
    • Lu, P.1
  • 64
    • 3242711266 scopus 로고    scopus 로고
    • Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury
    • Lu, P., Yang, H., Jones, L.L., Filbin, M.T. & Tuszynski, M.H. Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J. Neurosci. 24, 6402-6409 (2004).
    • (2004) J. Neurosci. , vol.24 , pp. 6402-6409
    • Lu, P.1    Yang, H.2    Jones, L.L.3    Filbin, M.T.4    Tuszynski, M.H.5
  • 65
    • 13944266687 scopus 로고    scopus 로고
    • Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord
    • Fouad, K. et al. Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. J. Neurosci. 25, 1169-1178 (2005).
    • (2005) J. Neurosci. , vol.25 , pp. 1169-1178
    • Fouad, K.1
  • 66
    • 84878227957 scopus 로고    scopus 로고
    • Biomaterial-based interventions for neuronal regeneration and functional recovery in rodent model of spinal cord injury: A systematic review
    • Krishna, V. et al. Biomaterial-based interventions for neuronal regeneration and functional recovery in rodent model of spinal cord injury: a systematic review. J. Spinal Cord Med. 36, 174-190 (2013).
    • (2013) J. Spinal Cord Med. , vol.36 , pp. 174-190
    • Krishna, V.1
  • 67
    • 0030989043 scopus 로고    scopus 로고
    • Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord
    • Xu, X.M., Chen, A., Guenard, V., Kleitman, N. & Bunge, M.B. Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. J. Neurocytol. 26, 1-16 (1997).
    • (1997) J. Neurocytol. , vol.26 , pp. 1-16
    • Xu, X.M.1    Chen, A.2    Guenard, V.3    Kleitman, N.4    Bunge, M.B.5
  • 68
    • 84961905719 scopus 로고    scopus 로고
    • Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration
    • Kadoya, K. et al. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nat. Med. 22, 479-487 (2016)
    • (2016) Nat. Med. , vol.22 , pp. 479-487
    • Kadoya, K.1
  • 69
    • 46149116992 scopus 로고    scopus 로고
    • Descending pathways in motor control
    • Lemon, R.N. Descending pathways in motor control. Annu. Rev. Neurosci. 31, 195-218 (2008).
    • (2008) Annu. Rev. Neurosci. , vol.31 , pp. 195-218
    • Lemon, R.N.1
  • 70
    • 84861939633 scopus 로고    scopus 로고
    • Concepts and methods for the study of axonal regeneration in the CNS
    • Tuszynski, M.H. & Steward, O. Concepts and methods for the study of axonal regeneration in the CNS. Neuron 74, 777-791 (2012).
    • (2012) Neuron , vol.74 , pp. 777-791
    • Tuszynski, M.H.1    Steward, O.2
  • 71
    • 84861953728 scopus 로고    scopus 로고
    • Motor axonal regeneration after partial and complete spinal cord transection
    • Lu, P. et al. Motor axonal regeneration after partial and complete spinal cord transection. J. Neurosci. 32, 8208-8218 (2012).
    • (2012) J. Neurosci. , vol.32 , pp. 8208-8218
    • Lu, P.1
  • 72
    • 84962090398 scopus 로고    scopus 로고
    • Evidence for an age-dependent decline in axon regeneration in the adult mammalian central nervous system
    • Geoffroy, C.G., Hilton, B.J., Tetzlaff, W. & Zheng, B. Evidence for an age-dependent decline in axon regeneration in the adult mammalian central nervous system. Cell Rep. 15, 238-246 (2016).
    • (2016) Cell Rep. , vol.15 , pp. 238-246
    • Geoffroy, C.G.1    Hilton, B.J.2    Tetzlaff, W.3    Zheng, B.4
  • 73
    • 84921776884 scopus 로고    scopus 로고
    • Permissive Schwann cell graft/spinal cord interfaces for axon regeneration
    • Williams, R.R., Henao, M., Pearse, D.D. & Bunge, M.B. Permissive Schwann cell graft/spinal cord interfaces for axon regeneration. Cell Transplant. 24, 115-131 (2015).
    • (2015) Cell Transplant. , vol.24 , pp. 115-131
    • Williams, R.R.1    Henao, M.2    Pearse, D.D.3    Bunge, M.B.4
  • 74
    • 84892741034 scopus 로고    scopus 로고
    • Reactive gliosis and the multicellular response to CNS damage and disease
    • Burda, J.E. & Sofroniew, M.V. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81, 229-248 (2014).
    • (2014) Neuron , vol.81 , pp. 229-248
    • Burda, J.E.1    Sofroniew, M.V.2
  • 75
    • 84892850576 scopus 로고    scopus 로고
    • Functional regeneration beyond the glial scar
    • Cregg, J.M. et al. Functional regeneration beyond the glial scar. Exp. Neurol. 253, 197-207 (2014).
