-
2
-
-
0032139235
-
The random subspace method for constructing decision forests
-
Ho TK. The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell. 1998;20(8):832-44.
-
(1998)
IEEE Trans Pattern Anal Mach Intell
, vol.20
, Issue.8
, pp. 832-844
-
-
Ho, T.K.1
-
3
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Mach Learn. 2001;45(1):5-32.
-
(2001)
Mach Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
4
-
-
84937398205
-
Prediction of O-glycosylation sites using random forest and GA-tuned PSO technique
-
Hassan H, Badr A, Abdelhalim MB. Prediction of O-glycosylation sites using random forest and GA-tuned PSO technique. Bioinform Biol Insights. 2015;9:103.
-
(2015)
Bioinform Biol Insights
, vol.9
, pp. 103
-
-
Hassan, H.1
Badr, A.2
Abdelhalim, M.B.3
-
5
-
-
84961051737
-
Fault diagnosis in spur gears based on genetic algorithm and random forest
-
Cerrada M, Zurita G, Cabrera D, et al. Fault diagnosis in spur gears based on genetic algorithm and random forest. Mech Syst Signal Process. 2016;70:87-103.
-
(2016)
Mech Syst Signal Process
, vol.70
, pp. 87-103
-
-
Cerrada, M.1
Zurita, G.2
Cabrera, D.3
-
6
-
-
84944050923
-
Network intrusion detection using hybrid binary PSO and random forests algorithm
-
Malik AJ, Shahzad W, Khan FA. Network intrusion detection using hybrid binary PSO and random forests algorithm. Security and Communication Networks. 2015;8(16):2646-60.
-
(2015)
Security and Communication Networks
, vol.8
, Issue.16
, pp. 2646-2660
-
-
Malik, A.J.1
Shahzad, W.2
Khan, F.A.3
-
7
-
-
84883447718
-
An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
-
López V, Fernández A, García S, et al. An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Inform Sci. 2013;250:113-41.
-
(2013)
Inform Sci
, vol.250
, pp. 113-141
-
-
López, V.1
Fernández, A.2
García, S.3
-
9
-
-
48649089002
-
An empirical study of learning from imbalanced data using random forest [C]//19th IEEE International Conference on
-
Khoshgoftaar TM, Golawala M, Hulse JV. An empirical study of learning from imbalanced data using random forest [C]//19th IEEE International Conference on. IEEE Tools with Artificial Intelligence. 2007;2:310-7.
-
(2007)
IEEE Tools with Artificial Intelligence
, vol.2
, pp. 310-317
-
-
Khoshgoftaar, T.M.1
Golawala, M.2
Hulse, J.V.3
-
10
-
-
27144531570
-
A study of the behavior of several methods for balancing machine learning training data
-
Batista GE, Prati RC, Monard MC. A study of the behavior of several methods for balancing machine learning training data. ACM Sigkdd Explorations Newsletter. 2004;6(1):20-9.
-
(2004)
ACM Sigkdd Explorations Newsletter
, vol.6
, Issue.1
, pp. 20-29
-
-
Batista, G.E.1
Prati, R.C.2
Monard, M.C.3
-
11
-
-
31544483641
-
Classification ensembles for imbalanced class sizes in predictive toxicology
-
Chen JJ, Tsai CA, Young JF, et al. Classification ensembles for imbalanced class sizes in predictive toxicology. SAR QSAR Environ Res. 2005;16(6):517-29.
-
(2005)
SAR QSAR Environ Res
, vol.16
, Issue.6
, pp. 517-529
-
-
Chen, J.J.1
Tsai, C.A.2
Young, J.F.3
-
12
-
-
84913530064
-
Predicting protein-RNA interaction amino acids using random forest based on submodularity subset selection
-
Pan X, Zhu L, Fan YX, et al. Predicting protein-RNA interaction amino acids using random forest based on submodularity subset selection. Comput Biol Chem. 2014;53:324-30.
-
(2014)
Comput Biol Chem
, vol.53
, pp. 324-330
-
-
Pan, X.1
Zhu, L.2
Fan, Y.X.3
-
13
-
-
84905560384
-
ForesTexter: an efficient random forest algorithm for imbalanced text categorization
-
Wu Q, Ye Y, Zhang H, et al. ForesTexter: an efficient random forest algorithm for imbalanced text categorization. Knowl-Based Syst. 2014;67:105-16.
