메뉴 건너뛰기




Volumn 94, Issue , 2012, Pages 54-63

Margin optimization based pruning for random forest

Author keywords

Ensemble pruning; Margin optimization; Random forests

Indexed keywords

BENCHMARK DATASETS; CLASSIFICATION TREES; EMPIRICAL COMPARISON; ENSEMBLE PRUNING; GENERALIZATION ABILITY; GENERALIZATION PERFORMANCE; KEY ELEMENTS; MARGIN OPTIMIZATION; PRUNING ALGORITHMS; PRUNING METHODS; RANDOM FORESTS; TRAINING SETS;

EID: 84863500698     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.04.007     Document Type: Article
Times cited : (33)

References (27)
  • 1
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva L.I., Whitaker C.J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 2003, 51(2):181-207.
    • (2003) Mach. Learn. , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 2001, 45:5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 5
    • 77956210291 scopus 로고    scopus 로고
    • Ensemble pruning via individual contribution ordering
    • Lu Z., Wu X., Zhu X., Bongard J. Ensemble pruning via individual contribution ordering. Proc. 16th ACM SIGKDD 2010, 871-880.
    • (2010) Proc. 16th ACM SIGKDD , pp. 871-880
    • Lu, Z.1    Wu, X.2    Zhu, X.3    Bongard, J.4
  • 6
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: many could be better than all
    • Zhou Z.H., Wu J., Tang W. Ensembling neural networks: many could be better than all. Artif. Intell. 2002, 137(1-2):239-263.
    • (2002) Artif. Intell. , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.2    Tang, W.3
  • 7
    • 33745794076 scopus 로고    scopus 로고
    • Ensemble pruning via semi-definite programming
    • Zhang Y., Burer S., Street W.N. Ensemble pruning via semi-definite programming. J. Mach. Learn. Res. 2006, 7:1315-1338.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1315-1338
    • Zhang, Y.1    Burer, S.2    Street, W.N.3
  • 8
    • 70349312678 scopus 로고    scopus 로고
    • N. Li, Z.H. Zhou, Selective Ensemble under Regularization Framework, in: Proceedings of the 8th International Workshop on Multiple Classifier Systems, 2009
    • N. Li, Z.H. Zhou, Selective Ensemble under Regularization Framework, in: Proceedings of the 8th International Workshop on Multiple Classifier Systems, 2009, pp.293-303.
  • 9
    • 77956456333 scopus 로고    scopus 로고
    • Sparse ensembles using weighted combination methods based on linear programming
    • Zhang L., Zhou W.D. Sparse ensembles using weighted combination methods based on linear programming. Pattern Recognit. 2011, 44:97-106.
    • (2011) Pattern Recognit. , vol.44 , pp. 97-106
    • Zhang, L.1    Zhou, W.D.2
  • 11
    • 70350604650 scopus 로고    scopus 로고
    • Statistical Instance-based Ensemble Pruning for Multi-Class Problems
    • In: Proceedings of the 19th International Conference on Artificial Neural Networks
    • G. Martínez-Muñoz, D. Hernández-Lobato, A. Suárez, Statistical Instance-based Ensemble Pruning for Multi-Class Problems, in: Proceedings of the 19th International Conference on Artificial Neural Networks, 2009, pp.90-99.
    • (2009) , pp. 90-99
    • Martínez-Muñoz, G.1    Hernández-Lobato, D.2    Suárez, A.3
  • 12
    • 77952082871 scopus 로고    scopus 로고
    • Double Pruning Algorithm for Classification Ensembles
    • In: Proceedings of the 9th International Workshop on Multiple Classifier Systems
    • V. Soto, G. Martínez-Muñoz, D. Hernández-Lobato, A. Suárez, A. Double Pruning Algorithm for Classification Ensembles, in: Proceedings of the 9th International Workshop on Multiple Classifier Systems, 2010, pp. 104-113.
    • (2010) , pp. 104-113
    • Soto, V.1    Martínez-Muñoz, G.2    Hernández-Lobato, D.3    Suárez, A.A.4
  • 13
    • 22944453097 scopus 로고    scopus 로고
    • Improving Random Forests
    • In: Proceedings of the 15th European Conference on Machine Learning
    • M. Robnik-Šikonja, Improving Random Forests, in: Proceedings of the 15th European Conference on Machine Learning, 2004, pp.359-370.
    • (2004) , pp. 359-370
    • Robnik-Šikonja, M.1
  • 14
    • 34250705806 scopus 로고    scopus 로고
    • How Boosting the Margin can also Boost Classifier Complexity
    • in: Proceedings of the 23rd International Conference on Machine Learning
    • L. Reyzin, R.E. Schapire, How Boosting the Margin can also Boost Classifier Complexity, in: Proceedings of the 23rd International Conference on Machine Learning, 2006, pp. 753-760.
    • (2006) , pp. 753-760
    • Reyzin, L.1    Schapire, R.E.2
  • 15
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: a new explanation for the effectiveness of voting methods