    • (2014) Exp. Neurol. , vol.253 , pp. 197-207
    • Cregg, J.M.1
  • 76
    • 84964324589 scopus 로고    scopus 로고
    • Astrocyte scar formation aids central nervous system axon regeneration
    • Anderson, M.A. et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature 532, 195-200 (2016).
    • (2016) Nature , vol.532 , pp. 195-200
    • Anderson, M.A.1
  • 77
    • 32644434557 scopus 로고    scopus 로고
    • Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis
    • Crigler, L., Robey, R.C., Asawachaicharn, A., Gaupp, D. & Phinney, D.G. Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp. Neurol. 198, 54-64 (2006).
    • (2006) Exp. Neurol. , vol.198 , pp. 54-64
    • Crigler, L.1    Robey, R.C.2    Asawachaicharn, A.3    Gaupp, D.4    Phinney, D.G.5
  • 78
    • 0035853114 scopus 로고    scopus 로고
    • Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury
    • Weidner, N., Ner, A., Salimi, N. & Tuszynski, M.H. Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. Proc. Natl. Acad. Sci. USA 98, 3513-3518 (2001).
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 3513-3518
    • Weidner, N.1    Ner, A.2    Salimi, N.3    Tuszynski, M.H.4
  • 79
    • 84879326881 scopus 로고    scopus 로고
    • Dorsolateral funiculus lesioning of the mouse cervical spinal cord at C4 but not at C6 results in sustained forelimb motor deficits
    • Hilton, B.J. et al. Dorsolateral funiculus lesioning of the mouse cervical spinal cord at C4 but not at C6 results in sustained forelimb motor deficits. J. Neurotrauma 30, 1070-1083 (2013).
    • (2013) J. Neurotrauma , vol.30 , pp. 1070-1083
    • Hilton, B.J.1
  • 80
    • 84875055289 scopus 로고    scopus 로고
    • High-resolution imaging of entire organs by 3-dimensional imaging of solvent cleared organs (3DISCO)
    • Ertürk, A. & Bradke, F. High-resolution imaging of entire organs by 3-dimensional imaging of solvent cleared organs (3DISCO). Exp. Neurol. 242, 57-64 (2013).
    • (2013) Exp. Neurol. , vol.242 , pp. 57-64
    • Ertürk, A.1    Bradke, F.2
  • 81
    • 84923040472 scopus 로고    scopus 로고
    • Overexpression of Sox11 promotes corticospinal tract regeneration after spinal injury while interfering with functional recovery
    • Wang, Z.M., Reynolds, A., Kirry, A., Nienhaus, C. & Blackmore, M.G. Overexpression of Sox11 promotes corticospinal tract regeneration after spinal injury while interfering with functional recovery. J. Neurosci. 35, 3139-3145 (2015).
    • (2015) J. Neurosci. , vol.35 , pp. 3139-3145
    • Wang, Z.M.1    Reynolds, A.2    Kirry, A.3    Nienhaus, C.4    Blackmore, M.G.5
  • 82
    • 84859925190 scopus 로고    scopus 로고
    • Rehabilitative training and plasticity following spinal cord injury
    • Fouad, K. & Tetzlaff, W. Rehabilitative training and plasticity following spinal cord injury. Exp. Neurol. 235, 91-99 (2012).
    • (2012) Exp. Neurol. , vol.235 , pp. 91-99
    • Fouad, K.1    Tetzlaff, W.2
  • 83
    • 84964052741 scopus 로고    scopus 로고
    • Re-establishment of cortical motor output maps and spontaneous functional recovery via spared dorsolaterally projecting corticospinal neurons after dorsal column spinal cord injury in adult mice
    • Hilton, B.J. et al. Re-establishment of cortical motor output maps and spontaneous functional recovery via spared dorsolaterally projecting corticospinal neurons after dorsal column spinal cord injury in adult mice. J. Neurosci. 36, 4080-4092 (2016).
    • (2016) J. Neurosci. , vol.36 , pp. 4080-4092
    • Hilton, B.J.1
  • 84
    • 84958212495 scopus 로고    scopus 로고
    • DREADDs for neuroscientists
    • Roth, B.L. DREADDs for neuroscientists. Neuron 89, 683-694 (2016).
    • (2016) Neuron , vol.89 , pp. 683-694
    • Roth, B.L.1
  • 85
    • 0021880180 scopus 로고
    • Neural tissue grafts and repair of the injured spinal cord
    • Reier, P.J. Neural tissue grafts and repair of the injured spinal cord. Neuropathol. Appl. Neurobiol. 11, 81-104 (1985).
