-
1
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
Kuncheva L.I., Whitaker C.J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 2003, 51(2):181-207.
-
(2003)
Mach. Learn.
, vol.51
, Issue.2
, pp. 181-207
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
-
2
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Mach. Learn. 2001, 45:5-32.
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
6
-
-
0036567392
-
Ensembling neural networks: many could be better than all
-
Zhou Z.H., Wu J., Tang W. Ensembling neural networks: many could be better than all. Artif. Intell. 2002, 137(1-2):239-263.
-
(2002)
Artif. Intell.
, vol.137
, Issue.1-2
, pp. 239-263
-
-
Zhou, Z.H.1
Wu, J.2
Tang, W.3
-
7
-
-
33745794076
-
Ensemble pruning via semi-definite programming
-
Zhang Y., Burer S., Street W.N. Ensemble pruning via semi-definite programming. J. Mach. Learn. Res. 2006, 7:1315-1338.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1315-1338
-
-
Zhang, Y.1
Burer, S.2
Street, W.N.3
-
8
-
-
70349312678
-
-
N. Li, Z.H. Zhou, Selective Ensemble under Regularization Framework, in: Proceedings of the 8th International Workshop on Multiple Classifier Systems, 2009
-
N. Li, Z.H. Zhou, Selective Ensemble under Regularization Framework, in: Proceedings of the 8th International Workshop on Multiple Classifier Systems, 2009, pp.293-303.
-
-
-
-
9
-
-
77956456333
-
Sparse ensembles using weighted combination methods based on linear programming
-
Zhang L., Zhou W.D. Sparse ensembles using weighted combination methods based on linear programming. Pattern Recognit. 2011, 44:97-106.
-
(2011)
Pattern Recognit.
, vol.44
, pp. 97-106
-
-
Zhang, L.1
Zhou, W.D.2
-
10
-
-
70350220351
-
-
Springer
-
Tsoumakas G., Partalas I., Vlahavas I. An Ensemble Pruning Primer, Application of Supervised and Unsupervised Ensemble Methods 2009, Springer, pp.1-13.
-
(2009)
An Ensemble Pruning Primer, Application of Supervised and Unsupervised Ensemble Methods
, pp. 1-13
-
-
Tsoumakas, G.1
Partalas, I.2
Vlahavas, I.3
-
11
-
-
70350604650
-
Statistical Instance-based Ensemble Pruning for Multi-Class Problems
-
In: Proceedings of the 19th International Conference on Artificial Neural Networks
-
G. Martínez-Muñoz, D. Hernández-Lobato, A. Suárez, Statistical Instance-based Ensemble Pruning for Multi-Class Problems, in: Proceedings of the 19th International Conference on Artificial Neural Networks, 2009, pp.90-99.
-
(2009)
, pp. 90-99
-
-
Martínez-Muñoz, G.1
Hernández-Lobato, D.2
Suárez, A.3
-
12
-
-
77952082871
-
Double Pruning Algorithm for Classification Ensembles
-
In: Proceedings of the 9th International Workshop on Multiple Classifier Systems
-
V. Soto, G. Martínez-Muñoz, D. Hernández-Lobato, A. Suárez, A. Double Pruning Algorithm for Classification Ensembles, in: Proceedings of the 9th International Workshop on Multiple Classifier Systems, 2010, pp. 104-113.
-
(2010)
, pp. 104-113
-
-
Soto, V.1
Martínez-Muñoz, G.2
Hernández-Lobato, D.3
Suárez, A.A.4
-
13
-
-
22944453097
-
Improving Random Forests
-
In: Proceedings of the 15th European Conference on Machine Learning
-
M. Robnik-Šikonja, Improving Random Forests, in: Proceedings of the 15th European Conference on Machine Learning, 2004, pp.359-370.
-
(2004)
, pp. 359-370
-
-
Robnik-Šikonja, M.1
-
14
-
-
34250705806
-
How Boosting the Margin can also Boost Classifier Complexity
-
in: Proceedings of the 23rd International Conference on Machine Learning
-
L. Reyzin, R.E. Schapire, How Boosting the Margin can also Boost Classifier Complexity, in: Proceedings of the 23rd International Conference on Machine Learning, 2006, pp. 753-760.
-
(2006)
, pp. 753-760
-
-
Reyzin, L.1
Schapire, R.E.2
-
15
-
-
0032280519
-
Boosting the margin: a new explanation for the effectiveness of voting methods
-
Schapire R.E., Freund Y., Bartlett P., Lee W.S. Boosting the margin: a new explanation for the effectiveness of voting methods. Annu. Stat 1998, 26(5):1651-1686.