    • Schapire R.E., Freund Y., Bartlett P., Lee W.S. Boosting the margin: a new explanation for the effectiveness of voting methods. Annu. Stat 1998, 26(5):1651-1686.
    • (1998) Annu. Stat , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 16
    • 21844445229 scopus 로고    scopus 로고
    • Efficient margin maximizing with boosting
    • Rätsch G., Warmuth M.K. Efficient margin maximizing with boosting. J. Mach. Learn. Res. 2005, 6:2131-2152.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 2131-2152
    • Rätsch, G.1    Warmuth, M.K.2
  • 17
    • 34250707319 scopus 로고    scopus 로고
    • Totally Corrective Boosting Algorithms that Maximize the Margin
    • In: Proceedings of the 23rd International Conference on Machine Learning
    • M.K. Warmuth, J. Liao, G. Rätsch, Totally Corrective Boosting Algorithms that Maximize the Margin, in: Proceedings of the 23rd International Conference on Machine Learning, 2006, pp.1001-1008.
    • (2006) , pp. 1001-1008
    • Warmuth, M.K.1    Liao, J.2    Rätsch, G.3
  • 18
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • Breiman L. Prediction games and arcing algorithms. Neural Comput. 1999, 11(7):1493-1517.
    • (1999) Neural Comput. , vol.11 , Issue.7 , pp. 1493-1517
    • Breiman, L.1
  • 19
    • 80053436012 scopus 로고    scopus 로고
    • On the Margin Explanation of Boosting Algorithms
    • in: Proceedings of the 21st Annual Conference on Learning Theory
    • L. Wang, M. Sugiyama, C. Yang, Z.H. Zhou, J. Feng, On the Margin Explanation of Boosting Algorithms, in: Proceedings of the 21st Annual Conference on Learning Theory, 2008, pp. 479-490.
    • (2008) , pp. 479-490
    • Wang, L.1    Sugiyama, M.2    Yang, C.3    Zhou, Z.H.4    Feng, J.5
  • 20
    • 77950861838 scopus 로고    scopus 로고
    • Boosting through optimization of margin distributions
    • Shen C.H., Li H.X. Boosting through optimization of margin distributions. IEEE Trans. Neural Networks 2010, 21(4):659-666.
    • (2010) IEEE Trans. Neural Networks , vol.21 , Issue.4 , pp. 659-666
    • Shen, C.H.1    Li, H.X.2
  • 21
    • 84863466914 scopus 로고    scopus 로고
    • Algorithm of classifier selection for maximizing the margin
    • Fu B., Wang Z.H., Wang Z.F. Algorithm of classifier selection for maximizing the margin. J. Comput. Sci. Front. 2011, 5(1):59-67.
    • (2011) J. Comput. Sci. Front. , vol.5 , Issue.1 , pp. 59-67
    • Fu, B.1    Wang, Z.H.2    Wang, Z.F.3
  • 22
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random forest
    • Liaw A., Wiener M. Classification and regression by random forest. R News 2002, 2(3):18-22.
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 23
    • 78649934709 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science, Irvine, CA
    • Frank A., Asuncion A. UCI Machine Learning Repository 2010, University of California, School of Information and Computer Science, Irvine, CA.
    • (2010) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2
  • 24
    • 33749018252 scopus 로고    scopus 로고
    • An analysis of diversity measures
    • Tang E.K., Suganthan P.N., Yao X. An analysis of diversity measures. Mach. Learn. 2006, 65(1):247-271.
    • (2006) Mach. Learn. , vol.65 , Issue.1 , pp. 247-271
    • Tang, E.K.1    Suganthan, P.N.2    Yao, X.3
  • 25
    • 84863447426 scopus 로고    scopus 로고
    • Search for the smallest random forest
    • Zhang H.P., Wang M.H. Search for the smallest random forest. Stat. Interface 2009, 2:381-388.
    • (2009) Stat. Interface , vol.2 , pp. 381-388
    • Zhang, H.P.1    Wang, M.H.2
  • 26
    • 33750097221 scopus 로고    scopus 로고
    • An Algorithm for Pruning Redundant Modules in Min-Max Modular Network
    • In: Proceedings of International Joint Conference on Neural Networks
    • H.C. Lian and B.L. Lu, An Algorithm for Pruning Redundant Modules in Min-Max Modular Network, in: Proceedings of International Joint Conference on Neural Networks, 2005,pp.1983-1988.
    • (2005) , pp. 1983-1988
    • Lian, H.C.1    Lu, B.L.2
  • 27
    • 26844520013 scopus 로고    scopus 로고
    • An Algorithm for Pruning Redundant Modules in Min-Max Modular Network with GZC Function
    • In: Proceedings of the 1st International Conference on Natural Computation
    • J. Li, B.L. Lu, and M. Ichikawa, An Algorithm for Pruning Redundant Modules in Min-Max Modular Network with GZC Function, in: Proceedings of the 1st International Conference on Natural Computation, 2005, pp.293-302.
    • (2005) , pp. 293-302
    • Li, J.1    Lu, B.L.2    Ichikawa, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.