    • (1985) Neuropathol. Appl. Neurobiol. , vol.11 , pp. 81-104
    • Reier, P.J.1
  • 86
    • 0022610629 scopus 로고
    • Neural tissue transplants rescue axotomized rubrospinal cells from retrograde death
    • Bregman, B.S. & Reier, P.J. Neural tissue transplants rescue axotomized rubrospinal cells from retrograde death. J. Comp. Neurol. 244, 86-95 (1986).
    • (1986) J. Comp. Neurol. , vol.244 , pp. 86-95
    • Bregman, B.S.1    Reier, P.J.2
  • 87
    • 0025876797 scopus 로고
    • Axonal projections between fetal spinal-cord transplants and the adult-rat spinal-cord - A neuroanatomical tracing study of local interactions
    • Jakeman, L.B. & Reier, P.J. Axonal projections between fetal spinal-cord transplants and the adult-rat spinal-cord - a neuroanatomical tracing study of local interactions. J. Comp. Neurol. 307, 311-334 (1991).
    • (1991) J. Comp. Neurol. , vol.307 , pp. 311-334
    • Jakeman, L.B.1    Reier, P.J.2
  • 88
    • 0025147417 scopus 로고
    • Reformation of long axon pathways in adult rat central nervous system by human forebrain neuroblasts
    • Wictorin, K., Brundin, P., Gustavii, B., Lindvall, O. & Bjorklund, A. Reformation of long axon pathways in adult rat central nervous system by human forebrain neuroblasts. Nature 347, 556-558 (1990).
    • (1990) Nature , vol.347 , pp. 556-558
    • Wictorin, K.1    Brundin, P.2    Gustavii, B.3    Lindvall, O.4    Bjorklund, A.5
  • 89
    • 84907982779 scopus 로고    scopus 로고
    • Characterization of ectopic colonies that form in widespread areas of the nervous system with neural stem cell transplants into the site of a severe spinal cord injury
    • Steward, O., Sharp, K.G., Yee, K.M., Hatch, M.N. & Bonner, J.F. Characterization of ectopic colonies that form in widespread areas of the nervous system with neural stem cell transplants into the site of a severe spinal cord injury. J. Neurosci. 34, 14013-14021 (2014).
    • (2014) J. Neurosci. , vol.34 , pp. 14013-14021
    • Steward, O.1    Sharp, K.G.2    Yee, K.M.3    Hatch, M.N.4    Bonner, J.F.5
  • 90
    • 84900306248 scopus 로고    scopus 로고
    • Injury to the spinal cord niche alters the engraftment dynamics of human neural stem cells
    • Sontag, C.J., Uchida, N., Cummings, B.J. & Anderson, A.J. Injury to the spinal cord niche alters the engraftment dynamics of human neural stem cells. Stem Cell Rep. 2, 620-632 (2014).
    • (2014) Stem Cell Rep. , vol.2 , pp. 620-632
    • Sontag, C.J.1    Uchida, N.2    Cummings, B.J.3    Anderson, A.J.4
  • 91
    • 78149359626 scopus 로고    scopus 로고
    • Nociceptor sensitization in pain pathogenesis
    • Gold, M.S. & Gebhart, G.F. Nociceptor sensitization in pain pathogenesis. Nat. Med. 16, 1248-1257 (2010).
    • (2010) Nat. Med. , vol.16 , pp. 1248-1257
    • Gold, M.S.1    Gebhart, G.F.2
  • 92
    • 43049168863 scopus 로고    scopus 로고
    • No evidence for chronic demyelination in spared axons after spinal cord injury in a mouse
    • Lasiene, J., Shupe, L., Perlmutter, S. & Horner, P. No evidence for chronic demyelination in spared axons after spinal cord injury in a mouse. J. Neurosci. 28, 3887-3896 (2008).
    • (2008) J. Neurosci. , vol.28 , pp. 3887-3896
    • Lasiene, J.1    Shupe, L.2    Perlmutter, S.3    Horner, P.4
  • 93
    • 18044391661 scopus 로고    scopus 로고
    • Spinal cord injury is accompanied by chronic progressive demyelination
    • Totoiu, M.O. & Keirstead, H.S. Spinal cord injury is accompanied by chronic progressive demyelination. J. Comp. Neurol. 486, 373-383 (2005).
    • (2005) J. Comp. Neurol. , vol.486 , pp. 373-383
    • Totoiu, M.O.1    Keirstead, H.S.2
  • 94
    • 0031783714 scopus 로고    scopus 로고
    • Apoptosis after traumatic human spinal cord injury
    • Emery, E. et al. Apoptosis after traumatic human spinal cord injury. J. Neurosurg. 89, 911-920 (1998).
