-
1
-
-
79958263078
-
Strategies for homeostatic stem cell self-renewal in adult tissues
-
Simons BD, Clevers H., Strategies for homeostatic stem cell self-renewal in adult tissues. Cell 2011; 145(6): 851–862.
-
(2011)
Cell
, vol.145
, Issue.6
, pp. 851-862
-
-
Simons, B.D.1
Clevers, H.2
-
2
-
-
34247117277
-
Evidence for a stem cell hierarchy in the adult human breast
-
Villadsen R, Fridriksdottir AJ, Rønnov-Jessen L. Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol 2007; 177(1): 87–101.
-
(2007)
J Cell Biol
, vol.177
, Issue.1
, pp. 87-101
-
-
Villadsen, R.1
Fridriksdottir, A.J.2
Rønnov-Jessen, L.3
-
3
-
-
84902603107
-
Plasticity of epithelial stem cells in tissue regeneration
-
Blanpain C, Fuchs E., Plasticity of epithelial stem cells in tissue regeneration. Science 2014; 344(6189): 1242281.
-
(2014)
Science
, vol.344
, Issue.6189
, pp. 1242281
-
-
Blanpain, C.1
Fuchs, E.2
-
5
-
-
0037388204
-
Prospective identification of tumorigenic breast cancer cells
-
Al-Hajj M, Wicha MS, Benito-Hernandez A. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100(7): 3983–3988.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, Issue.7
, pp. 3983-3988
-
-
Al-Hajj, M.1
Wicha, M.S.2
Benito-Hernandez, A.3
-
6
-
-
35848955428
-
ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome
-
Ginestier C, Hur MH, Charafe-Jauffret E. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007; 15(1): 555–567.
-
(2007)
Cell Stem Cell
, vol.15
, Issue.1
, pp. 555-567
-
-
Ginestier, C.1
Hur, M.H.2
Charafe-Jauffret, E.3
-
7
-
-
84916230380
-
Colon cancer: cancer stem cells markers, drug resistance and treatment
-
Kozovska Z, Gabrisova V, Kucerova L., Colon cancer: cancer stem cells markers, drug resistance and treatment. Biomed Pharmacother 2014; 68(8): 911–916.
-
(2014)
Biomed Pharmacother
, vol.68
, Issue.8
, pp. 911-916
-
-
Kozovska, Z.1
Gabrisova, V.2
Kucerova, L.3
-
8
-
-
84937410267
-
Biology and clinical relevance of acute myeloid leukemia stem cells
-
Reinisch A, Chan SM, Thomas D. Biology and clinical relevance of acute myeloid leukemia stem cells. Semin Hematol 2015; 52(3): 150–164.
-
(2015)
Semin Hematol
, vol.52
, Issue.3
, pp. 150-164
-
-
Reinisch, A.1
Chan, S.M.2
Thomas, D.3
-
10
-
-
79952284127
-
Hallmarks of cancer: the next generation
-
Hanahan D, Weinberg RA., Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646–674.
-
(2011)
Cell
, vol.144
, Issue.5
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
11
-
-
84860739604
-
Ubiquitin, ubiquitination and the ubiquitin-proteasome system in cancer
-
Voutsadakis IA., Ubiquitin, ubiquitination and the ubiquitin-proteasome system in cancer. Atlas Genet Cytogen Oncol Haematol 2010, http://atlasgeneticsoncology.org/Deep/UbiquitininCancerID20083.html.
-
(2010)
Atlas Genet Cytogen Oncol Haematol
-
-
Voutsadakis, I.A.1
-
14
-
-
84856023509
-
The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together
-
Ramnath Pathare G, Nagy I, Bohn S. The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together. Proc Natl Acad Sci USA 2012; 109: 149–154.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 149-154
-
-
Ramnath Pathare, G.1
Nagy, I.2
Bohn, S.3
-
15
-
-
9644300915
-
The proteasome: a proteolytic nanomachine of cell regulation and waste disposal
-
Wolf DH, Hilt W., The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim Biophys Acta 2004; 1695: 19–31.
-
(2004)
Biochim Biophys Acta
, vol.1695
, pp. 19-31
-
-
Wolf, D.H.1
Hilt, W.2
-
16
-
-
56449106087
-
The ubiquitin-proteasome system in colorectal cancer
-
Voutsadakis IA., The ubiquitin-proteasome system in colorectal cancer. Biochim Biophys Acta 2008; 1782: 800–808.
-
(2008)
Biochim Biophys Acta
, vol.1782
, pp. 800-808
-
-
Voutsadakis, I.A.1
-
17
-
-
59649115172
-
Proteasomes can degrade a significant proportion of cellular proteins independent of ubiquitination
-
Baugh JM, Viktorova EG, Pilipenko EV., Proteasomes can degrade a significant proportion of cellular proteins independent of ubiquitination. J Mol Biol 2009; 386: 814–827.
-
(2009)
J Mol Biol
, vol.386
, pp. 814-827
-
-
Baugh, J.M.1
Viktorova, E.G.2
Pilipenko, E.V.3
-
18
-
-
84864357735
-
Emerging roles of immunoproteasomes beyond MHC class I antigen processing
-
Ebstein F, Kloetzel P-M, Krüger E. Emerging roles of immunoproteasomes beyond MHC class I antigen processing. Cell Mol Life Sci 2012; 69: 2543–2558.
-
(2012)
Cell Mol Life Sci
, vol.69
, pp. 2543-2558
-
-
Ebstein, F.1
Kloetzel, P.-M.2
Krüger, E.3
-
19
-
-
84961219224
-
Assembly of an evolutionarily conserved alternative proteasome isoform in human cells
-
Padmanabhan A, Anh-Thu Vuong S, Hochstrasser M., Assembly of an evolutionarily conserved alternative proteasome isoform in human cells. Cell Rep 2016; 14: 1–13.
-
(2016)
Cell Rep
, vol.14
, pp. 1-13
-
-
Padmanabhan, A.1
Anh-Thu Vuong, S.2
Hochstrasser, M.3
-
21
-
-
84896807361
-
The Cdc48–Vms1 complex maintains 26S proteasome architecture
-
Tran JR, Brodsky JL., The Cdc48–Vms1 complex maintains 26S proteasome architecture. Biochem J 2014; 458: 459–467.