-
(2014)
Knowl-Based Syst
, vol.67
, pp. 105-116
-
-
Wu, Q.1
Ye, Y.2
Zhang, H.3
-
14
-
-
82755184879
-
Hybrid algorithm for classification of unbalanced datasets
-
Han M, Zhu XR. Hybrid algorithm for classification of unbalanced datasets. Control Theory & Applications. 2011;28(10):1485-9.
-
(2011)
Control Theory & Applications
, vol.28
, Issue.10
, pp. 1485-1489
-
-
Han, M.1
Zhu, X.R.2
-
15
-
-
84885313661
-
Subcellular localization using fluorescence imagery: Utilizing ensemble classification with diverse feature extraction strategies and data balancing
-
Tahir M, Khan A, Majid A, et al. Subcellular localization using fluorescence imagery: Utilizing ensemble classification with diverse feature extraction strategies and data balancing. Appl Soft Comput. 2013;13(11):4231-43.
-
(2013)
Appl Soft Comput
, vol.13
, Issue.11
, pp. 4231-4243
-
-
Tahir, M.1
Khan, A.2
Majid, A.3
-
16
-
-
84962349341
-
Can-CSC-GBE: Developing Cost-sensitive Classifier with Gentleboost Ensemble for breast cancer classification using protein amino acids and imbalanced data
-
Ali S, Majid A, Javed SG, et al. Can-CSC-GBE: Developing Cost-sensitive Classifier with Gentleboost Ensemble for breast cancer classification using protein amino acids and imbalanced data. Comput Biol Med. 2016;73:38-46.
-
(2016)
Comput Biol Med
, vol.73
, pp. 38-46
-
-
Ali, S.1
Majid, A.2
Javed, S.G.3
-
17
-
-
84894240609
-
Prediction of human breast and colon cancers from imbalanced data using nearest neighbor and support vector machines
-
Majid A, Ali S, Iqbal M, et al. Prediction of human breast and colon cancers from imbalanced data using nearest neighbor and support vector machines. Comput Methods Programs Biomed. 2014;113(3):792-808.
-
(2014)
Comput Methods Programs Biomed
, vol.113
, Issue.3
, pp. 792-808
-
-
Majid, A.1
Ali, S.2
Iqbal, M.3
-
18
-
-
22944453097
-
Improving random forests [M]
-
Springer Berlin Heidelberg
-
Robnik-Sikonja M. Improving random forests [M]//Machine Learning: ECML 2004. Springer Berlin Heidelberg, 2004: 359-370.
-
(2004)
Machine Learning: ECML 2004
, pp. 359-370
-
-
Robnik-Sikonja, M.1
-
20
-
-
77949422638
-
Setting of class weights in random forest for small-sample data
-
Jian-geng L, Gao Z-k. Setting of class weights in random forest for small-sample data. Comput Eng Appl. 2009;45(26):131-4.
-
(2009)
Comput Eng Appl
, vol.45
, Issue.26
, pp. 131-134
-
-
Jian-geng, L.1
Gao, Z.-K.2
-
22
-
-
48549095457
-
Conditional variable importance for random forests
-
Strobl C, Boulesteix AL, Kneib T, Augustin T, Zeileis A. Conditional variable importance for random forests. BMC bioinformatics. 2008;9(1):1.
-
(2008)
BMC bioinformatics
, vol.9
, Issue.1
, pp. 1
-
-
Strobl, C.1
Boulesteix, A.L.2
Kneib, T.3
Augustin, T.4
Zeileis, A.5
-
23
-
-
81255178681
-
Random KNN feature selection-a fast and stable alternative to Random Forests
-
Li S, James Harner E, Adjeroh DA. Random KNN feature selection-a fast and stable alternative to Random Forests. BMC bioinformatics. 2011;12(1):1.
-
(2011)
BMC bioinformatics
, vol.12
, Issue.1
, pp. 1
-
-
Li, S.1
James Harner, E.2
Adjeroh, D.A.3
-
24
-
-
84863500698
-
Margin optimization based pruning for random forest
-
Yang F, Lu W, Luo L, et al. Margin optimization based pruning for random forest. Neuro computing. 2012;94:54-63.
