메뉴 건너뛰기




Volumn 18, Issue 1, 2017, Pages

CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests

Author keywords

Feature selection; Imbalance data; Intelligence algorithm; Parameter optimization; Random forests

Indexed keywords

CLASSIFICATION (OF INFORMATION); CURING; DATA HANDLING; DECISION TREES; FEATURE EXTRACTION; OPTIMIZATION; PARAMETER ESTIMATION;

EID: 85015659687     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-017-1578-z     Document Type: Article
Times cited : (191)

References (79)
  • 2
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho TK. The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell. 1998;20(8):832-44.
    • (1998) IEEE Trans Pattern Anal Mach Intell , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn. 2001;45(1):5-32.
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 4
    • 84937398205 scopus 로고    scopus 로고
    • Prediction of O-glycosylation sites using random forest and GA-tuned PSO technique
    • Hassan H, Badr A, Abdelhalim MB. Prediction of O-glycosylation sites using random forest and GA-tuned PSO technique. Bioinform Biol Insights. 2015;9:103.
    • (2015) Bioinform Biol Insights , vol.9 , pp. 103
    • Hassan, H.1    Badr, A.2    Abdelhalim, M.B.3
  • 5
    • 84961051737 scopus 로고    scopus 로고
    • Fault diagnosis in spur gears based on genetic algorithm and random forest
    • Cerrada M, Zurita G, Cabrera D, et al. Fault diagnosis in spur gears based on genetic algorithm and random forest. Mech Syst Signal Process. 2016;70:87-103.
    • (2016) Mech Syst Signal Process , vol.70 , pp. 87-103
    • Cerrada, M.1    Zurita, G.2    Cabrera, D.3
  • 6
    • 84944050923 scopus 로고    scopus 로고
    • Network intrusion detection using hybrid binary PSO and random forests algorithm
    • Malik AJ, Shahzad W, Khan FA. Network intrusion detection using hybrid binary PSO and random forests algorithm. Security and Communication Networks. 2015;8(16):2646-60.
    • (2015) Security and Communication Networks , vol.8 , Issue.16 , pp. 2646-2660
    • Malik, A.J.1    Shahzad, W.2    Khan, F.A.3
  • 7
    • 84883447718 scopus 로고    scopus 로고
    • An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
    • López V, Fernández A, García S, et al. An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Inform Sci. 2013;250:113-41.
    • (2013) Inform Sci , vol.250 , pp. 113-141
    • López, V.1    Fernández, A.2    García, S.3
  • 9
    • 48649089002 scopus 로고    scopus 로고
    • An empirical study of learning from imbalanced data using random forest [C]//19th IEEE International Conference on
    • Khoshgoftaar TM, Golawala M, Hulse JV. An empirical study of learning from imbalanced data using random forest [C]//19th IEEE International Conference on. IEEE Tools with Artificial Intelligence. 2007;2:310-7.
    • (2007) IEEE Tools with Artificial Intelligence , vol.2 , pp. 310-317
    • Khoshgoftaar, T.M.1    Golawala, M.2    Hulse, J.V.3
  • 10
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • Batista GE, Prati RC, Monard MC. A study of the behavior of several methods for balancing machine learning training data. ACM Sigkdd Explorations Newsletter. 2004;6(1):20-9.
    • (2004) ACM Sigkdd Explorations Newsletter , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.E.1    Prati, R.C.2    Monard, M.C.3
  • 11
    • 31544483641 scopus 로고    scopus 로고
    • Classification ensembles for imbalanced class sizes in predictive toxicology
    • Chen JJ, Tsai CA, Young JF, et al. Classification ensembles for imbalanced class sizes in predictive toxicology. SAR QSAR Environ Res. 2005;16(6):517-29.