-
(2014)
Biochem J
, vol.458
, pp. 459-467
-
-
Tran, J.R.1
Brodsky, J.L.2
-
22
-
-
84896732350
-
The proteasome complex and the maintenance of pluripotency: sustain the fate by mopping up?
-
Schröter F, Adjaye J., The proteasome complex and the maintenance of pluripotency: sustain the fate by mopping up? Stem Cell Res Ther 2014; 5: 24.
-
(2014)
Stem Cell Res Ther
, vol.5
, pp. 24
-
-
Schröter, F.1
Adjaye, J.2
-
23
-
-
84952639230
-
Gates, channels, and switches: elements of the proteasome machine
-
Finley D, Chen X, Walters KJ., Gates, channels, and switches: elements of the proteasome machine. Trends Biochem Sci 2016; 41: 77–93.
-
(2016)
Trends Biochem Sci
, vol.41
, pp. 77-93
-
-
Finley, D.1
Chen, X.2
Walters, K.J.3
-
24
-
-
0034640520
-
Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysis
-
Tanahashi N, Murakami Y, Minami Y. Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysis. J Biol Chem 2000; 275: 9055–9061.
-
(2000)
J Biol Chem
, vol.275
, pp. 9055-9061
-
-
Tanahashi, N.1
Murakami, Y.2
Minami, Y.3
-
25
-
-
84858735072
-
The noncanonical NF-κB pathway
-
Sun S-C., The noncanonical NF-κB pathway. Immunol Rev 2012; 246: 125–140.
-
(2012)
Immunol Rev
, vol.246
, pp. 125-140
-
-
Sun, S.-C.1
-
26
-
-
62349116134
-
In vivo imaging, tracking, and targeting of cancer stem cells
-
Vlashi E, Kim K, Lagadec C. In vivo imaging, tracking, and targeting of cancer stem cells. J Natl Cancer Inst 2009; 101: 350–359.
-
(2009)
J Natl Cancer Inst
, vol.101
, pp. 350-359
-
-
Vlashi, E.1
Kim, K.2
Lagadec, C.3
-
27
-
-
84885323839
-
Targeted elimination of breast cancer cells with low proteasome activity is sufficient for tumor regression
-
Vlashi E, Lagadec C, Chan M. Targeted elimination of breast cancer cells with low proteasome activity is sufficient for tumor regression. Breast Cancer Res Treat 2013; 141: 197–203.
-
(2013)
Breast Cancer Res Treat
, vol.141
, pp. 197-203
-
-
Vlashi, E.1
Lagadec, C.2
Chan, M.3
-
28
-
-
84907683817
-
Identification of chemoradiation-resistant osteosarcoma stem cells using an imaging system for proteasome activity
-
Tamari K, Hayashi K, Ishii H. Identification of chemoradiation-resistant osteosarcoma stem cells using an imaging system for proteasome activity. Int J Oncol 2014; 45: 2349–2354.
-
(2014)
Int J Oncol
, vol.45
, pp. 2349-2354
-
-
Tamari, K.1
Hayashi, K.2
Ishii, H.3
-
29
-
-
84897570341
-
Tumor cells with low proteasome subunit expression predict overall survival in head and neck cancer patients
-
Lagadec C, Vlashi E, Bhuta S. Tumor cells with low proteasome subunit expression predict overall survival in head and neck cancer patients. BMC Cancer 2014; 14: 152.
-
(2014)
BMC Cancer
, vol.14
, pp. 152
-
-
Lagadec, C.1
Vlashi, E.2
Bhuta, S.3
-
30
-
-
78149423083
-
26S proteasome activity is down-regulated in lung cancer stem-like cells propagated in vitro
-
Pan J, Zhang Q, Wang Y. 26S proteasome activity is down-regulated in lung cancer stem-like cells propagated in vitro. PLoS ONE 2010; 5: e13298.
-
(2010)
PLoS ONE
, vol.5
, pp. e13298
-
-
Pan, J.1
Zhang, Q.2
Wang, Y.3
-
31
-
-
84860335684
-
Radioresistance of prostate cancer cells with low proteasome activity
-
Della Donna L, Lagadec C, Pajonk F. Radioresistance of prostate cancer cells with low proteasome activity. Prostate 2012; 72: 868–874.
-
(2012)
Prostate
, vol.72
, pp. 868-874
-
-
Della Donna, L.1
Lagadec, C.2
Pajonk, F.3
-
32
-
-
84942879291
-
Imaging reporters for proteasome activity identify tumor- and metastasis-initiating cells
-
Stacer AC, Wang H, Fenner J. Imaging reporters for proteasome activity identify tumor- and metastasis-initiating cells. Mol Imaging 2015; 14: 414–428.
-
(2015)
Mol Imaging
, vol.14
, pp. 414-428
-
-
Stacer, A.C.1
Wang, H.2
Fenner, J.3
-
33
-
-
77953474728
-
Differential effects of the proteasome inhibitor NPI-0052 against glioma cells
-
Vlashi E, Mattes M, Lagadec C. Differential effects of the proteasome inhibitor NPI-0052 against glioma cells. Transl Oncol 2010; 3: 50–55.
-
(2010)
Transl Oncol
, vol.3
, pp. 50-55
-
-
Vlashi, E.1
Mattes, M.2
Lagadec, C.3
-
34
-
-
84994588690
-
Cancer stem-like properties in colorectal cancer cells with low proteasome activity
-
Munakata K, Uemura M, Tanaka S. Cancer stem-like properties in colorectal cancer cells with low proteasome activity. Clin Cancer Res 2016; 22: 5277–5286.
-
(2016)
Clin Cancer Res
, vol.22
, pp. 5277-5286
-
-
Munakata, K.1
Uemura, M.2
Tanaka, S.3
-
35
-
-
84965054209
-
Downregulation of 26S proteasome catalytic activity promotes epithelial-mesenchymal transition
-
Banno A, Garcia DA, van Baarsel ED. Downregulation of 26S proteasome catalytic activity promotes epithelial-mesenchymal transition. Oncotarget 2016; 7: 21527–21541.
-
(2016)
Oncotarget
, vol.7
, pp. 21527-21541
-
-
Banno, A.1
Garcia, D.A.2
van Baarsel, E.D.3
-
36
-
-
82655181320
-
The LMP7-K allele of the immunoproteasome exhibits reduced transcript stability and predicts high risk of colon cancer
-
Fellerhoff B, Gu S, Laumbacher B. The LMP7-K allele of the immunoproteasome exhibits reduced transcript stability and predicts high risk of colon cancer. Cancer Res 2011; 71: 7145–7154.