-
(2012)
Neuro computing
, vol.94
, pp. 54-63
-
-
Yang, F.1
Lu, W.2
Luo, L.3
-
25
-
-
0003991665
-
An introduction to the boostrap [M]
-
NewYork: Chapman & Hall
-
Efron B, Tibshirani R. An introduction to the boostrap [M]. NewYork: Chapman & Hall; 1993.
-
(1993)
-
-
Efron, B.1
Tibshirani, R.2
-
26
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123-40.
-
(1996)
Mach Learn
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
27
-
-
0003500248
-
C4.5: programs for machine learning [M]
-
Morgan kuafmann
-
Quinaln J R. C4.5: programs for machine learning [M]. Morgan kuafmann, 1993.
-
(1993)
-
-
Quinaln, J.R.1
-
28
-
-
85052770793
-
Classification and Regression Trees
-
Boca Raton, FL: CRC Press
-
Breiman L, Friedman J, Olshen R, and Stone C. Classification and Regression Trees. Boca Raton, FL: CRC Press; 1984.
-
(1984)
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
29
-
-
68549133155
-
Learning from imbalanced data
-
He H, Garcia EA. Learning from imbalanced data. IEEE Trans Knowl Data Eng. 2009;21(9):1263-84.
-
(2009)
IEEE Trans Knowl Data Eng
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.1
Garcia, E.A.2
-
30
-
-
77957988489
-
Class prediction for high-dimensional class-imbalanced data
-
Lusa L. Class prediction for high-dimensional class-imbalanced data. BMC bioinformatics. 2010;11(1):523.
-
(2010)
BMC bioinformatics
, vol.11
, Issue.1
, pp. 523
-
-
Lusa, L.1
-
31
-
-
84962189995
-
Comparison on classification performance between random forests and support vector machine
-
Yan H, Zha W-x. Comparison on classification performance between random forests and support vector machine. Software. 2012;33(6):107-10.
-
(2012)
Software
, vol.33
, Issue.6
, pp. 107-110
-
-
Yan, H.1
Zha, W.-X.2
-
33
-
-
9444297357
-
SMOTE Boost. Improving prediction of the minority class in Boosting
-
Springer-Verlag: Berlin
-
Chawla NV, Lazarevic A, Hall LO, et al. SMOTE Boost. Improving prediction of the minority class in Boosting. In: Proceedings of the 7th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2003), Lecture Notes in Computer Science, vol 2838. Springer-Verlag: Berlin; 2003. p. 107-19.
-
(2003)
Proceedings of the 7th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2003), Lecture Notes in Computer Science
, vol.2838
, pp. 107-119
-
-
Chawla, N.V.1
Lazarevic, A.2
Hall, L.O.3
-
34
-
-
84875125127
-
SMOTE for high-dimensional class-imbalanced data
-
Blagus R, Lusa L. SMOTE for high-dimensional class-imbalanced data. BMC Bioinformatics. 2013;14:106.
-
(2013)
BMC Bioinformatics
, vol.14
, pp. 106
-
-
Blagus, R.1
Lusa, L.2
-
35
-
-
27144501672
-
Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning [C]
-
Han H, Wan W Y, Mao B H. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning [C]//LNCS 3644: ICIC 2005, Part I, 2005: 878-887.
-
(2005)
LNCS 3644: ICIC 2005, Part I
, pp. 878-887
-
-
Han, H.1
Wan, W.Y.2
Mao, B.H.3
-
36
-
-
67650694660
-
Safe-level-SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem
-
Springer-Verlag: Berlin
-
Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C. Safe-level-SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, Lecture Notes on Computer Science, vol 5476. Springer-Verlag: Berlin; 2009. p. 475-82.
-
(2009)
Pacific-Asia Conference on Knowledge Discovery and Data Mining, Lecture Notes on Computer Science
, vol.5476
, pp. 475-482
-
-
Bunkhumpornpat, C.1
Sinapiromsaran, K.2
Lursinsap, C.3
-
37
-
-
33751105239
-
Combating imbalance in network intrusion datasets [C]
-
Cieslak D A, Chawla N V, Striegel A. Combating imbalance in network intrusion datasets [C]//GrC. 2006: 732-737.
