메뉴 건너뛰기




Volumn 70-71, Issue , 2016, Pages 87-103

Fault diagnosis in spur gears based on genetic algorithm and random forest

Author keywords

Fault diagnosis; Feature selection; Gearbox; Genetic algorithms; Random forest; Wavelet packets

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; DECISION TREES; FAILURE ANALYSIS; FEATURE EXTRACTION; GEARS; GENETIC ALGORITHMS; LEARNING SYSTEMS; SPUR GEARS;

EID: 84961051737     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2015.08.030     Document Type: Article
Times cited : (306)

References (33)
  • 2
    • 84887433963 scopus 로고    scopus 로고
    • Wavelets for fault diagnosis of rotary machines: A review with applications
    • R. Yan, R.X. Gao, and X. Chen Wavelets for fault diagnosis of rotary machines: a review with applications J. Signal Process. 96 2014 1 15
    • (2014) J. Signal Process. , vol.96 , pp. 1-15
    • Yan, R.1    Gao, R.X.2    Chen, X.3
  • 3
    • 84944028204 scopus 로고    scopus 로고
    • A wavelet spectrum technique for machinery fault diagnosis
    • D. Kanneg A wavelet spectrum technique for machinery fault diagnosis J. Signal Inf. Process. 2 2011 322 329
    • (2011) J. Signal Inf. Process. , vol.2 , pp. 322-329
    • Kanneg, D.1
  • 5
    • 79957498228 scopus 로고    scopus 로고
    • Extraction of rules for faulty bearing classification by a neuro-fuzzy approach
    • G. Marichal, M. Artés, J.G. Prada, and O. Casanova Extraction of rules for faulty bearing classification by a neuro-fuzzy approach J. Mech. Syst. Signal Process. 25 2011 2073 2082
    • (2011) J. Mech. Syst. Signal Process. , vol.25 , pp. 2073-2082
    • Marichal, G.1    Artés, M.2    Prada, J.G.3    Casanova, O.4
  • 6
    • 70350447149 scopus 로고    scopus 로고
    • Gear fault detection and diagnosis under speed-up condition based on order cepstrum and radial basis function neural network
    • H. Li, Y. Zhang, H. Zheng, Gear fault detection and diagnosis under speed-up condition based on order cepstrum and radial basis function neural network, J. Mech. Sci. Technol. 23 (2009) 2780-2789.
    • (2009) J. Mech. Sci. Technol. , vol.23 , pp. 2780-2789
    • Li, H.1    Zhang, Y.2    Zheng, H.3
  • 7
    • 84855783889 scopus 로고    scopus 로고
    • A support vector machine approach based on physical model training for rolling element bearing fault detection in industrial environments
    • K. Gryllias, and I. Antoniadis A support vector machine approach based on physical model training for rolling element bearing fault detection in industrial environments J. Eng. Appl. Artif. Intell. 25 2012 326 344
    • (2012) J. Eng. Appl. Artif. Intell. , vol.25 , pp. 326-344
    • Gryllias, K.1    Antoniadis, I.2
  • 9
    • 84894588572 scopus 로고    scopus 로고
    • Gearbox fault detection using real coded genetic algorithm and novel shock response spectrum features extraction
    • S. Hussain, and H.A. Gabbar Gearbox fault detection using real coded genetic algorithm and novel shock response spectrum features extraction J. Nondestruct. Eval. 33 2014 111 123
    • (2014) J. Nondestruct. Eval. , vol.33 , pp. 111-123
    • Hussain, S.1    Gabbar, H.A.2
  • 10
    • 0942289503 scopus 로고    scopus 로고
    • Gear fault detection using artificial neural networks and support vector machines with genetic algorithms
    • B. Samanta Gear fault detection using artificial neural networks and support vector machines with genetic algorithms Mech. Syst. Signal Process. 18 2004 625 644
    • (2004) Mech. Syst. Signal Process. , vol.18 , pp. 625-644
    • Samanta, B.1
  • 11
    • 33646534620 scopus 로고    scopus 로고
    • A review on machinery diagnostics and prognostics implementing condition-based maintenance
    • A.K. Jardine, D. Lin, D. Banjevic, A review on machinery diagnostics and prognostics implementing condition-based maintenance, Mech. Syst. Signal Process. 20 (2006) 1483-1510.
    • (2006) Mech. Syst. Signal Process , vol.20 , pp. 1483-1510
    • Jardine, A.K.1    Lin, D.2    Banjevic, D.3
  • 12
    • 33748680159 scopus 로고    scopus 로고
    • Classification and regression trees (CART)
    • (Master's thesis), Center of Applied Statistics and Economics Humboldt University, Berlin
    • R. Timofeev, Classification and regression trees (CART). Theory and applications (Master's thesis), Center of Applied Statistics and Economics Humboldt University, Berlin, 2004.
    • (2004) Theory and Applications
    • Timofeev, R.1
  • 13
    • 77958064179 scopus 로고    scopus 로고
    • Mining data with random forests: A survey and results of new tests
    • A. Verikas, A. Gelzinis, and M. Bacauskiene Mining data with random forests: a survey and results of new tests Pattern Recognit. 44 2011 330 349
    • (2011) Pattern Recognit. , vol.44 , pp. 330-349
    • Verikas, A.1    Gelzinis, A.2    Bacauskiene, M.3
  • 14