-
(2011)
Cancer Res
, vol.71
, pp. 7145-7154
-
-
Fellerhoff, B.1
Gu, S.2
Laumbacher, B.3
-
37
-
-
84964247816
-
Pluripotency transcription factors in the pathogenesis of colorectal cancer and implications for prognosis
-
Voutsadakis IA., Pluripotency transcription factors in the pathogenesis of colorectal cancer and implications for prognosis. Biomark Med 2015; 9: 349–361.
-
(2015)
Biomark Med
, vol.9
, pp. 349-361
-
-
Voutsadakis, I.A.1
-
38
-
-
11144280578
-
Identification and validation of commonly overexpressed genes in solid tumors by comparison of microarray data
-
Pilarsky C, Wenzig M, Specht T. Identification and validation of commonly overexpressed genes in solid tumors by comparison of microarray data. Neoplasia 2004; 6: 744–750.
-
(2004)
Neoplasia
, vol.6
, pp. 744-750
-
-
Pilarsky, C.1
Wenzig, M.2
Specht, T.3
-
39
-
-
21344469230
-
Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue
-
Chen L, Madura K., Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue. Cancer Res 2005; 65: 5599–5606.
-
(2005)
Cancer Res
, vol.65
, pp. 5599-5606
-
-
Chen, L.1
Madura, K.2
-
40
-
-
33645731530
-
Ubiquitin-proteasome system stress sensitizes ovarian cancer to proteasome inhibitor-induced apoptosis
-
Bazzaro M, Lee MK, Zoso A. Ubiquitin-proteasome system stress sensitizes ovarian cancer to proteasome inhibitor-induced apoptosis. Cancer Res 2006; 66: 3754–3763.
-
(2006)
Cancer Res
, vol.66
, pp. 3754-3763
-
-
Bazzaro, M.1
Lee, M.K.2
Zoso, A.3
-
41
-
-
84930727265
-
Identification of new hub genes associated with bladder carcinoma via bioinformatics analysis
-
Jia Z, Ai X, Sun F. Identification of new hub genes associated with bladder carcinoma via bioinformatics analysis. Tumori 2015; 101: 117–122.
-
(2015)
Tumori
, vol.101
, pp. 117-122
-
-
Jia, Z.1
Ai, X.2
Sun, F.3
-
42
-
-
84891763093
-
Proteomic profiling identified multiple short-lived members of the central proteome as the direct targets of the addicted oncogenes in cancer cells
-
Qi T, Zhang W, Luan Y. Proteomic profiling identified multiple short-lived members of the central proteome as the direct targets of the addicted oncogenes in cancer cells. Mol Cell Proteomics 2014; 13: 49–62.
-
(2014)
Mol Cell Proteomics
, vol.13
, pp. 49-62
-
-
Qi, T.1
Zhang, W.2
Luan, Y.3
-
43
-
-
84866167976
-
Increased proteasome activity in human embryonic stem cells is regulated by PSMD11
-
Vilchez D, Boyer L, Morantte I. Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 2012; 489: 304–308.
-
(2012)
Nature
, vol.489
, pp. 304-308
-
-
Vilchez, D.1
Boyer, L.2
Morantte, I.3
-
44
-
-
84862840388
-
A putative role for the immunoproteasome in the maintenance of pluripotency in human embryonic stem cells
-
Atkinson SP, Collin J, Neganova I. A putative role for the immunoproteasome in the maintenance of pluripotency in human embryonic stem cells. Stem Cells 2012; 30: 1373–1384.
-
(2012)
Stem Cells
, vol.30
, pp. 1373-1384
-
-
Atkinson, S.P.1
Collin, J.2
Neganova, I.3
-
45
-
-
84870945375
-
Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system
-
Buckley SM, Aranda-Orgilles B, Strikoudis A. Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system. Cell Stem Cell 2012; 11: 783–798.
-
(2012)
Cell Stem Cell
, vol.11
, pp. 783-798
-
-
Buckley, S.M.1
Aranda-Orgilles, B.2
Strikoudis, A.3
-
46
-
-
33845645536
-
The proteasome restricts permissive transcription at tissue-specific gene loci in embryonic stem cells
-
Szutorisz H, Georgiou A, Tora L. The proteasome restricts permissive transcription at tissue-specific gene loci in embryonic stem cells. Cell 2006; 127: 1375–1388.
-
(2006)
Cell
, vol.127
, pp. 1375-1388
-
-
Szutorisz, H.1
Georgiou, A.2
Tora, L.3
-
47
-
-
84875156572
-
Removal of damaged proteins during ES cell fate specification requires the proteasome activator PA28
-
1381
-
Hernebring M, Fredriksson Å, Liljevald M. Removal of damaged proteins during ES cell fate specification requires the proteasome activator PA28. Sci Rep 2013; 3: 1381.
-
(2013)
Sci Rep
, vol.3
-
-
Hernebring, M.1
Fredriksson, Å.2
Liljevald, M.3
-
48
-
-
84941578537
-
Transcriptional activation of human CDCA8 gene regulated by transcription factor NF-Y in embryonic stem cells and cancer cells
-
Dai C, Miao CX, Xu XM. Transcriptional activation of human CDCA8 gene regulated by transcription factor NF-Y in embryonic stem cells and cancer cells. J Biol Chem 2015; 290: 22423–22434.
-
(2015)
J Biol Chem
, vol.290
, pp. 22423-22434
-
-
Dai, C.1
Miao, C.X.2
Xu, X.M.3
-
49
-
-
84867912887
-
The short isoform of NF-YA belongs to the embryonic stem cell transcription factor circuitry
-
Dolfini D, Minuzzo M, Pavesi G. The short isoform of NF-YA belongs to the embryonic stem cell transcription factor circuitry. Stem Cells 2012; 30: 2450–2459.
-
(2012)
Stem Cells
, vol.30
, pp. 2450-2459
-
-
Dolfini, D.1
Minuzzo, M.2
Pavesi, G.3
-
50
-
-
84896344634
-
The mechanistic links between proteasome activity, aging and age-related diseases
-
Saez I, Viltchez D., The mechanistic links between proteasome activity, aging and age-related diseases. Curr Genomics 2014; 15: 38–51.