    • (2005) SAR QSAR Environ Res , vol.16 , Issue.6 , pp. 517-529
    • Chen, J.J.1    Tsai, C.A.2    Young, J.F.3
  • 12
    • 84913530064 scopus 로고    scopus 로고
    • Predicting protein-RNA interaction amino acids using random forest based on submodularity subset selection
    • Pan X, Zhu L, Fan YX, et al. Predicting protein-RNA interaction amino acids using random forest based on submodularity subset selection. Comput Biol Chem. 2014;53:324-30.
    • (2014) Comput Biol Chem , vol.53 , pp. 324-330
    • Pan, X.1    Zhu, L.2    Fan, Y.X.3
  • 13
    • 84905560384 scopus 로고    scopus 로고
    • ForesTexter: an efficient random forest algorithm for imbalanced text categorization
    • Wu Q, Ye Y, Zhang H, et al. ForesTexter: an efficient random forest algorithm for imbalanced text categorization. Knowl-Based Syst. 2014;67:105-16.
    • (2014) Knowl-Based Syst , vol.67 , pp. 105-116
    • Wu, Q.1    Ye, Y.2    Zhang, H.3
  • 14
    • 82755184879 scopus 로고    scopus 로고
    • Hybrid algorithm for classification of unbalanced datasets
    • Han M, Zhu XR. Hybrid algorithm for classification of unbalanced datasets. Control Theory & Applications. 2011;28(10):1485-9.
    • (2011) Control Theory & Applications , vol.28 , Issue.10 , pp. 1485-1489
    • Han, M.1    Zhu, X.R.2
  • 15
    • 84885313661 scopus 로고    scopus 로고
    • Subcellular localization using fluorescence imagery: Utilizing ensemble classification with diverse feature extraction strategies and data balancing
    • Tahir M, Khan A, Majid A, et al. Subcellular localization using fluorescence imagery: Utilizing ensemble classification with diverse feature extraction strategies and data balancing. Appl Soft Comput. 2013;13(11):4231-43.
    • (2013) Appl Soft Comput , vol.13 , Issue.11 , pp. 4231-4243
    • Tahir, M.1    Khan, A.2    Majid, A.3
  • 16
    • 84962349341 scopus 로고    scopus 로고
    • Can-CSC-GBE: Developing Cost-sensitive Classifier with Gentleboost Ensemble for breast cancer classification using protein amino acids and imbalanced data
    • Ali S, Majid A, Javed SG, et al. Can-CSC-GBE: Developing Cost-sensitive Classifier with Gentleboost Ensemble for breast cancer classification using protein amino acids and imbalanced data. Comput Biol Med. 2016;73:38-46.
    • (2016) Comput Biol Med , vol.73 , pp. 38-46
    • Ali, S.1    Majid, A.2    Javed, S.G.3
  • 17
    • 84894240609 scopus 로고    scopus 로고
    • Prediction of human breast and colon cancers from imbalanced data using nearest neighbor and support vector machines
    • Majid A, Ali S, Iqbal M, et al. Prediction of human breast and colon cancers from imbalanced data using nearest neighbor and support vector machines. Comput Methods Programs Biomed. 2014;113(3):792-808.
    • (2014) Comput Methods Programs Biomed , vol.113 , Issue.3 , pp. 792-808
    • Majid, A.1    Ali, S.2    Iqbal, M.3
  • 18
    • 22944453097 scopus 로고    scopus 로고
    • Improving random forests [M]
    • Springer Berlin Heidelberg
    • Robnik-Sikonja M. Improving random forests [M]//Machine Learning: ECML 2004. Springer Berlin Heidelberg, 2004: 359-370.
    • (2004) Machine Learning: ECML 2004 , pp. 359-370
    • Robnik-Sikonja, M.1
  • 20
    • 77949422638 scopus 로고    scopus 로고
    • Setting of class weights in random forest for small-sample data
    • Jian-geng L, Gao Z-k. Setting of class weights in random forest for small-sample data. Comput Eng Appl. 2009;45(26):131-4.