    • (1998) J. Neurosurg. , vol.89 , pp. 911-920
    • Emery, E.1
  • 95
    • 84864200035 scopus 로고    scopus 로고
    • Oligodendroglia metabolically support axons and contribute to neurodegeneration
    • Lee, Y. et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487, 443-448 (2012).
    • (2012) Nature , vol.487 , pp. 443-448
    • Lee, Y.1
  • 96
    • 84861429431 scopus 로고    scopus 로고
    • Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity
    • Funfschilling, U. et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485, 517-521 (2012).
    • (2012) Nature , vol.485 , pp. 517-521
    • Funfschilling, U.1
  • 97
    • 0024322029 scopus 로고
    • Central axons in injured cat spinal-cord recover electrophysiological function following remyelination by Schwann-cells
    • Blight, A.R. & Young, W. Central axons in injured cat spinal-cord recover electrophysiological function following remyelination by Schwann-cells. J. Neurol. Sci. 91, 15-34 (1989).
    • (1989) J. Neurol. Sci. , vol.91 , pp. 15-34
    • Blight, A.R.1    Young, W.2
  • 98
    • 0018774226 scopus 로고
    • Central remyelination restores secure conduction
    • Smith, K.J., Blakemore, W.F. & Mcdonald, W.I. Central remyelination restores secure conduction. Nature 280, 395-396 (1979).
    • (1979) Nature , vol.280 , pp. 395-396
    • Smith, K.J.1    Blakemore, W.F.2    Mcdonald, W.I.3
  • 99
    • 84964917722 scopus 로고    scopus 로고
    • Does the preclinical evidence for functional remyelination following myelinating cell engraftment into the injured spinal cord support progression to clinical trials?
    • Myers, S.A., Bankston, A.N., Burke, D.A., Ohri, S.S. & Whittemore, S.R. Does the preclinical evidence for functional remyelination following myelinating cell engraftment into the injured spinal cord support progression to clinical trials? Exp. Neurol. 183B, 560-572 (2016).
    • (2016) Exp. Neurol. , vol.183 B , pp. 560-572
    • Myers, S.A.1    Bankston, A.N.2    Burke, D.A.3    Ohri, S.S.4    Whittemore, S.R.5
  • 100
    • 84900514368 scopus 로고    scopus 로고
    • Remyelination after spinal cord injury: Is it a target for repair?
    • Plemel, J.R. et al. Remyelination after spinal cord injury: is it a target for repair? Prog. Neurobiol. 117, 54-72 (2014).
    • (2014) Prog. Neurobiol. , vol.117 , pp. 54-72
    • Plemel, J.R.1
  • 101
    • 0036703612 scopus 로고    scopus 로고
    • Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord
    • Takami, T. et al. Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J. Neurosci. 22, 6670-6681 (2002).
    • (2002) J. Neurosci. , vol.22 , pp. 6670-6681
    • Takami, T.1
  • 102
    • 84929377298 scopus 로고    scopus 로고
    • Schwann cells generated from neonatal skin-derived precursors or neonatal peripheral nerve improve functional recovery after acute transplantation into the partially injured cervical spinal cord of the rat
    • Sparling, J.S. et al. Schwann cells generated from neonatal skin-derived precursors or neonatal peripheral nerve improve functional recovery after acute transplantation into the partially injured cervical spinal cord of the rat. J. Neurosci. 35, 6714-6730 (2015).
    • (2015) J. Neurosci. , vol.35 , pp. 6714-6730
    • Sparling, J.S.1
  • 103
    • 84870152106 scopus 로고    scopus 로고
    • Schwann cell transplantation: A repair strategy for spinal cord injury?
    • Wiliams, R.R. & Bunge, M.B. Schwann cell transplantation: a repair strategy for spinal cord injury? Prog. Brain Res. 201, 295-312 (2012).
    • (2012) Prog. Brain Res. , vol.201 , pp. 295-312
    • Wiliams, R.R.1    Bunge, M.B.2
  • 104
    • 32344447295 scopus 로고    scopus 로고
    • Labeled Schwann cell transplantation: Cell loss, host Schwann cell replacement, and strategies to enhance survival
    • Hill, C.E., Moon, L.D., Wood, P.M. & Bunge, M.B. Labeled Schwann cell transplantation: cell loss, host Schwann cell replacement, and strategies to enhance survival. Glia 53, 338-343 (2006).
    • (2006) Glia , vol.53 , pp. 338-343
    • Hill, C.E.1    Moon, L.D.2    Wood, P.M.3    Bunge, M.B.4
  • 105
    • 0023794823 scopus 로고
    • Long lives for homozygous trembler mutant mice despite virtual absence of peripheral nerve myelin
    • Henry, E.W. & Sidman, R.L. Long lives for homozygous trembler mutant mice despite virtual absence of peripheral nerve myelin. Science 241, 344-346 (1988).