-
(2014)
Curr Genomics
, vol.15
, pp. 38-51
-
-
Saez, I.1
Viltchez, D.2
-
52
-
-
84884688198
-
Estrogen receptor alpha and nuclear factor Y coordinately regulate the transcription of the SUMO-conjugating UBC9 gene in MCF-7 breast cancer cells
-
Ying S, Dünnebier T, Si J. Estrogen receptor alpha and nuclear factor Y coordinately regulate the transcription of the SUMO-conjugating UBC9 gene in MCF-7 breast cancer cells. PLoS ONE 2013; 8: e75695.
-
(2013)
PLoS ONE
, vol.8
, pp. e75695
-
-
Ying, S.1
Dünnebier, T.2
Si, J.3
-
53
-
-
84862813490
-
The CCAAT box-binding transcription factor NF-Y regulates basal expression of human proteasome genes
-
Xu H, Fu J, Ha S-W. The CCAAT box-binding transcription factor NF-Y regulates basal expression of human proteasome genes. Biochim Biophys Acta 2012; 1823: 818–825.
-
(2012)
Biochim Biophys Acta
, vol.1823
, pp. 818-825
-
-
Xu, H.1
Fu, J.2
Ha, S.-W.3
-
54
-
-
84921448486
-
Interleukin-1β/Interleukin-1 receptor-associated kinase 1 inflammatory signalling contributes to persistent Gankyrin activation during hepatocarcinogenesis
-
Su B, Luo T, Zhu J. Interleukin-1β/Interleukin-1 receptor-associated kinase 1 inflammatory signalling contributes to persistent Gankyrin activation during hepatocarcinogenesis. Hepatology 2015; 61: 585–597.
-
(2015)
Hepatology
, vol.61
, pp. 585-597
-
-
Su, B.1
Luo, T.2
Zhu, J.3
-
55
-
-
84891804010
-
The RNA-binding protein Musashi-1 regulates proteasome subunit expression in breast cancer- and glioma-initiating cells
-
Lagadec C, Vlashi E, Frohnen P. The RNA-binding protein Musashi-1 regulates proteasome subunit expression in breast cancer- and glioma-initiating cells. Stem Cells 2014; 32: 135–144.
-
(2014)
Stem Cells
, vol.32
, pp. 135-144
-
-
Lagadec, C.1
Vlashi, E.2
Frohnen, P.3
-
56
-
-
48949118769
-
A role for Numb in p53 stabilization
-
Carter S, Vousden KH., A role for Numb in p53 stabilization. Genome Biol 2008; 9: 221.
-
(2008)
Genome Biol
, vol.9
, pp. 221
-
-
Carter, S.1
Vousden, K.H.2
-
57
-
-
84869127674
-
The RNA-binding protein Musashi1: a major player in intestinal epithelium renewal and colon cancer development
-
Plateroti M, de Araujo PR, Eduardo da, Silva A. The RNA-binding protein Musashi1: a major player in intestinal epithelium renewal and colon cancer development. Curr Colorectal Cancer Rep 2012; 8: 290–297.
-
(2012)
Curr Colorectal Cancer Rep
, vol.8
, pp. 290-297
-
-
Plateroti, M.1
de Araujo, P.R.2
da Eduardo, D.3
Silva, A.4
-
58
-
-
84925278849
-
Musashi proteins are post-transcriptional regulators of the epithelial-luminal cell state
-
Katz Y, Li F, Lambert NJ. Musashi proteins are post-transcriptional regulators of the epithelial-luminal cell state. Elife 2014; 3: e03915.
-
(2014)
Elife
, vol.3
, pp. e03915
-
-
Katz, Y.1
Li, F.2
Lambert, N.J.3
-
59
-
-
19544393523
-
Function of RNA-binding protein Musashi-1 in stem cells
-
Okano H, Kawahara H, Toriya M. Function of RNA-binding protein Musashi-1 in stem cells. Exp Cell Res 2005; 306: 349–356.
-
(2005)
Exp Cell Res
, vol.306
, pp. 349-356
-
-
Okano, H.1
Kawahara, H.2
Toriya, M.3
-
60
-
-
84897432594
-
NOTCH3 signaling regulates MUSASHI-1 expression in metastatic colorectal cancer cells
-
Pastò A, Serafin V, Pilotto G. NOTCH3 signaling regulates MUSASHI-1 expression in metastatic colorectal cancer cells. Cancer Res 2014; 74: 2106–2118.
-
(2014)
Cancer Res
, vol.74
, pp. 2106-2118
-
-
Pastò, A.1
Serafin, V.2
Pilotto, G.3
-
61
-
-
85048775182
-
Epithelial-mesenchymal transition (EMT) and regulation of EMT factors by steroid nuclear receptors in breast cancer: a review and in silico investigation
-
Voutsadakis IA., Epithelial-mesenchymal transition (EMT) and regulation of EMT factors by steroid nuclear receptors in breast cancer: a review and in silico investigation. J Clin Med 2016; 5: 1.
-
(2016)
J Clin Med
, vol.5
, pp. 1
-
-
Voutsadakis, I.A.1
-
62
-
-
77949422964
-
Proteasome inhibition represses ERalpha gene expression in ER+ cells: a new link between proteasome activity and estrogen signaling in breast cancer
-
Powers GL, Ellison-Zelski SJ, Casa AJ. Proteasome inhibition represses ERalpha gene expression in ER+ cells: a new link between proteasome activity and estrogen signaling in breast cancer. Oncogene 2010; 29: 1509–1518.
-
(2010)
Oncogene
, vol.29
, pp. 1509-1518
-
-
Powers, G.L.1
Ellison-Zelski, S.J.2
Casa, A.J.3
-
63
-
-
84890203542
-
Regulation of proteasome activity in health and disease
-
Schmidt M, Finley D., Regulation of proteasome activity in health and disease. Biochim Biophys Acta 2014; 1843: 13–25.
-
(2014)
Biochim Biophys Acta
, vol.1843
, pp. 13-25
-
-
Schmidt, M.1
Finley, D.2
-
64
-
-
77950366349
-
Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells
-
Radhakrishnan SK, Lee CS, Young P. Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol Cell 2010; 38: 17–28.