    • (2009) Comput Eng Appl , vol.45 , Issue.26 , pp. 131-134
    • Jian-geng, L.1    Gao, Z.-K.2
  • 23
    • 81255178681 scopus 로고    scopus 로고
    • Random KNN feature selection-a fast and stable alternative to Random Forests
    • Li S, James Harner E, Adjeroh DA. Random KNN feature selection-a fast and stable alternative to Random Forests. BMC bioinformatics. 2011;12(1):1.
    • (2011) BMC bioinformatics , vol.12 , Issue.1 , pp. 1
    • Li, S.1    James Harner, E.2    Adjeroh, D.A.3
  • 24
    • 84863500698 scopus 로고    scopus 로고
    • Margin optimization based pruning for random forest
    • Yang F, Lu W, Luo L, et al. Margin optimization based pruning for random forest. Neuro computing. 2012;94:54-63.
    • (2012) Neuro computing , vol.94 , pp. 54-63
    • Yang, F.1    Lu, W.2    Luo, L.3
  • 25
    • 0003991665 scopus 로고
    • An introduction to the boostrap [M]
    • NewYork: Chapman & Hall
    • Efron B, Tibshirani R. An introduction to the boostrap [M]. NewYork: Chapman & Hall; 1993.
    • (1993)
    • Efron, B.1    Tibshirani, R.2
  • 26
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123-40.
    • (1996) Mach Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 27
    • 0003500248 scopus 로고
    • C4.5: programs for machine learning [M]
    • Morgan kuafmann
    • Quinaln J R. C4.5: programs for machine learning [M]. Morgan kuafmann, 1993.
    • (1993)
    • Quinaln, J.R.1
  • 28
    • 85052770793 scopus 로고
    • Classification and Regression Trees
    • Boca Raton, FL: CRC Press
    • Breiman L, Friedman J, Olshen R, and Stone C. Classification and Regression Trees. Boca Raton, FL: CRC Press; 1984.
    • (1984)
    • Breiman, L.1    Friedman, J.2    Olshen, R.3    Stone, C.4
  • 29
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • He H, Garcia EA. Learning from imbalanced data. IEEE Trans Knowl Data Eng. 2009;21(9):1263-84.
    • (2009) IEEE Trans Knowl Data Eng , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.1    Garcia, E.A.2
  • 30
    • 77957988489 scopus 로고    scopus 로고
    • Class prediction for high-dimensional class-imbalanced data
    • Lusa L. Class prediction for high-dimensional class-imbalanced data. BMC bioinformatics. 2010;11(1):523.
    • (2010) BMC bioinformatics , vol.11 , Issue.1 , pp. 523
    • Lusa, L.1
  • 31
    • 84962189995 scopus 로고    scopus 로고
    • Comparison on classification performance between random forests and support vector machine
    • Yan H, Zha W-x. Comparison on classification performance between random forests and support vector machine. Software. 2012;33(6):107-10.
    • (2012) Software , vol.33 , Issue.6 , pp. 107-110
    • Yan, H.1    Zha, W.-X.2
  • 32
    • 0346586663 scopus 로고    scopus 로고
    • SMOTE: Synthetic minority over-sampling technique
    • Chawla NV, Bowyer KW, Hall LO, et al. SMOTE: Synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321-57.
    • (2002) J Artif Intell Res , vol.16 , pp. 321-357
    • Chawla, N.V.1    Bowyer, K.W.2    Hall, L.O.3
  • 34
    • 84875125127 scopus 로고    scopus 로고
    • SMOTE for high-dimensional class-imbalanced data
    • Blagus R, Lusa L. SMOTE for high-dimensional class-imbalanced data. BMC Bioinformatics. 2013;14:106.
    • (2013) BMC Bioinformatics , vol.14 , pp. 106
    • Blagus, R.1    Lusa, L.2
  • 35
    • 27144501672 scopus 로고    scopus 로고
    • Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning [C]
    • Han H, Wan W Y, Mao B H. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning [C]//LNCS 3644: ICIC 2005, Part I, 2005: 878-887.