-
(1998)
Annu. Stat
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
16
-
-
21844445229
-
Efficient margin maximizing with boosting
-
Rätsch G., Warmuth M.K. Efficient margin maximizing with boosting. J. Mach. Learn. Res. 2005, 6:2131-2152.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 2131-2152
-
-
Rätsch, G.1
Warmuth, M.K.2
-
17
-
-
34250707319
-
Totally Corrective Boosting Algorithms that Maximize the Margin
-
In: Proceedings of the 23rd International Conference on Machine Learning
-
M.K. Warmuth, J. Liao, G. Rätsch, Totally Corrective Boosting Algorithms that Maximize the Margin, in: Proceedings of the 23rd International Conference on Machine Learning, 2006, pp.1001-1008.
-
(2006)
, pp. 1001-1008
-
-
Warmuth, M.K.1
Liao, J.2
Rätsch, G.3
-
18
-
-
0000275022
-
Prediction games and arcing algorithms
-
Breiman L. Prediction games and arcing algorithms. Neural Comput. 1999, 11(7):1493-1517.
-
(1999)
Neural Comput.
, vol.11
, Issue.7
, pp. 1493-1517
-
-
Breiman, L.1
-
19
-
-
80053436012
-
On the Margin Explanation of Boosting Algorithms
-
in: Proceedings of the 21st Annual Conference on Learning Theory
-
L. Wang, M. Sugiyama, C. Yang, Z.H. Zhou, J. Feng, On the Margin Explanation of Boosting Algorithms, in: Proceedings of the 21st Annual Conference on Learning Theory, 2008, pp. 479-490.
-
(2008)
, pp. 479-490
-
-
Wang, L.1
Sugiyama, M.2
Yang, C.3
Zhou, Z.H.4
Feng, J.5
-
20
-
-
77950861838
-
Boosting through optimization of margin distributions
-
Shen C.H., Li H.X. Boosting through optimization of margin distributions. IEEE Trans. Neural Networks 2010, 21(4):659-666.
-
(2010)
IEEE Trans. Neural Networks
, vol.21
, Issue.4
, pp. 659-666
-
-
Shen, C.H.1
Li, H.X.2
-
21
-
-
84863466914
-
Algorithm of classifier selection for maximizing the margin
-
Fu B., Wang Z.H., Wang Z.F. Algorithm of classifier selection for maximizing the margin. J. Comput. Sci. Front. 2011, 5(1):59-67.
-
(2011)
J. Comput. Sci. Front.
, vol.5
, Issue.1
, pp. 59-67
-
-
Fu, B.1
Wang, Z.H.2
Wang, Z.F.3
-
22
-
-
0345040873
-
Classification and regression by random forest
-
Liaw A., Wiener M. Classification and regression by random forest. R News 2002, 2(3):18-22.
-
(2002)
R News
, vol.2
, Issue.3
, pp. 18-22
-
-
Liaw, A.1
Wiener, M.2
-
23
-
-
78649934709
-
-
University of California, School of Information and Computer Science, Irvine, CA
-
Frank A., Asuncion A. UCI Machine Learning Repository 2010, University of California, School of Information and Computer Science, Irvine, CA.
-
(2010)
UCI Machine Learning Repository
-
-
Frank, A.1
Asuncion, A.2
-
24
-
-
33749018252
-
An analysis of diversity measures
-
Tang E.K., Suganthan P.N., Yao X. An analysis of diversity measures. Mach. Learn. 2006, 65(1):247-271.
-
(2006)
Mach. Learn.
, vol.65
, Issue.1
, pp. 247-271
-
-
Tang, E.K.1
Suganthan, P.N.2
Yao, X.3
-
25
-
-
84863447426
-
Search for the smallest random forest
-
Zhang H.P., Wang M.H. Search for the smallest random forest. Stat. Interface 2009, 2:381-388.
-
(2009)
Stat. Interface
, vol.2
, pp. 381-388
-
-
Zhang, H.P.1
Wang, M.H.2
-
26
-
-
33750097221
-
An Algorithm for Pruning Redundant Modules in Min-Max Modular Network
-
In: Proceedings of International Joint Conference on Neural Networks
-
H.C. Lian and B.L. Lu, An Algorithm for Pruning Redundant Modules in Min-Max Modular Network, in: Proceedings of International Joint Conference on Neural Networks, 2005,pp.1983-1988.
-
(2005)
, pp. 1983-1988
-
-
Lian, H.C.1
Lu, B.L.2
-
27
-
-
26844520013
-
An Algorithm for Pruning Redundant Modules in Min-Max Modular Network with GZC Function
-
In: Proceedings of the 1st International Conference on Natural Computation
-
J. Li, B.L. Lu, and M. Ichikawa, An Algorithm for Pruning Redundant Modules in Min-Max Modular Network with GZC Function, in: Proceedings of the 1st International Conference on Natural Computation, 2005, pp.293-302.
-
(2005)
, pp. 293-302
-
-
Li, J.1
Lu, B.L.2
Ichikawa, M.3
|