-
(2010)
Mol Cell
, vol.38
, pp. 17-28
-
-
Radhakrishnan, S.K.1
Lee, C.S.2
Young, P.3
-
65
-
-
77957341511
-
Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop
-
Steffen J, Seeger M, Koch A. Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Mol Cell 2010; 40: 147–158.
-
(2010)
Mol Cell
, vol.40
, pp. 147-158
-
-
Steffen, J.1
Seeger, M.2
Koch, A.3
-
66
-
-
84906898355
-
Coordinated regulation of protein synthesis and degradation by mTORC1
-
Zhang Y, Nicholatos J, Dreier JR. Coordinated regulation of protein synthesis and degradation by mTORC1. Nature 2014; 513: 440–443.
-
(2014)
Nature
, vol.513
, pp. 440-443
-
-
Zhang, Y.1
Nicholatos, J.2
Dreier, J.R.3
-
67
-
-
84952705310
-
mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy
-
Zhao J, Zhai B, Gygi SP. mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc Natl Acad Sci USA 2015; 112: 15790–15797.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. 15790-15797
-
-
Zhao, J.1
Zhai, B.2
Gygi, S.P.3
-
68
-
-
84866333520
-
The Nrf2-antioxidant response element pathway: a target for regulating energy metabolism
-
Vomhof-DeKrey EE, Picklo MJ, Sr. The Nrf2-antioxidant response element pathway: a target for regulating energy metabolism. J Nutr Biochem 2012; 23: 1201–1206.
-
(2012)
J Nutr Biochem
, vol.23
, pp. 1201-1206
-
-
Vomhof-DeKrey, E.E.1
Picklo, M.J.2
-
69
-
-
84908094625
-
Nrf2, a regulator of the proteasome, controls self-renewal and pluripotency in human embryonic stem cells
-
Jang J, Wang Y, Kim H-S. Nrf2, a regulator of the proteasome, controls self-renewal and pluripotency in human embryonic stem cells. Stem Cells 2014; 32: 2616–2625.
-
(2014)
Stem Cells
, vol.32
, pp. 2616-2625
-
-
Jang, J.1
Wang, Y.2
Kim, H.-S.3
-
70
-
-
77950907407
-
Nuclear erythroid factor 2-mediated proteasome activation delays senescence in human fibroblasts
-
Kapeta S, Chondrogianni N, Gonos ES., Nuclear erythroid factor 2-mediated proteasome activation delays senescence in human fibroblasts. J Biol Chem 2010; 285: 8171–8184.
-
(2010)
J Biol Chem
, vol.285
, pp. 8171-8184
-
-
Kapeta, S.1
Chondrogianni, N.2
Gonos, E.S.3
-
71
-
-
1942520367
-
Nrf2 signaling in coordinated activation of antioxidant gene expression
-
Jaiswal AK., Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 2004; 36: 1199–1207.
-
(2004)
Free Radic Biol Med
, vol.36
, pp. 1199-1207
-
-
Jaiswal, A.K.1
-
72
-
-
0242721624
-
Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway
-
Kwak M-K, Wakabayashi N, Greenlaw JL. Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol Cell Biol 2003; 23: 8786–8794.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 8786-8794
-
-
Kwak, M.-K.1
Wakabayashi, N.2
Greenlaw, J.L.3
-
73
-
-
84858972249
-
Nrf2-dependent induction of proteasome and Pa28αβ regulator are required for adaptation to oxidative stress
-
Pickering AM, Linder RA, Zhang H. Nrf2-dependent induction of proteasome and Pa28αβ regulator are required for adaptation to oxidative stress. J Biol Chem 2012; 287: 10021–10031.
-
(2012)
J Biol Chem
, vol.287
, pp. 10021-10031
-
-
Pickering, A.M.1
Linder, R.A.2
Zhang, H.3
-
74
-
-
80054796744
-
Drug-induced senescence generates chemoresistant stemlike cells with low reactive oxygen species
-
Achuthan S, Santhoshkumar TR, Prabhakar J. Drug-induced senescence generates chemoresistant stemlike cells with low reactive oxygen species. J Biol Chem 2011; 286: 37813–37829.
-
(2011)
J Biol Chem
, vol.286
, pp. 37813-37829
-
-
Achuthan, S.1
Santhoshkumar, T.R.2
Prabhakar, J.3
-
75
-
-
84881121768
-
Nrf2 is required to maintain the self-renewal of glioma stem cells
-
Zhu J, Wang H, Sun Q. Nrf2 is required to maintain the self-renewal of glioma stem cells. BMC Cancer 2013; 13: 380.
-
(2013)
BMC Cancer
, vol.13
, pp. 380
-
-
Zhu, J.1
Wang, H.2
Sun, Q.3
-
76
-
-
33744472774
-
Proteasomal oscillation during mild heat shock in aging human skin fibroblasts
-
Kraft DC, Deocaris CC, Rattan SIS. Proteasomal oscillation during mild heat shock in aging human skin fibroblasts. Ann N Y Acad Sci 2006; 1067: 224–227.
-
(2006)
Ann N Y Acad Sci
, vol.1067
, pp. 224-227
-
-
Kraft, D.C.1
Deocaris, C.C.2
Rattan, S.I.S.3
-
78
-
-
63549121490
-
NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer
-
Hayes JD, McMahon M., NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci 2009; 34: 176–188.
-
(2009)
Trends Biochem Sci
, vol.34
, pp. 176-188
-
-
Hayes, J.D.1
McMahon, M.2
-
79
-
-
84957550528
-
Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity
-
Chang MT, Asthana S, Gao SP. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat Biotechnol 2016; 34: 155–163.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 155-163
-
-
Chang, M.T.1
Asthana, S.2
Gao, S.P.3
-
80
-
-
84923222319
-
Dual roles of NRF2 in tumor prevention and progression: possible implications in cancer treatment
-
Moon EJ, Giaccia A., Dual roles of NRF2 in tumor prevention and progression: possible implications in cancer treatment. Free Radic Biol Med 2015; 79: 292–299.
-
(2015)
Free Radic Biol Med
, vol.79
, pp. 292-299
-
-
Moon, E.J.1
Giaccia, A.2
-
81
-
-
77954959807
-
Roles of heat shock factor 1 and 2 in response to proteasome inhibition: consequence on p53 stability
-
Lecomte S, Desmots F, Le Masson F. Roles of heat shock factor 1 and 2 in response to proteasome inhibition: consequence on p53 stability. Oncogene 2010; 29: 4216–4224.