    • (2005) LNCS 3644: ICIC 2005, Part I , pp. 878-887
    • Han, H.1    Wan, W.Y.2    Mao, B.H.3
  • 37
    • 33751105239 scopus 로고    scopus 로고
    • Combating imbalance in network intrusion datasets [C]
    • Cieslak D A, Chawla N V, Striegel A. Combating imbalance in network intrusion datasets [C]//GrC. 2006: 732-737.
    • (2006) GrC , pp. 732-737
    • Cieslak, D.A.1    Chawla, N.V.2    Striegel, A.3
  • 39
    • 38349072207 scopus 로고    scopus 로고
    • A classification method for imbalance data Set based on hybrid strategy
    • Peng L, Wang X-l, Yuan-chao L. A classification method for imbalance data Set based on hybrid strategy. Acta Electron Sin. 2007;35(11):2161-5.
    • (2007) Acta Electron Sin , vol.35 , Issue.11 , pp. 2161-2165
    • Peng, L.1    Wang, X.-L.2    Yuan-chao, L.3
  • 40
    • 85015649556 scopus 로고    scopus 로고
    • Study on optimization of random forests algorithm [D]
    • Beijing: Capital University of Economics and Business
    • Zheng-feng C. Study on optimization of random forests algorithm [D]. Beijing: Capital University of Economics and Business; 2014.
    • (2014)
    • Zheng-feng, C.1
  • 41
    • 84952644910 scopus 로고    scopus 로고
    • A Classification Method for Imbalanced Data Based on SMOTE and Fuzzy Rough Nearest Neighbor Algorithm
    • In: Yao Y, et al (eds). Springer-Verlag: Berlin
    • Zhao W, Xu M, Jia X, et al. A Classification Method for Imbalanced Data Based on SMOTE and Fuzzy Rough Nearest Neighbor Algorithm. In: Yao Y, et al (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Lecture Notes in Computer Science, vol 9437. Springer-Verlag: Berlin; 2015. p. 340-51.
    • (2015) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Lecture Notes in Computer Science , vol.9437 , pp. 340-351
    • Zhao, W.1    Xu, M.2    Jia, X.3
  • 42
    • 84947569019 scopus 로고    scopus 로고
    • Adaptive semi-unsupervised weighted oversampling (A-SUWO) for imbalanced datasets
    • Nekooeimehr I, Lai-Yuen SK. Adaptive semi-unsupervised weighted oversampling (A-SUWO) for imbalanced datasets. Expert Systems with Applications. 2016;46:405-16.
    • (2016) Expert Systems with Applications , vol.46 , pp. 405-416
    • Nekooeimehr, I.1    Lai-Yuen, S.K.2
  • 43
    • 84923328437 scopus 로고    scopus 로고
    • SMOTE-IPF: Addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering
    • Sáez JA, Luengo J, Stefanowski J, et al. SMOTE-IPF: Addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering. Inform Sci. 2015;291:184-203.
    • (2015) Inform Sci , vol.291 , pp. 184-203
    • Sáez, J.A.1    Luengo, J.2    Stefanowski, J.3
  • 44
    • 84961631662 scopus 로고    scopus 로고
    • To combat multi-class imbalanced problems by means of over-sampling techniques
    • Abdi L, Hashemi S. To combat multi-class imbalanced problems by means of over-sampling techniques. IEEE Trans Knowl Data Eng. 2016;28(1):238-51.
    • (2016) IEEE Trans Knowl Data Eng , vol.28 , Issue.1 , pp. 238-251
    • Abdi, L.1    Hashemi, S.2
  • 45
    • 0032091595 scopus 로고    scopus 로고
    • CURE: an efficient clustering algorithm for large databases [C]//ACM SIGMOD Record
    • Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databases [C]//ACM SIGMOD Record. ACM. 1998;27(2):73-84.
    • (1998) ACM , vol.27 , Issue.2 , pp. 73-84
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 46
    • 77955449038 scopus 로고    scopus 로고
    • Unsupervised anomaly detection method based on improved CURE clustering algorithm
    • Ya-jian Z, Xu C, Ji-guo L. Unsupervised anomaly detection method based on improved CURE clustering algorithm. J Communications. 2010;31(7):18-23.