    • 64949202636 scopus 로고    scopus 로고
    • Random forests classifier for machine fault diagnosis
    • B.S. Yang, X. Di, T. Han, Random forests classifier for machine fault diagnosis, J. Mech. Sci. Technol. 22 (2008) 1716-1725.
    • (2008) J. Mech. Sci. Technol. , vol.22 , pp. 1716-1725
    • Yang, B.S.1    Di, X.2    Han, T.3
  • 15
    • 84867840021 scopus 로고    scopus 로고
    • Genetic optimization of decision tree choice for fault diagnosis in an industrial ventilator
    • T. Fakhfakh, W. Bartelmus, F. Chaari, R. Zimroz, M. Haddar (Eds.)
    • N. Karabadji, I. Khelf, H. Seridi, L. Laouar, Genetic optimization of decision tree choice for fault diagnosis in an industrial ventilator, in: T. Fakhfakh, W. Bartelmus, F. Chaari, R. Zimroz, M. Haddar (Eds.), Condition Monitoring of Machinery in Non-Stationary Operations, 2012, pp. 277-283.
    • (2012) Condition Monitoring of Machinery in Non-Stationary Operations , pp. 277-283
    • Karabadji, N.1    Khelf, I.2    Seridi, H.3    Laouar, L.4
  • 18
    • 84944100862 scopus 로고    scopus 로고
    • Gears and bearings combined faults detection using Hilbert transform and wavelet multiresolution analysis
    • T. Fakhfakh, W. Bartelmus, F. Chaari, R. Zimroz, M. Haddar (Eds.)
    • I. Moumene, N. Ouelaa, Gears and bearings combined faults detection using Hilbert transform and wavelet multiresolution analysis, in: T. Fakhfakh, W. Bartelmus, F. Chaari, R. Zimroz, M. Haddar (Eds.), Condition Monitoring of Machinery in Non-Stationary Operations, 2012, pp. 319-328.
    • (2012) Condition Monitoring of Machinery in Non-Stationary Operations , pp. 319-328
    • Moumene, I.1    Ouelaa, N.2
  • 23
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Mach. Learn. 45 2001 5 32
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 25
    • 0028446271 scopus 로고
    • Genetic algorithms: a survey
    • M. Srinivas, and L. Patnaik Genetic algorithms: a survey Computer 27 1994 17 26
    • (1994) Computer , vol.27 , pp. 17-26
    • Srinivas, M.1    Patnaik, L.2
  • 26
    • 14944346225 scopus 로고    scopus 로고
    • Comparison of fitness scaling functions in genetic algorithms with applications to optical processing
    • F. Sadjadi, Comparison of fitness scaling functions in genetic algorithms with applications to optical processing, in: Proceedings of SPIE, Optical Information Systems II, vol. 5557, 2004, pp. 356-364.
    • (2004) Proceedings of SPIE, Optical Information Systems II , vol.5557 , pp. 356-364
    • Sadjadi, F.1
  • 27
    • 0004181160 scopus 로고
    • Technical Report, Swiss Federal Institute of Technology (ETH) Zurich, Computer Engineering and Communications Networks Lab (TIK)
    • T. Blickle, L. Thiele, A Comparison of Selection Schemes used in Genetic Algorithms, Technical Report, Swiss Federal Institute of Technology (ETH) Zurich, Computer Engineering and Communications Networks Lab (TIK), 1995.
    • (1995) A Comparison of Selection Schemes Used in Genetic Algorithms
    • Blickle, T.1    Thiele, L.2
  • 28
    • 84925329034 scopus 로고    scopus 로고
    • Selection methods for genetic algorithms
    • K. Jebari, and M. Madiafi Selection methods for genetic algorithms Int. J.Emerg. Sci. 3 2013 333 344
    • (2013) Int. J.Emerg. Sci. , vol.3 , pp. 333-344
    • Jebari, K.1    Madiafi, M.2
  • 29
    • 0028409149 scopus 로고
    • Adaptive probabilities of crossover and mutation in genetic algorithms
    • M. Srinivas, and L. Patnaik Adaptive probabilities of crossover and mutation in genetic algorithms IEEE Trans. Syst. Man Cybern. 24 1994 656 667
    • (1994) IEEE Trans. Syst. Man Cybern. , vol.24 , pp. 656-667
    • Srinivas, M.1    Patnaik, L.2
  • 31
    • 52949139054 scopus 로고    scopus 로고
    • Replacement strategies to preserve useful diversity in steady-state genetic algorithms
    • M. Lozano, F. Herrera, and J. Cano Replacement strategies to preserve useful diversity in steady-state genetic algorithms Inf. Sci. 178 2008 4421 4433
    • (2008) Inf. Sci. , vol.178 , pp. 4421-4433
    • Lozano, M.1    Herrera, F.2    Cano, J.3
  • 32
    • 48749115318 scopus 로고    scopus 로고
    • A new approach to intelligent fault diagnosis of rotating machinery
    • Y. Lei, Z. He, and Y. Zi A new approach to intelligent fault diagnosis of rotating machinery Expert Syst. Appl. 35 2008 1593 1600
    • (2008) Expert Syst. Appl. , vol.35 , pp. 1593-1600
    • Lei, Y.1    He, Z.2    Zi, Y.3
  • 33
    • 65649138430 scopus 로고    scopus 로고
    • A systematic analysis of performance measures for classification tasks
    • M. Sokolova, and G. Lapalme A systematic analysis of performance measures for classification tasks Inf. Process. Manag. 45 2009 427 437
    • (2009) Inf. Process. Manag. , vol.45 , pp. 427-437
    • Sokolova, M.1    Lapalme, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.