-
(2010)
Oncogene
, vol.29
, pp. 4216-4224
-
-
Lecomte, S.1
Desmots, F.2
Le Masson, F.3
-
82
-
-
79953700587
-
Implication of heat shock factors in tumorigenesis: therapeutical potential
-
de Thonel A, Mezger V, Garrido C. Implication of heat shock factors in tumorigenesis: therapeutical potential. Cancers 2011; 3: 1158–1181.
-
(2011)
Cancers
, vol.3
, pp. 1158-1181
-
-
de Thonel, A.1
Mezger, V.2
Garrido, C.3
-
83
-
-
34548658230
-
Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis
-
Dai C, Whitesell L, Rogers AB. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 2007; 130: 1005–1018.
-
(2007)
Cell
, vol.130
, pp. 1005-1018
-
-
Dai, C.1
Whitesell, L.2
Rogers, A.B.3
-
84
-
-
84933545153
-
Heat-shock factor 2 is a suppressor of prostate cancer invasion
-
Björk JK, Åkerfelt M, Joutsen J. Heat-shock factor 2 is a suppressor of prostate cancer invasion. Oncogene 2016; 35: 1770–1784.
-
(2016)
Oncogene
, vol.35
, pp. 1770-1784
-
-
Björk, J.K.1
Åkerfelt, M.2
Joutsen, J.3
-
85
-
-
43049165453
-
The epithelial-mesenchymal transition generates cells with properties of stem cells
-
Mani SA, Guo W, Liao MJ. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.
-
(2008)
Cell
, vol.133
, pp. 704-715
-
-
Mani, S.A.1
Guo, W.2
Liao, M.J.3
-
86
-
-
84941285503
-
The network of pluripotency, epithelial–mesenchymal transition and prognosis of breast cancer
-
Voutsadakis IA., The network of pluripotency, epithelial–mesenchymal transition and prognosis of breast cancer. Breast Cancer 2015; 7: 303–319.
-
(2015)
Breast Cancer
, vol.7
, pp. 303-319
-
-
Voutsadakis, I.A.1
-
87
-
-
84866182143
-
RPN-6 determines C. elegans longevity under proteotoxic stress conditions
-
Vilchez D, Morantte I, Liu Z. RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature 2012; 489: 263–268.
-
(2012)
Nature
, vol.489
, pp. 263-268
-
-
Vilchez, D.1
Morantte, I.2
Liu, Z.3
-
88
-
-
84877793247
-
FOXO4 is necessary for neural differentiation of human embryonic stem cells
-
Vilchez D, Boyer L, Lutz M. FOXO4 is necessary for neural differentiation of human embryonic stem cells. Aging Cell 2013; 12: 518–522.
-
(2013)
Aging Cell
, vol.12
, pp. 518-522
-
-
Vilchez, D.1
Boyer, L.2
Lutz, M.3
-
89
-
-
79958263080
-
Pluripotency factors in embryonic stem cells regulate differentiation into germ layers
-
Thomson M, Liu SJ, Zou L-N. Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell 2011; 145: 875–889.
-
(2011)
Cell
, vol.145
, pp. 875-889
-
-
Thomson, M.1
Liu, S.J.2
Zou, L.-N.3
-
90
-
-
33846295218
-
FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis
-
Paik J-H, Kollipara R, Chu G. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 2007; 128: 309–323.
-
(2007)
Cell
, vol.128
, pp. 309-323
-
-
Paik, J.-H.1
Kollipara, R.2
Chu, G.3
-
91
-
-
36448968532
-
FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells
-
Zhao J, Brault JJ, Schild A. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 2007; 6: 472–483.
-
(2007)
Cell Metab
, vol.6
, pp. 472-483
-
-
Zhao, J.1
Brault, J.J.2
Schild, A.3
-
92
-
-
84857695549
-
Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy
-
Reed SA, Sandesara PB, Senf SM. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. FASEB J 2012; 26: 987–1000.
-
(2012)
FASEB J
, vol.26
, pp. 987-1000
-
-
Reed, S.A.1
Sandesara, P.B.2
Senf, S.M.3
-
93
-
-
84927636147
-
Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy
-
Milan G, Romanello V, Pescatore F. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun 2015; 6: 6670.
-
(2015)
Nat Commun
, vol.6
, pp. 6670
-
-
Milan, G.1
Romanello, V.2
Pescatore, F.3
-
94
-
-
84879798573
-
Insulin/IGF-1 signaling regulates proteasome activity through the deubiquitinating enzyme UBH-4
-
Matilainen O, Arpalahti L, Rantanen V. Insulin/IGF-1 signaling regulates proteasome activity through the deubiquitinating enzyme UBH-4. Cell Rep 2013; 3: 1980–1995.
-
(2013)
Cell Rep
, vol.3
, pp. 1980-1995
-
-
Matilainen, O.1
Arpalahti, L.2
Rantanen, V.3
-
95
-
-
79955872868
-
NF-Y is essential for expression of the proapoptotic bim gene in sympathetic neurons
-
Hughes R, Kristiansen M, Lassot I. NF-Y is essential for expression of the proapoptotic bim gene in sympathetic neurons. Cell Death Differ 2011; 18: 937–947.
-
(2011)
Cell Death Differ
, vol.18
, pp. 937-947
-
-
Hughes, R.1
Kristiansen, M.2
Lassot, I.3
-
97
-
-
77954368003
-
12/13 inhibition enhances the anticancer effect of bortezomib through PSMB5 downregulation
-
12/13 inhibition enhances the anticancer effect of bortezomib through PSMB5 downregulation. Carcinogenesis 2010; 31: 1230–1237.
-
(2010)
Carcinogenesis
, vol.31
, pp. 1230-1237
-
-
Yang, Y.M.1
Lee, S.2
Nam, C.W.3
-
98
-
-
84899749396
-
Regulation of PSMB5 protein and β subunits of mammalian proteasome by constitutively activated Signal Transducer and Activator of Transcription 3 (STAT3)
-
Vangala JR, Dudem S, Jain N. Regulation of PSMB5 protein and β subunits of mammalian proteasome by constitutively activated Signal Transducer and Activator of Transcription 3 (STAT3). J Biol Chem 2014; 289: 12612–12622.