    • (2010) J Communications , vol.31 , Issue.7 , pp. 18-23
    • Ya-jian, Z.1    Xu, C.2    Ji-guo, L.3
  • 48
    • 84868119274 scopus 로고    scopus 로고
    • Null space based feature selection method for gene expression data
    • Sharma A, Imoto S, Miyano S, et al. Null space based feature selection method for gene expression data. Int J Mach Learn Cybern. 2012;3(4):269-76.
    • (2012) Int J Mach Learn Cybern , vol.3 , Issue.4 , pp. 269-276
    • Sharma, A.1    Imoto, S.2    Miyano, S.3
  • 49
    • 84962916677 scopus 로고    scopus 로고
    • Structured feature selection using coordinate descent optimization
    • Ghalwash MF, Cao XH, Stojkovic I, et al. Structured feature selection using coordinate descent optimization. BMC bioinformatics. 2016;17(1):1.
    • (2016) BMC bioinformatics , vol.17 , Issue.1 , pp. 1
    • Ghalwash, M.F.1    Cao, X.H.2    Stojkovic, I.3
  • 50
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007;23(19):2507-17.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 51
    • 84975246835 scopus 로고    scopus 로고
    • A centroid-based gene selection method for microarray data classification
    • Guo S, Guo D, Chen L, et al. A centroid-based gene selection method for microarray data classification. J Theor Biol. 2016;400:32-41.
    • (2016) J Theor Biol , vol.400 , pp. 32-41
    • Guo, S.1    Guo, D.2    Chen, L.3
  • 52
    • 84973487381 scopus 로고    scopus 로고
    • A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization
    • Sharbaf FV, Mosafer S, Moattar MH. A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization. Genomics. 2016;107(6):231-8.
    • (2016) Genomics , vol.107 , Issue.6 , pp. 231-238
    • Sharbaf, F.V.1    Mosafer, S.2    Moattar, M.H.3
  • 53
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286(5439):531-7.
    • (1999) Science , vol.286 , Issue.5439 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3
  • 54
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey TS, Cristianini N, Duffy N, et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics. 2000;16(10):906-14.
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3
  • 56
    • 84951962460 scopus 로고    scopus 로고
    • Hybrid Feature Selection Using Correlation Coefficient and Particle Swarm Optimization on Microarray Gene Expression Data
    • In: Snášel V, et al (eds). Springer International Publishing Switzerland
    • Chinnaswamy A, Srinivasan R. Hybrid Feature Selection Using Correlation Coefficient and Particle Swarm Optimization on Microarray Gene Expression Data. In: Snášel V, et al (eds) Innovations in Bio-Inspired Computing and Applications. Advances in Intelligent Systems and Computing, vol 424. Springer International Publishing Switzerland; 2016. p. 229-39.
    • (2016) Innovations in Bio-Inspired Computing and Applications. Advances in Intelligent Systems and Computing , vol.424 , pp. 229-239
    • Chinnaswamy, A.1    Srinivasan, R.2
  • 57
    • 58149463443 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data
    • Destrero A, Mosci S, De Mol C, et al. Feature selection for high-dimensional data. Comput Manag Sci. 2009;6(1):25-40.
    • (2009) Comput Manag Sci , vol.6 , Issue.1 , pp. 25-40
    • Destrero, A.1    Mosci, S.2    Mol, C.3
  • 58
    • 76849086406 scopus 로고    scopus 로고
    • Feature selection for gene expression using model-based entropy
    • Zhu S, Wang D, Yu K, et al. Feature selection for gene expression using model-based entropy. IEEE/ACM Trans Comput Biol Bioinform. 2010;7(1):25-36.