    • (1988) Science , vol.241 , pp. 344-346
    • Henry, E.W.1    Sidman, R.L.2
  • 106
    • 84921465792 scopus 로고    scopus 로고
    • Chronic oligodendrogenesis and remyelination after spinal cord injury in mice and rats
    • Hesp, Z.C., Goldstein, E.A., Miranda, C.J., Kaspar, B.K. & McTigue, D.M. Chronic oligodendrogenesis and remyelination after spinal cord injury in mice and rats. J. Neurosci. 35, 1274-1290 (2015).
    • (2015) J. Neurosci. , vol.35 , pp. 1274-1290
    • Hesp, Z.C.1    Goldstein, E.A.2    Miranda, C.J.3    Kaspar, B.K.4    McTigue, D.M.5
  • 107
    • 84859552165 scopus 로고    scopus 로고
    • Axonal thinning and extensive remyelination without chronic demyelination in spinal injured rats
    • Powers, B.E. et al. Axonal thinning and extensive remyelination without chronic demyelination in spinal injured rats. J. Neurosci. 32, 5120-5125 (2012).
    • (2012) J. Neurosci. , vol.32 , pp. 5120-5125
    • Powers, B.E.1
  • 108
    • 18644384444 scopus 로고    scopus 로고
    • Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury
    • Keirstead, H.S. et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J. Neurosci. 25, 4694-4705 (2005).
    • (2005) J. Neurosci. , vol.25 , pp. 4694-4705
    • Keirstead, H.S.1
  • 109
    • 84922376051 scopus 로고    scopus 로고
    • Early intervention for spinal cord injury with human induced pluripotent stem cells oligodendrocyte progenitors
    • All, A.H. et al. Early intervention for spinal cord injury with human induced pluripotent stem cells oligodendrocyte progenitors. PLoS One 10, e0116933 (2015).
    • (2015) PLoS One , vol.10 , pp. e0116933
    • All, A.H.1
  • 110
    • 77649133015 scopus 로고    scopus 로고
    • Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury
    • Cao, Q. et al. Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury. J. Neurosci. 30, 2989-3001 (2010).
    • (2010) J. Neurosci. , vol.30 , pp. 2989-3001
    • Cao, Q.1
  • 111
    • 33645455547 scopus 로고    scopus 로고
    • Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury
    • Karimi-Abdolrezaee, S., Eftekharpour, E., Wang, J., Morshead, C.M. & Fehlings, M.G. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J. Neurosci. 26, 3377-3389 (2006).
    • (2006) J. Neurosci. , vol.26 , pp. 3377-3389
    • Karimi-Abdolrezaee, S.1    Eftekharpour, E.2    Wang, J.3    Morshead, C.M.4    Fehlings, M.G.5
  • 112
    • 80053563664 scopus 로고    scopus 로고
    • Platelet-derived growth factor-responsive neural precursors give rise to myelinating oligodendrocytes after transplantation into the spinal cords of contused rats and dysmyelinated mice
    • Plemel, J.R. et al. Platelet-derived growth factor-responsive neural precursors give rise to myelinating oligodendrocytes after transplantation into the spinal cords of contused rats and dysmyelinated mice. Glia 59, 1891-1910 (2011).
    • (2011) Glia , vol.59 , pp. 1891-1910
    • Plemel, J.R.1
  • 113
    • 23044446572 scopus 로고    scopus 로고
    • Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells
    • Cao, Q. et al. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J. Neurosci. 25, 6947-6957 (2005).
    • (2005) J. Neurosci. , vol.25 , pp. 6947-6957
    • Cao, Q.1
  • 114
    • 70349785405 scopus 로고    scopus 로고
    • Transplantation of human neural stem cells transduced with Olig2 transcription factor improves locomotor recovery and enhances myelination in the white matter of rat spinal cord following contusive injury
    • Hwang, D.H. et al. Transplantation of human neural stem cells transduced with Olig2 transcription factor improves locomotor recovery and enhances myelination in the white matter of rat spinal cord following contusive injury. BMC Neurosci. 10, 117 (2009).
    • (2009) BMC Neurosci. , vol.10 , pp. 117
    • Hwang, D.H.1
  • 115
    • 20044370811 scopus 로고    scopus 로고
    • Allodynia limits the usefulness of intraspinal neural stem cell grafts; Directed differentiation improves outcome
    • Hofstetter, C.P. et al. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat. Neurosci. 8, 346-353 (2005).
