-
1
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Machine Learning 2001, 45:5-32.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
2
-
-
84873187093
-
Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics
-
Boulesteix AL, Janitza S, Kruppa J, König I. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2012, 2(6):493-507.
-
(2012)
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
, vol.2
, Issue.6
, pp. 493-507
-
-
Boulesteix, A.L.1
Janitza, S.2
Kruppa, J.3
König, I.4
-
3
-
-
77955005160
-
Variation within DNA repair pathway genes and risk of multiple sclerosis
-
10.1093/aje/kwq086, 20522537
-
Briggs F, Goldstein B, McCauley J, Zuvich R, De Jager P, Rioux J, Ivinson A, Compston A, Hafler D, Hauser S. Variation within DNA repair pathway genes and risk of multiple sclerosis. Am J Epidemiol 2010, 172(2):217. 10.1093/aje/kwq086, 20522537.
-
(2010)
Am J Epidemiol
, vol.172
, Issue.2
, pp. 217
-
-
Briggs, F.1
Goldstein, B.2
McCauley, J.3
Zuvich, R.4
De Jager, P.5
Rioux, J.6
Ivinson, A.7
Compston, A.8
Hafler, D.9
Hauser, S.10
-
4
-
-
53349100175
-
Pathway analysis of single-nucleotide polymorphisms potentially associated with glioblastoma multiforme susceptibility using random forests
-
10.1158/1055-9965.EPI-07-2830, 18559551
-
Chang J, Yeh R, Wiencke J, Wiemels J, Smirnov I, Pico A, Tihan T, Patoka J, Miike R, Sison J. Pathway analysis of single-nucleotide polymorphisms potentially associated with glioblastoma multiforme susceptibility using random forests. Cancer Epidemiol Biomarkers Prev 2008, 17(6):1368-1373. 10.1158/1055-9965.EPI-07-2830, 18559551.
-
(2008)
Cancer Epidemiol Biomarkers Prev
, vol.17
, Issue.6
, pp. 1368-1373
-
-
Chang, J.1
Yeh, R.2
Wiencke, J.3
Wiemels, J.4
Smirnov, I.5
Pico, A.6
Tihan, T.7
Patoka, J.8
Miike, R.9
Sison, J.10
-
5
-
-
79955562075
-
A genome-wide screen of gene-gene interactions for rheumatoid arthritis susceptibility
-
10.1007/s00439-010-0943-z, 21210282
-
Liu C, Ackerman H, Carulli J. A genome-wide screen of gene-gene interactions for rheumatoid arthritis susceptibility. Hum Genet 2011, 129(5):473-485. 10.1007/s00439-010-0943-z, 21210282.
-
(2011)
Hum Genet
, vol.129
, Issue.5
, pp. 473-485
-
-
Liu, C.1
Ackerman, H.2
Carulli, J.3
-
6
-
-
77952095729
-
Evidence of statistical epistasis between DISC1, CIT and NDEL1 impacting risk for schizophrenia: biological validation with functional neuroimaging
-
10.1007/s00439-009-0782-y, 20084519
-
Nicodemus K, Callicott J, Higier R, Luna A, Nixon D, Lipska B, Vakkalanka R, Giegling I, Rujescu D, Clair D. Evidence of statistical epistasis between DISC1, CIT and NDEL1 impacting risk for schizophrenia: biological validation with functional neuroimaging. Hum Genet 2010, 127(4):441-452. 10.1007/s00439-009-0782-y, 20084519.
-
(2010)
Hum Genet
, vol.127
, Issue.4
, pp. 441-452
-
-
Nicodemus, K.1
Callicott, J.2
Higier, R.3
Luna, A.4
Nixon, D.5
Lipska, B.6
Vakkalanka, R.7
Giegling, I.8
Rujescu, D.9
Clair, D.10
-
7
-
-
38049048625
-
Classification of rheumatoid arthritis status with candidate gene and genome-wide single-nucleotide polymorphisms using random forests
-
10.1186/1753-6561-1-s1-s62, 2367463, 18466563
-
Sun Y, Cai Z, Desai K, Lawrance R, Leff R, Jawaid A, Kardia S, Yang H. Classification of rheumatoid arthritis status with candidate gene and genome-wide single-nucleotide polymorphisms using random forests. BMC Proceedings 2007, 1(Suppl 1):S62. 10.1186/1753-6561-1-s1-s62, 2367463, 18466563.