-
(2006)
GrC
, pp. 732-737
-
-
Cieslak, D.A.1
Chawla, N.V.2
Striegel, A.3
-
39
-
-
38349072207
-
A classification method for imbalance data Set based on hybrid strategy
-
Peng L, Wang X-l, Yuan-chao L. A classification method for imbalance data Set based on hybrid strategy. Acta Electron Sin. 2007;35(11):2161-5.
-
(2007)
Acta Electron Sin
, vol.35
, Issue.11
, pp. 2161-2165
-
-
Peng, L.1
Wang, X.-L.2
Yuan-chao, L.3
-
40
-
-
85015649556
-
Study on optimization of random forests algorithm [D]
-
Beijing: Capital University of Economics and Business
-
Zheng-feng C. Study on optimization of random forests algorithm [D]. Beijing: Capital University of Economics and Business; 2014.
-
(2014)
-
-
Zheng-feng, C.1
-
41
-
-
84952644910
-
A Classification Method for Imbalanced Data Based on SMOTE and Fuzzy Rough Nearest Neighbor Algorithm
-
In: Yao Y, et al (eds). Springer-Verlag: Berlin
-
Zhao W, Xu M, Jia X, et al. A Classification Method for Imbalanced Data Based on SMOTE and Fuzzy Rough Nearest Neighbor Algorithm. In: Yao Y, et al (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Lecture Notes in Computer Science, vol 9437. Springer-Verlag: Berlin; 2015. p. 340-51.
-
(2015)
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Lecture Notes in Computer Science
, vol.9437
, pp. 340-351
-
-
Zhao, W.1
Xu, M.2
Jia, X.3
-
42
-
-
84947569019
-
Adaptive semi-unsupervised weighted oversampling (A-SUWO) for imbalanced datasets
-
Nekooeimehr I, Lai-Yuen SK. Adaptive semi-unsupervised weighted oversampling (A-SUWO) for imbalanced datasets. Expert Systems with Applications. 2016;46:405-16.
-
(2016)
Expert Systems with Applications
, vol.46
, pp. 405-416
-
-
Nekooeimehr, I.1
Lai-Yuen, S.K.2
-
43
-
-
84923328437
-
SMOTE-IPF: Addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering
-
Sáez JA, Luengo J, Stefanowski J, et al. SMOTE-IPF: Addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering. Inform Sci. 2015;291:184-203.
-
(2015)
Inform Sci
, vol.291
, pp. 184-203
-
-
Sáez, J.A.1
Luengo, J.2
Stefanowski, J.3
-
44
-
-
84961631662
-
To combat multi-class imbalanced problems by means of over-sampling techniques
-
Abdi L, Hashemi S. To combat multi-class imbalanced problems by means of over-sampling techniques. IEEE Trans Knowl Data Eng. 2016;28(1):238-51.
-
(2016)
IEEE Trans Knowl Data Eng
, vol.28
, Issue.1
, pp. 238-251
-
-
Abdi, L.1
Hashemi, S.2
-
45
-
-
0032091595
-
CURE: an efficient clustering algorithm for large databases [C]//ACM SIGMOD Record
-
Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databases [C]//ACM SIGMOD Record. ACM. 1998;27(2):73-84.
-
(1998)
ACM
, vol.27
, Issue.2
, pp. 73-84
-
-
Guha, S.1
Rastogi, R.2
Shim, K.3
-
46
-
-
77955449038
-
Unsupervised anomaly detection method based on improved CURE clustering algorithm
-
Ya-jian Z, Xu C, Ji-guo L. Unsupervised anomaly detection method based on improved CURE clustering algorithm. J Communications. 2010;31(7):18-23.
-
(2010)
J Communications
, vol.31
, Issue.7
, pp. 18-23
-
-
Ya-jian, Z.1
Xu, C.2
Ji-guo, L.3
-
48
-
-
84868119274
-
Null space based feature selection method for gene expression data
-
Sharma A, Imoto S, Miyano S, et al. Null space based feature selection method for gene expression data. Int J Mach Learn Cybern. 2012;3(4):269-76.