    • (2005) Nat. Neurosci. , vol.8 , pp. 346-353
    • Hofstetter, C.P.1
  • 116
    • 84895880513 scopus 로고    scopus 로고
    • An examination of the mechanisms by which neural precursors augment recovery following spinal cord injury: A key role for remyelination
    • Hawryluk, G.W.J. et al. An examination of the mechanisms by which neural precursors augment recovery following spinal cord injury: a key role for remyelination. Cell Transplant. 23, 365-380 (2014).
    • (2014) Cell Transplant. , vol.23 , pp. 365-380
    • Hawryluk, G.W.J.1
  • 117
    • 81855194785 scopus 로고    scopus 로고
    • Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord
    • Yasuda, A. et al. Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord. Stem Cells 29, 1983-1994 (2011).
    • (2011) Stem Cells , vol.29 , pp. 1983-1994
    • Yasuda, A.1
  • 118
    • 0018333258 scopus 로고
    • Absence of the major dense line in myelin of the mutant mouse Shiverer
    • Privat, A., Jacque, C., Bourre, J.M., Dupouey, P. & Baumann, N. Absence of the major dense line in myelin of the mutant mouse Shiverer. Neurosci. Lett. 12, 107-112 (1979).
    • (1979) Neurosci. Lett. , vol.12 , pp. 107-112
    • Privat, A.1    Jacque, C.2    Bourre, J.M.3    Dupouey, P.4    Baumann, N.5
  • 119
    • 84919934552 scopus 로고    scopus 로고
    • Cortical plasticity induced by transplantation of embryonic somatostatin or parvalbumin interneurons
    • Tang, Y., Stryker, M.P., Alvarez-Buylla, A. & Espinosa, J.S. Cortical plasticity induced by transplantation of embryonic somatostatin or parvalbumin interneurons. Proc. Natl. Acad. Sci. USA 111, 18339-18344 (2014).
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , pp. 18339-18344
    • Tang, Y.1    Stryker, M.P.2    Alvarez-Buylla, A.3    Espinosa, J.S.4
  • 120
    • 84959208270 scopus 로고    scopus 로고
    • A unilateral cervical spinal cord contusion injury model in non-human primates (Macaca mulatta)
    • Salegio, E.A. et al. A unilateral cervical spinal cord contusion injury model in non-human primates (Macaca mulatta). J. Neurotrauma 33, 439-459 (2016).
    • (2016) J. Neurotrauma , vol.33 , pp. 439-459
    • Salegio, E.A.1
  • 121
    • 84924574219 scopus 로고    scopus 로고
    • Long-term safety issues of iPSC-based cell therapy in a spinal cord injury model: Oncogenic transformation with epithelial-mesenchymal transition
    • Nori, S. et al. Long-term safety issues of iPSC-based cell therapy in a spinal cord injury model: oncogenic transformation with epithelial-mesenchymal transition. Stem Cell Rep. 4, 360-373 (2015).
    • (2015) Stem Cell Rep. , vol.4 , pp. 360-373
    • Nori, S.1
  • 122
    • 84881140361 scopus 로고    scopus 로고
    • Autonomic dysreflexia causes chronic immune suppression after spinal cord injury
    • Zhang, Y. et al. Autonomic dysreflexia causes chronic immune suppression after spinal cord injury. J. Neurosci. 33, 12970-12981 (2013).
    • (2013) J. Neurosci. , vol.33 , pp. 12970-12981
    • Zhang, Y.1
  • 124
    • 84964587194 scopus 로고    scopus 로고
    • Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level
    • Brommer, B. et al. Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level. Brain 139, 692-707 (2016).
    • (2016) Brain , vol.139 , pp. 692-707
    • Brommer, B.1
  • 125
    • 84879361259 scopus 로고    scopus 로고
    • Demonstrating efficacy in preclinical studies of cellular therapies for spinal cord injury-how much is enough?
    • Kwon, B.K. et al. Demonstrating efficacy in preclinical studies of cellular therapies for spinal cord injury-how much is enough? Exp. Neurol. 248, 30-44 (2013).
    • (2013) Exp. Neurol. , vol.248 , pp. 30-44
    • Kwon, B.K.1
  • 126
    • 84907057757 scopus 로고    scopus 로고
    • Minimizing errors in acute traumatic spinal cord injury trials by acknowledging the heterogeneity of spinal cord anatomy and injury severity: An observational Canadian cohort analysis
    • Dvorak, M.F. et al. Minimizing errors in acute traumatic spinal cord injury trials by acknowledging the heterogeneity of spinal cord anatomy and injury severity: an observational Canadian cohort analysis. J. Neurotrauma 31, 1540-1547 (2014).