    • (2010) IEEE/ACM Trans Comput Biol Bioinform , vol.7 , Issue.1 , pp. 25-36
    • Zhu, S.1    Wang, D.2    Yu, K.3
  • 59
    • 84954372638 scopus 로고    scopus 로고
    • Random forest-based scheme using feature and decision levels information for multi-focus image fusion
    • Kausar N, Majid A. Random forest-based scheme using feature and decision levels information for multi-focus image fusion. Pattern Anal Applic. 2016;19(1):221-36.
    • (2016) Pattern Anal Applic , vol.19 , Issue.1 , pp. 221-236
    • Kausar, N.1    Majid, A.2
  • 60
    • 68949140728 scopus 로고    scopus 로고
    • A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data
    • Menze BH, et al. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC bioinformatics. 2009;10(1):213.
    • (2009) BMC bioinformatics , vol.10 , Issue.1 , pp. 213
    • Menze, B.H.1
  • 61
    • 33847096395 scopus 로고    scopus 로고
    • Bias in random forest variable importance measures: Illustrations, sources and a solution
    • Strobl C, et al. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC bioinformatics. 2007;8(1):1.
    • (2007) BMC bioinformatics , vol.8 , Issue.1 , pp. 1
    • Strobl, C.1
  • 62
    • 84956678371 scopus 로고    scopus 로고
    • Cost-sensitive feature selection using random forest: Selecting low-cost subsets of informative features
    • Zhou Q, Zhou H, Li T. Cost-sensitive feature selection using random forest: Selecting low-cost subsets of informative features. Knowl-Based Syst. 2016;95:1-11.
    • (2016) Knowl-Based Syst , vol.95 , pp. 1-11
    • Zhou, Q.1    Zhou, H.2    Li, T.3
  • 63
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Díaz-Uriarte R, De Andres SA. Gene selection and classification of microarray data using random forest. BMC bioinformatics. 2006;7(1):1.
    • (2006) BMC bioinformatics , vol.7 , Issue.1 , pp. 1
    • Díaz-Uriarte, R.1    Andres, S.A.2
  • 64
    • 22144481002 scopus 로고    scopus 로고
    • Predicting customer retention and profitability by using random forests and regression forests techniques
    • Lariviere B, Van den Poel D. Predicting customer retention and profitability by using random forests and regression forests techniques. Expert Systems with Applications. 2005;29:472-84.
    • (2005) Expert Systems with Applications , vol.29 , pp. 472-484
    • Lariviere, B.1    Poel, D.2
  • 66
    • 70349325846 scopus 로고    scopus 로고
    • Influence of Hyper parameters on Random Forest Accuracy [C]//Proceedings of the 8th International workshop on multiple classifier systems
    • Berlin, Heidelberg: Springer
    • Bernard S, Heutte L, Adam S. Influence of Hyper parameters on Random Forest Accuracy [C]//Proceedings of the 8th International workshop on multiple classifier systems. Berlin, Heidelberg: Springer; 2009. p. 171-80.
    • (2009) , pp. 171-180
    • Bernard, S.1    Heutte, L.2    Adam, S.3
  • 67
    • 85015618151 scopus 로고    scopus 로고
    • Estimation of the hyper-parameter in random forest based on out-of-bag sample
    • Yu L, Chun-xia Z. Estimation of the hyper-parameter in random forest based on out-of-bag sample. J Syst Eng. 2011;26(4):566-72.
    • (2011) J Syst Eng , vol.26 , Issue.4 , pp. 566-572
    • Yu, L.1    Chun-xia, Z.2
  • 68
    • 68949164781 scopus 로고    scopus 로고
    • Out-of-bag estimation of the optimal sample size in bagging
    • Martinez-Munoz G, Suarez A. Out-of-bag estimation of the optimal sample size in bagging. Pattern Recogn. 2010;43(1):143-52.