-
(2012)
Int J Mach Learn Cybern
, vol.3
, Issue.4
, pp. 269-276
-
-
Sharma, A.1
Imoto, S.2
Miyano, S.3
-
49
-
-
84962916677
-
Structured feature selection using coordinate descent optimization
-
Ghalwash MF, Cao XH, Stojkovic I, et al. Structured feature selection using coordinate descent optimization. BMC bioinformatics. 2016;17(1):1.
-
(2016)
BMC bioinformatics
, vol.17
, Issue.1
, pp. 1
-
-
Ghalwash, M.F.1
Cao, X.H.2
Stojkovic, I.3
-
50
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007;23(19):2507-17.
-
(2007)
Bioinformatics
, vol.23
, Issue.19
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larrañaga, P.3
-
51
-
-
84975246835
-
A centroid-based gene selection method for microarray data classification
-
Guo S, Guo D, Chen L, et al. A centroid-based gene selection method for microarray data classification. J Theor Biol. 2016;400:32-41.
-
(2016)
J Theor Biol
, vol.400
, pp. 32-41
-
-
Guo, S.1
Guo, D.2
Chen, L.3
-
52
-
-
84973487381
-
A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization
-
Sharbaf FV, Mosafer S, Moattar MH. A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization. Genomics. 2016;107(6):231-8.
-
(2016)
Genomics
, vol.107
, Issue.6
, pp. 231-238
-
-
Sharbaf, F.V.1
Mosafer, S.2
Moattar, M.H.3
-
53
-
-
0033569406
-
Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
-
Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286(5439):531-7.
-
(1999)
Science
, vol.286
, Issue.5439
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
-
54
-
-
0033636139
-
Support vector machine classification and validation of cancer tissue samples using microarray expression data
-
Furey TS, Cristianini N, Duffy N, et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics. 2000;16(10):906-14.
-
(2000)
Bioinformatics
, vol.16
, Issue.10
, pp. 906-914
-
-
Furey, T.S.1
Cristianini, N.2
Duffy, N.3
-
56
-
-
84951962460
-
Hybrid Feature Selection Using Correlation Coefficient and Particle Swarm Optimization on Microarray Gene Expression Data
-
In: Snášel V, et al (eds). Springer International Publishing Switzerland
-
Chinnaswamy A, Srinivasan R. Hybrid Feature Selection Using Correlation Coefficient and Particle Swarm Optimization on Microarray Gene Expression Data. In: Snášel V, et al (eds) Innovations in Bio-Inspired Computing and Applications. Advances in Intelligent Systems and Computing, vol 424. Springer International Publishing Switzerland; 2016. p. 229-39.
-
(2016)
Innovations in Bio-Inspired Computing and Applications. Advances in Intelligent Systems and Computing
, vol.424
, pp. 229-239
-
-
Chinnaswamy, A.1
Srinivasan, R.2
-
57
-
-
58149463443
-
Feature selection for high-dimensional data
-
Destrero A, Mosci S, De Mol C, et al. Feature selection for high-dimensional data. Comput Manag Sci. 2009;6(1):25-40.
-
(2009)
Comput Manag Sci
, vol.6
, Issue.1
, pp. 25-40
-
-
Destrero, A.1
Mosci, S.2
Mol, C.3
-
58
-
-
76849086406
-
Feature selection for gene expression using model-based entropy
-
Zhu S, Wang D, Yu K, et al. Feature selection for gene expression using model-based entropy. IEEE/ACM Trans Comput Biol Bioinform. 2010;7(1):25-36.
-
(2010)
IEEE/ACM Trans Comput Biol Bioinform
, vol.7
, Issue.1
, pp. 25-36
-
-
Zhu, S.1
Wang, D.2
Yu, K.3
-
59
-
-
84954372638
-
Random forest-based scheme using feature and decision levels information for multi-focus image fusion
-
Kausar N, Majid A. Random forest-based scheme using feature and decision levels information for multi-focus image fusion. Pattern Anal Applic. 2016;19(1):221-36.