    • (2014) J. Neurotrauma , vol.31 , pp. 1540-1547
    • Dvorak, M.F.1
  • 127
    • 84856620027 scopus 로고    scopus 로고
    • Outcome measures for acute/subacute cervical sensorimotor complete (AIS-A) spinal cord injury during a phase 2 clinical trial
    • Steeves, J.D. et al. Outcome measures for acute/subacute cervical sensorimotor complete (AIS-A) spinal cord injury during a phase 2 clinical trial. Top. Spinal Cord Inj. Rehabil. 18, 1-14 (2012).
    • (2012) Top. Spinal Cord Inj. Rehabil. , vol.18 , pp. 1-14
    • Steeves, J.D.1
  • 128
    • 84871657149 scopus 로고    scopus 로고
    • Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity
    • Kobayashi, Y. et al. Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity. PLoS One http://dx.doi.org/10.1371/journal.pone.0052787 (2012).
    • (2012) PLoS One
    • Kobayashi, Y.1
  • 129
    • 33745919498 scopus 로고    scopus 로고
    • Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury
    • Okada, S. et al. Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat. Med. 12, 829-834 (2006).
    • (2006) Nat. Med. , vol.12 , pp. 829-834
    • Okada, S.1
  • 130
    • 79551682102 scopus 로고    scopus 로고
    • Extent of spontaneous motor recovery after traumatic cervical sensorimotor complete spinal cord injury
    • Steeves, J.D. et al. Extent of spontaneous motor recovery after traumatic cervical sensorimotor complete spinal cord injury. Spinal Cord 49, 257-265 (2011).
    • (2011) Spinal Cord , vol.49 , pp. 257-265
    • Steeves, J.D.1
  • 131
    • 84871962001 scopus 로고    scopus 로고
    • Time-dependent changes in the microenvironment of injured spinal cord affects the therapeutic potential of neural stem cell transplantation for spinal cord injury
    • Nishimura, S. et al. Time-dependent changes in the microenvironment of injured spinal cord affects the therapeutic potential of neural stem cell transplantation for spinal cord injury. Mol. Brain 6, 3 (2013).
    • (2013) Mol. Brain , vol.6 , pp. 3
    • Nishimura, S.1
  • 132
    • 21044445893 scopus 로고    scopus 로고
    • Survival, integration, and axon growth support of glia transplanted into the chronically contused spinal cord
    • Barakat, D.J. et al. Survival, integration, and axon growth support of glia transplanted into the chronically contused spinal cord. Cell Transplant. 14, 225-240 (2005).
    • (2005) Cell Transplant. , vol.14 , pp. 225-240
    • Barakat, D.J.1
  • 133
    • 7244242234 scopus 로고    scopus 로고
    • Targeting recovery: Priorities of the spinal cord-injured population
    • Anderson, K.D. Targeting recovery: priorities of the spinal cord-injured population. J. Neurotrauma 21, 1371-1383 (2004).
    • (2004) J. Neurotrauma , vol.21 , pp. 1371-1383
    • Anderson, K.D.1
  • 134
    • 84874595033 scopus 로고    scopus 로고
    • Remyelination reporter reveals prolonged refinement of spontaneously regenerated myelin
    • Powers, B.E. et al. Remyelination reporter reveals prolonged refinement of spontaneously regenerated myelin. Proc. Natl. Acad. Sci. USA 110, 4075-4080 (2013).
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. 4075-4080
    • Powers, B.E.1
  • 135
    • 83455199070 scopus 로고    scopus 로고
    • Conduction failure following spinal cord injury: Functional and anatomical changes from acute to chronic stages
    • James, N.D. et al. Conduction failure following spinal cord injury: functional and anatomical changes from acute to chronic stages. J. Neurosci. 31, 18543-18555 (2011).
    • (2011) J. Neurosci. , vol.31 , pp. 18543-18555
    • James, N.D.1
  • 136
    • 0022252884 scopus 로고
    • Delayed demyelination and macrophage invasion: A candidate for secondary cell damage in spinal cord injury
    • Blight, A.R. Delayed demyelination and macrophage invasion: a candidate for secondary cell damage in spinal cord injury. Cent. Nerv. Syst. Trauma 2, 299-315 (1985).
    • (1985) Cent. Nerv. Syst. Trauma , vol.2 , pp. 299-315
    • Blight, A.R.1
  • 137
    • 14844313297 scopus 로고    scopus 로고
    • Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury
    • Guest, J.D., Hiester, E.D. & Bunge, R.P. Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury. Exp. Neurol. 192, 384-393 (2005).
    • (2005) Exp. Neurol. , vol.192 , pp. 384-393
    • Guest, J.D.1    Hiester, E.D.2    Bunge, R.P.3
  • 138
    • 0027343542 scopus 로고
    • Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination
    • Bunge, R.P., Puckett, W.R., Becerra, J.L., Marcillo, A. & Quencer, R.M. Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination. Adv. Neurol. 59, 75-89 (1993).