-
(2014)
J Biol Chem
, vol.289
, pp. 12612-12622
-
-
Vangala, J.R.1
Dudem, S.2
Jain, N.3
-
99
-
-
84905514443
-
Essential role of aldehyde dehydrogenase 1A3 for the maintenance of non-small cell lung cancer stem cells is associated with the STAT3 pathway
-
Shao C, Sullivan JP, Girard L. Essential role of aldehyde dehydrogenase 1A3 for the maintenance of non-small cell lung cancer stem cells is associated with the STAT3 pathway. Clin Cancer Res 2014; 20: 4154–4166.
-
(2014)
Clin Cancer Res
, vol.20
, pp. 4154-4166
-
-
Shao, C.1
Sullivan, J.P.2
Girard, L.3
-
100
-
-
84928380951
-
Inhibition of Stat3 activation suppresses caspase-3 and the ubiquitin-proteasome system, leading to preservation of muscle mass in cancer cachexia
-
Silva KAS, Dong J, Dong Y. Inhibition of Stat3 activation suppresses caspase-3 and the ubiquitin-proteasome system, leading to preservation of muscle mass in cancer cachexia. J Biol Chem 2015; 290: 11177–11187.
-
(2015)
J Biol Chem
, vol.290
, pp. 11177-11187
-
-
Silva, K.A.S.1
Dong, J.2
Dong, Y.3
-
101
-
-
84881481176
-
Association of gankyrin and stemness factor expression in human colorectal cancer
-
Mine H, Sakurai T, Kashida H. Association of gankyrin and stemness factor expression in human colorectal cancer. Dig Dis Sci 2013; 58: 2337–2344.
-
(2013)
Dig Dis Sci
, vol.58
, pp. 2337-2344
-
-
Mine, H.1
Sakurai, T.2
Kashida, H.3
-
102
-
-
80053319810
-
Gankyrin-mediated dedifferentiation facilitates the tumorigenicity of rat hepatocytes and hepatoma cells
-
Sun W, Ding J, Wu K. Gankyrin-mediated dedifferentiation facilitates the tumorigenicity of rat hepatocytes and hepatoma cells. Hepatology 2011; 54: 1259–1272.
-
(2011)
Hepatology
, vol.54
, pp. 1259-1272
-
-
Sun, W.1
Ding, J.2
Wu, K.3
-
103
-
-
79961209222
-
GANK establishes a positive feedback loop in β-catenin signalling
-
GANK establishes a positive feedback loop in β-catenin signalling. Cell Res 2011; 21: 1248–1261.
-
(2011)
Cell Res
, vol.21
, pp. 1248-1261
-
-
Dong, L.1
Yang, G.2
Pan, Y.3
-
104
-
-
84969244603
-
Gankyrin has an antioxidative role through the feedback regulation of Nrf2 in hepatocellular carcinoma
-
Yang C, Tan Y, Yang G. Gankyrin has an antioxidative role through the feedback regulation of Nrf2 in hepatocellular carcinoma. J Exp Med 2016; 213: 859–875.
-
(2016)
J Exp Med
, vol.213
, pp. 859-875
-
-
Yang, C.1
Tan, Y.2
Yang, G.3
-
105
-
-
22244471087
-
Gankyrin: an intriguing name for a novel regulator of p53 and RB
-
Lozano G, Zambetti GP., Gankyrin: an intriguing name for a novel regulator of p53 and RB. Cancer Cell 2005; 8: 3–4.
-
(2005)
Cancer Cell
, vol.8
, pp. 3-4
-
-
Lozano, G.1
Zambetti, G.P.2
-
106
-
-
84861587167
-
p28(GANK) prevents degradation of Oct4 and promotes expansion of tumor-initiating cells in hepatocarcinogenesis
-
Qian Y-W, Chen Y, Yang W. p28(GANK) prevents degradation of Oct4 and promotes expansion of tumor-initiating cells in hepatocarcinogenesis. Gastroenterology 2012; 142: 1547–1558.
-
(2012)
Gastroenterology
, vol.142
, pp. 1547-1558
-
-
Qian, Y.-W.1
Chen, Y.2
Yang, W.3
-
107
-
-
78449272887
-
Feedback regulation of proteasome gene expression and its implications in cancer therapy
-
Xie Y., Feedback regulation of proteasome gene expression and its implications in cancer therapy. Cancer Metastasis Rev 2010; 29: 687–693.
-
(2010)
Cancer Metastasis Rev
, vol.29
, pp. 687-693
-
-
Xie, Y.1
-
108
-
-
0036081709
-
Proteasome inhibitors induce heat shock response and increase IL-6 expression in human intestinal epithelial cells
-
Pritts TA, Hungness ES, Hershko DD. Proteasome inhibitors induce heat shock response and increase IL-6 expression in human intestinal epithelial cells. Am J Physiol Regul Integr Comp Physiol 2002; 282: R1016–R1026.
-
(2002)
Am J Physiol Regul Integr Comp Physiol
, vol.282
, pp. R1016-R1026
-
-
Pritts, T.A.1
Hungness, E.S.2
Hershko, D.D.3
-
109
-
-
84865172216
-
Gankyrin gene deletion followed by proteomic analysis: insight into the roles of Gankyrin in tumorigenesis and metastasis
-
Luo X, Chen L, Dai J. Gankyrin gene deletion followed by proteomic analysis: insight into the roles of Gankyrin in tumorigenesis and metastasis. BMC Med Genomics 2012; 5: 36.
-
(2012)
BMC Med Genomics
, vol.5
, pp. 36
-
-
Luo, X.1
Chen, L.2
Dai, J.3
-
110
-
-
84896694682
-
Gankyrin promotes tumor growth and metastasis through activation of IL-6/STAT3 signaling in human cholangiocarcinoma
-
Zheng T, Hong X, Wang J. Gankyrin promotes tumor growth and metastasis through activation of IL-6/STAT3 signaling in human cholangiocarcinoma. Hepatology 2014; 59: 935–946.
-
(2014)
Hepatology
, vol.59
, pp. 935-946
-
-
Zheng, T.1
Hong, X.2
Wang, J.3
-
111
-
-
79960024585
-
NF-Y joins E2Fs, p53 and other stress transcription factors at the apoptosis table
-
Gatta R, Dolfini D, Mantovani R., NF-Y joins E2Fs, p53 and other stress transcription factors at the apoptosis table. Cell Death Dis 2011; 2: e162.