-
(2016)
Pattern Anal Applic
, vol.19
, Issue.1
, pp. 221-236
-
-
Kausar, N.1
Majid, A.2
-
60
-
-
68949140728
-
A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data
-
Menze BH, et al. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC bioinformatics. 2009;10(1):213.
-
(2009)
BMC bioinformatics
, vol.10
, Issue.1
, pp. 213
-
-
Menze, B.H.1
-
61
-
-
33847096395
-
Bias in random forest variable importance measures: Illustrations, sources and a solution
-
Strobl C, et al. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC bioinformatics. 2007;8(1):1.
-
(2007)
BMC bioinformatics
, vol.8
, Issue.1
, pp. 1
-
-
Strobl, C.1
-
62
-
-
84956678371
-
Cost-sensitive feature selection using random forest: Selecting low-cost subsets of informative features
-
Zhou Q, Zhou H, Li T. Cost-sensitive feature selection using random forest: Selecting low-cost subsets of informative features. Knowl-Based Syst. 2016;95:1-11.
-
(2016)
Knowl-Based Syst
, vol.95
, pp. 1-11
-
-
Zhou, Q.1
Zhou, H.2
Li, T.3
-
63
-
-
30644464444
-
Gene selection and classification of microarray data using random forest
-
Díaz-Uriarte R, De Andres SA. Gene selection and classification of microarray data using random forest. BMC bioinformatics. 2006;7(1):1.
-
(2006)
BMC bioinformatics
, vol.7
, Issue.1
, pp. 1
-
-
Díaz-Uriarte, R.1
Andres, S.A.2
-
64
-
-
22144481002
-
Predicting customer retention and profitability by using random forests and regression forests techniques
-
Lariviere B, Van den Poel D. Predicting customer retention and profitability by using random forests and regression forests techniques. Expert Systems with Applications. 2005;29:472-84.
-
(2005)
Expert Systems with Applications
, vol.29
, pp. 472-484
-
-
Lariviere, B.1
Poel, D.2
-
65
-
-
84855970934
-
An assessment of the effectiveness of a random forest classifier for landcover classification
-
Rodriguez-Galiano VF, Ghimire B, Rogan J, Chica-Olmo M, Rigol-Sanchez JP. An assessment of the effectiveness of a random forest classifier for landcover classification. ISPRS J Photogramm Remote Sens. 2012;67:93-104.
-
(2012)
ISPRS J Photogramm Remote Sens
, vol.67
, pp. 93-104
-
-
Rodriguez-Galiano, V.F.1
Ghimire, B.2
Rogan, J.3
Chica-Olmo, M.4
Rigol-Sanchez, J.P.5
-
66
-
-
70349325846
-
Influence of Hyper parameters on Random Forest Accuracy [C]//Proceedings of the 8th International workshop on multiple classifier systems
-
Berlin, Heidelberg: Springer
-
Bernard S, Heutte L, Adam S. Influence of Hyper parameters on Random Forest Accuracy [C]//Proceedings of the 8th International workshop on multiple classifier systems. Berlin, Heidelberg: Springer; 2009. p. 171-80.
-
(2009)
, pp. 171-180
-
-
Bernard, S.1
Heutte, L.2
Adam, S.3
-
67
-
-
85015618151
-
Estimation of the hyper-parameter in random forest based on out-of-bag sample
-
Yu L, Chun-xia Z. Estimation of the hyper-parameter in random forest based on out-of-bag sample. J Syst Eng. 2011;26(4):566-72.
-
(2011)
J Syst Eng
, vol.26
, Issue.4
, pp. 566-572
-
-
Yu, L.1
Chun-xia, Z.2
-
68
-
-
68949164781
-
Out-of-bag estimation of the optimal sample size in bagging
-
Martinez-Munoz G, Suarez A. Out-of-bag estimation of the optimal sample size in bagging. Pattern Recogn. 2010;43(1):143-52.
-
(2010)
Pattern Recogn
, vol.43
, Issue.1
, pp. 143-152
-
-
Martinez-Munoz, G.1
Suarez, A.2
-
69
-
-
77956978750
-
Feature selection and parameter optimization for SVM based on genetic algorithm with feature chromosomes
-
Ming-yuan Z, Yong T, Chong F, Ming-tian Z. Feature selection and parameter optimization for SVM based on genetic algorithm with feature chromosomes. Control and Decision. 2010;25(8):1133-8.