    • (1993) Adv. Neurol. , vol.59 , pp. 75-89
    • Bunge, R.P.1    Puckett, W.R.2    Becerra, J.L.3    Marcillo, A.4    Quencer, R.M.5
  • 139
    • 76149105178 scopus 로고    scopus 로고
    • Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord
    • Karimi-Abdolrezaee, S., Eftekharpour, E., Wang, J., Schut, D. & Fehlings, M.G. Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J. Neurosci. 30, 1657-1676 (2010).
    • (2010) J. Neurosci. , vol.30 , pp. 1657-1676
    • Karimi-Abdolrezaee, S.1    Eftekharpour, E.2    Wang, J.3    Schut, D.4    Fehlings, M.G.5
  • 140
    • 0035873062 scopus 로고    scopus 로고
    • Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord
    • McTigue, D.M., Wei, P. & Stokes, B.T. Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord. J. Neurosci. 21, 3392-3400 (2001).
    • (2001) J. Neurosci. , vol.21 , pp. 3392-3400
    • McTigue, D.M.1    Wei, P.2    Stokes, B.T.3
  • 141
    • 34247490551 scopus 로고    scopus 로고
    • Prominent oligodendrocyte genesis along the border of spinal contusion lesions
    • Tripathi, R. & McTigue, D.M. Prominent oligodendrocyte genesis along the border of spinal contusion lesions. Glia 55, 698-711 (2007).
    • (2007) Glia , vol.55 , pp. 698-711
    • Tripathi, R.1    McTigue, D.M.2
  • 142
    • 34047245282 scopus 로고    scopus 로고
    • Glial cell loss, proliferation and replacement in the contused murine spinal cord
    • Lytle, J.M. & Wrathall, J.R. Glial cell loss, proliferation and replacement in the contused murine spinal cord. Eur. J. Neurosci. 25, 1711-1724 (2007).
    • (2007) Eur. J. Neurosci. , vol.25 , pp. 1711-1724
    • Lytle, J.M.1    Wrathall, J.R.2
  • 143
    • 77957331909 scopus 로고    scopus 로고
    • Origin of new glial cells in intact and injured adult spinal cord
    • Barnabé-Heider, F. et al. Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell 7, 470-482 (2010).
    • (2010) Cell Stem Cell , vol.7 , pp. 470-482
    • Barnabé-Heider, F.1
  • 144
    • 83055176424 scopus 로고    scopus 로고
    • GGF2 (Nrg1-beta3) treatment enhances NG2+ cell response and improves functional recovery after spinal cord injury
    • Whittaker, M.T. et al. GGF2 (Nrg1-beta3) treatment enhances NG2+ cell response and improves functional recovery after spinal cord injury. Glia 60, 281-294 (2012).
    • (2012) Glia , vol.60 , pp. 281-294
    • Whittaker, M.T.1
  • 145
    • 84859739036 scopus 로고    scopus 로고
    • Ferritin stimulates oligodendrocyte genesis in the adult spinal cord and can be transferred from macrophages to NG2 cells in vivo
    • Schonberg, D.L. et al. Ferritin stimulates oligodendrocyte genesis in the adult spinal cord and can be transferred from macrophages to NG2 cells in vivo. J. Neurosci. 32, 5374-5384 (2012).
    • (2012) J. Neurosci. , vol.32 , pp. 5374-5384
    • Schonberg, D.L.1
  • 146
    • 79960099283 scopus 로고    scopus 로고
    • A pericyte origin of spinal cord scar tissue
    • Goritz, C. et al. A pericyte origin of spinal cord scar tissue. Science 333, 238-242 (2011).
    • (2011) Science , vol.333 , pp. 238-242
    • Goritz, C.1
  • 147
    • 48349122033 scopus 로고    scopus 로고
    • Spinal cord injury reveals multilineage differentiation of ependymal cells
    • Meletis, K. et al. Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol. 6, e182 (2008).
    • (2008) PLoS Biol. , vol.6 , pp. e182
    • Meletis, K.1
  • 148
    • 85010875151 scopus 로고    scopus 로고
    • Ependymal cell contribution to scar formation after spinal cord injury is minimal, local and dpeendent on direct ependymal injury
    • Ren, Y. et al. Ependymal cell contribution to scar formation after spinal cord injury is minimal, local and dpeendent on direct ependymal injury. Sci. Rep. 7, 41122 (2017).
    • (2017) Sci. Rep. , vol.7 , pp. 41122
    • Ren, Y.1
  • 149
    • 84882643038 scopus 로고    scopus 로고
    • Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury
    • Soderblom, C. et al. Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. J. Neurosci. 33, 13882-13887 (2013).
    • (2013) J. Neurosci. , vol.33 , pp. 13882-13887
    • Soderblom, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.