-
(2011)
Cell Death Dis
, vol.2
, pp. e162
-
-
Gatta, R.1
Dolfini, D.2
Mantovani, R.3
-
112
-
-
70350347981
-
Two-hybrid analysis identifies PSMD11, a non-ATPase subunit of the proteasome, as a novel interaction partner of AMP-activated protein kinase
-
Moreno D, Viana R, Sanz P., Two-hybrid analysis identifies PSMD11, a non-ATPase subunit of the proteasome, as a novel interaction partner of AMP-activated protein kinase. Int J Biochem Cell Biol 2009; 41: 2431–2439.
-
(2009)
Int J Biochem Cell Biol
, vol.41
, pp. 2431-2439
-
-
Moreno, D.1
Viana, R.2
Sanz, P.3
-
113
-
-
84884693068
-
DNA damage-induced ubiquitylation of proteasome controls its proteolytic activity
-
Moiseeva TN, Bottrill A, Melino G. DNA damage-induced ubiquitylation of proteasome controls its proteolytic activity. Oncotarget 2013; 4: 1338–1348.
-
(2013)
Oncotarget
, vol.4
, pp. 1338-1348
-
-
Moiseeva, T.N.1
Bottrill, A.2
Melino, G.3
-
114
-
-
84900862275
-
Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates
-
Besche HC, Sha Z, Kukushkin NV. Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates. EMBO J 2014; 33: 1160–1176.
-
(2014)
EMBO J
, vol.33
, pp. 1160-1176
-
-
Besche, H.C.1
Sha, Z.2
Kukushkin, N.V.3
-
115
-
-
84903389077
-
SUMOylation of Psmd1 controls Adrm1 interaction with the proteasome
-
Ryu H, Gygi SP, Azuma Y. SUMOylation of Psmd1 controls Adrm1 interaction with the proteasome. Cell Rep 2014; 7: 1842–1848.
-
(2014)
Cell Rep
, vol.7
, pp. 1842-1848
-
-
Ryu, H.1
Gygi, S.P.2
Azuma, Y.3
-
116
-
-
0035070697
-
Regulation of proteasome complexes by gamma-interferon and phosphorylation
-
Rivett AJ, Bose S, Brooks P. Regulation of proteasome complexes by gamma-interferon and phosphorylation. Biochimie 2001; 83: 363–366.
-
(2001)
Biochimie
, vol.83
, pp. 363-366
-
-
Rivett, A.J.1
Bose, S.2
Brooks, P.3
-
117
-
-
84979306721
-
The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death
-
Livneh I, Cohen-Kaplan V, Cohen-Rosenzweig C. The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res 2016; 26: 869–885.
-
(2016)
Cell Res
, vol.26
, pp. 869-885
-
-
Livneh, I.1
Cohen-Kaplan, V.2
Cohen-Rosenzweig, C.3
-
118
-
-
33646186160
-
Bortezomib (VELCADE) in metastatic breast cancer: pharmacodynamics, biological effects, and prediction of clinical benefits
-
Yang CH, Gonzalez-Angulo AM, Reuben JM. Bortezomib (VELCADE) in metastatic breast cancer: pharmacodynamics, biological effects, and prediction of clinical benefits. Ann Oncol 2006; 17: 813–817.
-
(2006)
Ann Oncol
, vol.17
, pp. 813-817
-
-
Yang, C.H.1
Gonzalez-Angulo, A.M.2
Reuben, J.M.3
-
119
-
-
20444364475
-
A phase II study of Bortezomib in the treatment of metastatic malignant melanoma
-
Markovic SN, Geyer SM, Dawkins F. A phase II study of Bortezomib in the treatment of metastatic malignant melanoma. Cancer 2005; 103: 2584–2589.
-
(2005)
Cancer
, vol.103
, pp. 2584-2589
-
-
Markovic, S.N.1
Geyer, S.M.2
Dawkins, F.3
-
120
-
-
84964031640
-
Discovery of a small-molecule binder of the oncoprotein gankyrin that modulates gankyrin activity in the cell
-
Chattopadhyay A, O’Connor CJ, Zhang F. Discovery of a small-molecule binder of the oncoprotein gankyrin that modulates gankyrin activity in the cell. Sci Rep 2016; 6: 23732.
-
(2016)
Sci Rep
, vol.6
, pp. 23732
-
-
Chattopadhyay, A.1
O’Connor, C.J.2
Zhang, F.3
-
121
-
-
84939864331
-
Synthetic proteins potently and selectively bind the oncoprotein gankyrin, modulate its interaction with S6 ATPase, and suppress gankyrin/MDM2-dependent ubiquitination of p53
-
Chapman AM, McNaughton BR., Synthetic proteins potently and selectively bind the oncoprotein gankyrin, modulate its interaction with S6 ATPase, and suppress gankyrin/MDM2-dependent ubiquitination of p53. ACS Chem Biol 2015; 10: 1880–1886.
-
(2015)
ACS Chem Biol
, vol.10
, pp. 1880-1886
-
-
Chapman, A.M.1
McNaughton, B.R.2
-
122
-
-
77956527159
-
Enhancement of proteasome activity by a small-molecule inhibitor of USP14
-
Lee BH, Lee MJ, Park S. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 2010; 467: 179–184.
-
(2010)
Nature
, vol.467
, pp. 179-184
-
-
Lee, B.H.1
Lee, M.J.2
Park, S.3
-
123
-
-
84865227709
-
Cancer vulnerabilities unveiled by genomic loss
-
Nijhawan D, Zack TI, Ren Y. Cancer vulnerabilities unveiled by genomic loss. Cell 2012; 150: 842–854.
-
(2012)
Cell
, vol.150
, pp. 842-854
-
-
Nijhawan, D.1
Zack, T.I.2
Ren, Y.3
-
124
-
-
84961182063
-
Human cancer immunotherapy with PD-1/PD-L1 blockade
-
Zheng P, Zhou Z., Human cancer immunotherapy with PD-1/PD-L1 blockade. Biomark Cancer 2015; 7: 15–18.
-
(2015)
Biomark Cancer
, vol.7
, pp. 15-18
-
-
Zheng, P.1
Zhou, Z.2
|