-
(2007)
BMC Proceedings
, vol.1
, Issue.SUPPL. 1
-
-
Sun, Y.1
Cai, Z.2
Desai, K.3
Lawrance, R.4
Leff, R.5
Jawaid, A.6
Kardia, S.7
Yang, H.8
-
8
-
-
77957988489
-
Class prediction for high-dimensional class-imbalanced data
-
10.1186/1471-2105-11-523, 3098087, 20961420
-
Blagus R, Lusa L. Class prediction for high-dimensional class-imbalanced data. BMC Bioinformatics 2010, 11:523. 10.1186/1471-2105-11-523, 3098087, 20961420.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 523
-
-
Blagus, R.1
Lusa, L.2
-
9
-
-
84873193842
-
Class-imbalanced classifiers for high-dimensional data
-
Lin WJ, Chen J. Class-imbalanced classifiers for high-dimensional data. Brief Bioinform 2012,
-
(2012)
Brief Bioinform
-
-
Lin, W.J.1
Chen, J.2
-
10
-
-
48649089002
-
An empirical study of learning from imbalanced data using random forest
-
ICTAI 2007: 19th IEEE International Conference on, Volume 2, IEEE
-
Khoshgoftaar T, Golawala M, Van Hulse J. An empirical study of learning from imbalanced data using random forest. Tools with Artificial Intelligence, 2007 2007, 310-317. ICTAI 2007: 19th IEEE International Conference on, Volume 2, IEEE.
-
(2007)
Tools with Artificial Intelligence, 2007
, pp. 310-317
-
-
Khoshgoftaar, T.1
Golawala, M.2
Van Hulse, J.3
-
11
-
-
33646142788
-
Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem
-
Huang Y, Hung C, Jiau H. Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem. Nonlinear Analysis: Real World Applications 2006, 7(4):720-747.
-
(2006)
Nonlinear Analysis: Real World Applications
, vol.7
, Issue.4
, pp. 720-747
-
-
Huang, Y.1
Hung, C.2
Jiau, H.3
-
13
-
-
0031998121
-
Machine learning for the detection of oil spills in satellite radar images
-
Kubat M, Holte R, Matwin S. Machine learning for the detection of oil spills in satellite radar images. Machine Learning 1998, 30(2):195-215.
-
(1998)
Machine Learning
, vol.30
, Issue.2
, pp. 195-215
-
-
Kubat, M.1
Holte, R.2
Matwin, S.3
-
14
-
-
20444392475
-
-
University of California, Berkeley: Tech. rep,
-
Chen C, Liaw A, Breiman L. Using random forest to learn imbalanced data 2004, University of California, Berkeley: Tech. rep, [http://statistics.berkeley.edu/tech-reports/666].
-
(2004)
Using random forest to learn imbalanced data
-
-
Chen, C.1
Liaw, A.2
Breiman, L.3
-
15
-
-
58349116623
-
Customer churn prediction using improved balanced random forests
-
Xie Y, Li X, Ngai E, Ying W. Customer churn prediction using improved balanced random forests. Expert Systems with Applications 2009, 36(3):5445-5449.
-
(2009)
Expert Systems with Applications
, vol.36
, Issue.3
, pp. 5445-5449
-
-
Xie, Y.1
Li, X.2
Ngai, E.3
Ying, W.4
-
16
-
-
27144531570
-
A study of the behavior of several methods for balancing machine learning training data
-
Batista G, Prati R, Monard M. A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explorations Newsletter 2004, 6:20-29.
-
(2004)
ACM SIGKDD Explorations Newsletter
, vol.6
, pp. 20-29
-
-
Batista, G.1
Prati, R.2
Monard, M.3
-
17
-
-
1442356040
-
A multiple resampling method for learning from imbalanced data sets
-
Estabrooks A, Jo T, Japkowicz N. A multiple resampling method for learning from imbalanced data sets. Computational Intelligence 2004, 20:18-36.
-
(2004)
Computational Intelligence
, vol.20
, pp. 18-36
-
-
Estabrooks, A.1
Jo, T.2
Japkowicz, N.3
-
19
-
-
71749101234
-
Knowledge discovery from imbalanced and noisy data
-
10.1016/j.datak.2009.08.005, 23573530
-
Van Hulse J, Khoshgoftaar T. Knowledge discovery from imbalanced and noisy data. Data & Knowledge Engineering 2009, 68(12):1513-1542. 10.1016/j.datak.2009.08.005, 23573530.
-
(2009)
Data & Knowledge Engineering
, vol.68
, Issue.12
, pp. 1513-1542
-
-
Van Hulse, J.1
Khoshgoftaar, T.2
-
20
-
-
33845536164
-
The class imbalance problem: A systematic study
-
Japkowicz N, Stephen S. The class imbalance problem: A systematic study. Intelligent Data Analysis 2002, 6(5):429-449.