-
(2010)
Control and Decision
, vol.25
, Issue.8
, pp. 1133-1138
-
-
Ming-yuan, Z.1
Yong, T.2
Chong, F.3
Ming-tian, Z.4
-
70
-
-
85015714051
-
Question of SVM kernel parameter optimization with particle swarm algorithm based on neural network
-
Lei L, Gao L, Shijie Z. Question of SVM kernel parameter optimization with particle swarm algorithm based on neural network. Comput Eng Appl. 2015;51(4):162-4.
-
(2015)
Comput Eng Appl
, vol.51
, Issue.4
, pp. 162-164
-
-
Lei, L.1
Gao, L.2
Shijie, Z.3
-
71
-
-
84978874778
-
Application of artificial fish-swarm algorithm in SVM parameter optimization selection
-
Leifu GAO, Shijie ZHAO, Jing GAO. Application of artificial fish-swarm algorithm in SVM parameter optimization selection. Comput Eng Appl. 2013;49(23):86-90.
-
(2013)
Comput Eng Appl
, vol.49
, Issue.23
, pp. 86-90
-
-
Leifu, G.A.O.1
Shijie, Z.H.A.O.2
Jing, G.A.O.3
-
72
-
-
33846507069
-
Parameters selection and application of support vector machines based on particle swarm optimization algorithm
-
Xin-guang SHAO, Hui-zhong YANG, Gang CHEN. Parameters selection and application of support vector machines based on particle swarm optimization algorithm. Control Theory & Applications. 2006;23(5):740-4.
-
(2006)
Control Theory & Applications
, vol.23
, Issue.5
, pp. 740-744
-
-
Xin-guang, S.H.A.O.1
Hui-zhong, Y.A.N.G.2
Gang, C.H.E.N.3
-
75
-
-
84859802343
-
In silico prediction of toxic action mechanisms of phenols for imbalanced data with Random Forest learner
-
Chen J, Tang YY, Fang B, et al. In silico prediction of toxic action mechanisms of phenols for imbalanced data with Random Forest learner. J Mol Graph Model. 2012;35:21-7.
-
(2012)
J Mol Graph Model
, vol.35
, pp. 21-27
-
-
Chen, J.1
Tang, Y.Y.2
Fang, B.3
-
76
-
-
84859790506
-
On extending f-measure and g-mean metrics to multi-class problems [C]
-
Espíndola R P, Ebecken N F F. On extending f-measure and g-mean metrics to multi-class problems [C]//Sixth international conference on data mining, text mining and their business applications, Wessex Institute of Technology, UK. 2005, 35: 25-34.
-
(2005)
Sixth international conference on data mining, text mining and their business applications, Wessex Institute of Technology, UK
, vol.35
, pp. 25-34
-
-
Espíndola, R.P.1
Ebecken, N.F.F.2
-
77
-
-
84875818068
-
An AUC-based permutation variable importance measure for random forests
-
Janitza S, Strobl C, Boulesteix AL. An AUC-based permutation variable importance measure for random forests. BMC bioinformatics. 2013;14(1):119.
-
(2013)
BMC bioinformatics
, vol.14
, Issue.1
, pp. 119
-
-
Janitza, S.1
Strobl, C.2
Boulesteix, A.L.3
-
78
-
-
0004140497
-
Out-of-bag Estimation [R]
-
Berkeley: Statistics Department, University of California
-
Breiman L. Out-of-bag Estimation [R]. Berkeley: Statistics Department, University of California; 1996.
-
(1996)
-
-
Breiman, L.1
-
79
-
-
84928328671
-
Exploring issues of training data imbalance and mislabeling on random forest performance for large area land cover classification using the ensemble margin
-
Mellor A, Boukir S, Haywood A, et al. Exploring issues of training data imbalance and mislabeling on random forest performance for large area land cover classification using the ensemble margin. ISPRS J Photogramm Remote Sens. 2015;105:155-68.
-
(2015)
ISPRS J Photogramm Remote Sens
, vol.105
, pp. 155-168
-
-
Mellor, A.1
Boukir, S.2
Haywood, A.3
|