    • (2010) Pattern Recogn , vol.43 , Issue.1 , pp. 143-152
    • Martinez-Munoz, G.1    Suarez, A.2
  • 69
    • 77956978750 scopus 로고    scopus 로고
    • Feature selection and parameter optimization for SVM based on genetic algorithm with feature chromosomes
    • Ming-yuan Z, Yong T, Chong F, Ming-tian Z. Feature selection and parameter optimization for SVM based on genetic algorithm with feature chromosomes. Control and Decision. 2010;25(8):1133-8.
    • (2010) Control and Decision , vol.25 , Issue.8 , pp. 1133-1138
    • Ming-yuan, Z.1    Yong, T.2    Chong, F.3    Ming-tian, Z.4
  • 70
    • 85015714051 scopus 로고    scopus 로고
    • Question of SVM kernel parameter optimization with particle swarm algorithm based on neural network
    • Lei L, Gao L, Shijie Z. Question of SVM kernel parameter optimization with particle swarm algorithm based on neural network. Comput Eng Appl. 2015;51(4):162-4.
    • (2015) Comput Eng Appl , vol.51 , Issue.4 , pp. 162-164
    • Lei, L.1    Gao, L.2    Shijie, Z.3
  • 71
    • 84978874778 scopus 로고    scopus 로고
    • Application of artificial fish-swarm algorithm in SVM parameter optimization selection
    • Leifu GAO, Shijie ZHAO, Jing GAO. Application of artificial fish-swarm algorithm in SVM parameter optimization selection. Comput Eng Appl. 2013;49(23):86-90.
    • (2013) Comput Eng Appl , vol.49 , Issue.23 , pp. 86-90
    • Leifu, G.A.O.1    Shijie, Z.H.A.O.2    Jing, G.A.O.3
  • 72
    • 33846507069 scopus 로고    scopus 로고
    • Parameters selection and application of support vector machines based on particle swarm optimization algorithm
    • Xin-guang SHAO, Hui-zhong YANG, Gang CHEN. Parameters selection and application of support vector machines based on particle swarm optimization algorithm. Control Theory & Applications. 2006;23(5):740-4.
    • (2006) Control Theory & Applications , vol.23 , Issue.5 , pp. 740-744
    • Xin-guang, S.H.A.O.1    Hui-zhong, Y.A.N.G.2    Gang, C.H.E.N.3
  • 74
  • 75
    • 84859802343 scopus 로고    scopus 로고
    • In silico prediction of toxic action mechanisms of phenols for imbalanced data with Random Forest learner
    • Chen J, Tang YY, Fang B, et al. In silico prediction of toxic action mechanisms of phenols for imbalanced data with Random Forest learner. J Mol Graph Model. 2012;35:21-7.
    • (2012) J Mol Graph Model , vol.35 , pp. 21-27
    • Chen, J.1    Tang, Y.Y.2    Fang, B.3
  • 77
    • 84875818068 scopus 로고    scopus 로고
    • An AUC-based permutation variable importance measure for random forests
    • Janitza S, Strobl C, Boulesteix AL. An AUC-based permutation variable importance measure for random forests. BMC bioinformatics. 2013;14(1):119.
    • (2013) BMC bioinformatics , vol.14 , Issue.1 , pp. 119
    • Janitza, S.1    Strobl, C.2    Boulesteix, A.L.3
  • 78
    • 0004140497 scopus 로고    scopus 로고
    • Out-of-bag Estimation [R]
    • Berkeley: Statistics Department, University of California
    • Breiman L. Out-of-bag Estimation [R]. Berkeley: Statistics Department, University of California; 1996.
    • (1996)
    • Breiman, L.1
  • 79
    • 84928328671 scopus 로고    scopus 로고
    • Exploring issues of training data imbalance and mislabeling on random forest performance for large area land cover classification using the ensemble margin
    • Mellor A, Boukir S, Haywood A, et al. Exploring issues of training data imbalance and mislabeling on random forest performance for large area land cover classification using the ensemble margin. ISPRS J Photogramm Remote Sens. 2015;105:155-68.
    • (2015) ISPRS J Photogramm Remote Sens , vol.105 , pp. 155-168
    • Mellor, A.1    Boukir, S.2    Haywood, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.