-
(2002)
Intelligent Data Analysis
, vol.6
, Issue.5
, pp. 429-449
-
-
Japkowicz, N.1
Stephen, S.2
-
21
-
-
79960872876
-
Predicting disease risks from highly imbalanced data using random forest
-
10.1186/1472-6947-11-51, 3163175, 21801360
-
Khalilia M, Chakraborty S, Popescu M. Predicting disease risks from highly imbalanced data using random forest. BMC Med Inform Decis Mak 2011, 11:51. 10.1186/1472-6947-11-51, 3163175, 21801360.
-
(2011)
BMC Med Inform Decis Mak
, vol.11
, pp. 51
-
-
Khalilia, M.1
Chakraborty, S.2
Popescu, M.3
-
22
-
-
33847096395
-
Bias in random forest variable importance measures: Illustrations, sources and a solution
-
10.1186/1471-2105-8-25, 1796903, 17254353
-
Strobl C, Boulesteix AL, Zeileis A, Hothorn T. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics 2007, 8:25. 10.1186/1471-2105-8-25, 1796903, 17254353.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 25
-
-
Strobl, C.1
Boulesteix, A.L.2
Zeileis, A.3
Hothorn, T.4
-
23
-
-
67650770061
-
Predictor correlation impacts machine learning algorithms: implications for genomic studies
-
10.1093/bioinformatics/btp331, 19460890
-
Nicodemus KK, Malley JD. Predictor correlation impacts machine learning algorithms: implications for genomic studies. Bioinformatics 2009, 25(15):1884-1890. 10.1093/bioinformatics/btp331, 19460890.
-
(2009)
Bioinformatics
, vol.25
, Issue.15
, pp. 1884-1890
-
-
Nicodemus, K.K.1
Malley, J.D.2
-
24
-
-
82255174148
-
Letter to the editor: On the stability and ranking of predictors from random forest variable importance measures
-
10.1093/bib/bbr016, 3137934, 21498552
-
Nicodemus KK. Letter to the editor: On the stability and ranking of predictors from random forest variable importance measures. Brief Bioinform 2011, 12(4):369-373. 10.1093/bib/bbr016, 3137934, 21498552.
-
(2011)
Brief Bioinform
, vol.12
, Issue.4
, pp. 369-373
-
-
Nicodemus, K.K.1
-
25
-
-
84861813244
-
Random forest Gini importance favours SNPs with large minor allele frequency: assessment, sources and recommendations
-
10.1093/bib/bbr053, 21908865
-
Boulesteix AL, Bender A, Bermejo JL, Strobl C. Random forest Gini importance favours SNPs with large minor allele frequency: assessment, sources and recommendations. Brief Bioinform 2012, 13:292-304. 10.1093/bib/bbr053, 21908865.
-
(2012)
Brief Bioinform
, vol.13
, pp. 292-304
-
-
Boulesteix, A.L.1
Bender, A.2
Bermejo, J.L.3
Strobl, C.4
-
26
-
-
80053915297
-
AUC-RF: A new strategy for genomic profiling with random forest
-
10.1159/000330778, 21996641
-
Calle M, Urrea V, Boulesteix AL, Malats N. AUC-RF: A new strategy for genomic profiling with random forest. Hum Hered 2011, 72(2):121-132. 10.1159/000330778, 21996641.
-
(2011)
Hum Hered
, vol.72
, Issue.2
, pp. 121-132
-
-
Calle, M.1
Urrea, V.2
Boulesteix, A.L.3
Malats, N.4
-
27
-
-
33749677657
-
Unbiased recursive partitioning: A conditional inference framework
-
Hothorn T, Hornik K, Zeileis A. Unbiased recursive partitioning: A conditional inference framework. J Comput Graph Stat 2006, 15(3):651-674.
-
(2006)
J Comput Graph Stat
, vol.15
, Issue.3
, pp. 651-674
-
-
Hothorn, T.1
Hornik, K.2
Zeileis, A.3
-
30
-
-
13244255317
-
Simple statistical models predict C-to-U edited sites in plant mitochondrial RNA
-
10.1186/1471-2105-5-132, 521485, 15373947
-
Cummings M, Myers D. Simple statistical models predict C-to-U edited sites in plant mitochondrial RNA. BMC Bioinformatics 2004, 5:132. 10.1186/1471-2105-5-132, 521485, 15373947.
-
(2004)
BMC Bioinformatics
, vol.5
, pp. 132
-
-
Cummings, M.1
Myers, D.2
-
31
-
-
77949388276
-
The behavior of random forest permutation-based variable importance measures under predictor correlation
-
10.1186/1471-2105-11-110, 2848005, 20187966
-
Nicodemus KK, Malley J, Strobl C, Ziegler A. The behavior of random forest permutation-based variable importance measures under predictor correlation. BMC Bioinformatics 2010, 11:110. 10.1186/1471-2105-11-110, 2848005, 20187966.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 110
-
-
Nicodemus, K.K.1
Malley, J.2
Strobl, C.3
Ziegler, A.4
|