메뉴 건너뛰기




Volumn 8, Issue 16, 2015, Pages 2646-2660

Network intrusion detection using hybrid binary PSO and random forests algorithm

Author keywords

Data mining; Intrusion detection system; Machine learning; Network intrusion detection; Particle swarm optimization; Random forests

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER CRIME; DATA MINING; DECISION TREES; LEARNING SYSTEMS; NETWORK SECURITY; PARTICLE SWARM OPTIMIZATION (PSO);

EID: 84944050923     PISSN: 19390114     EISSN: 19390122     Source Type: Journal    
DOI: 10.1002/sec.508     Document Type: Article
Times cited : (56)

References (45)
  • 1
    • 33750954957 scopus 로고    scopus 로고
    • High-dimensional pattern analysis in multimedia information retrieval and bioinformatics
    • State University, New York, Doctoral Thesis
    • Wu Y. High-dimensional pattern analysis in multimedia information retrieval and bioinformatics. State University, New York, Doctoral Thesis, 2004.
    • (2004)
    • Wu, Y.1
  • 3
    • 35248857893 scopus 로고    scopus 로고
    • An analysis of the 1999 DARPA/Lincoln laboratory evaluation data for network anomaly detection
    • Pittsburgh, PA, USA, Springer Verlag, 3-8 September
    • Mahoney M, Chan P. An analysis of the 1999 DARPA/Lincoln laboratory evaluation data for network anomaly detection. In Proceeding of Recent Advances in Intrusion Detection (RAID), Pittsburgh, PA, USA, Springer Verlag, 3-8 September 2003; 220-237.
    • (2003) Proceeding of Recent Advances in Intrusion Detection (RAID) , pp. 220-237
    • Mahoney, M.1    Chan, P.2
  • 6
    • 0003451777 scopus 로고
    • A real-time intrusion detection expert system (IDES)
    • Technical Report Project 6784, Computer Science Laboratory, SRI International
    • Lunt TF, Tamaru A, Gilham F, Jagannathan R, Jalali C, Neuman PG. A real-time intrusion detection expert system (IDES). Technical Report Project 6784, Computer Science Laboratory, SRI International, 1992.
    • (1992)
    • Lunt, T.F.1    Tamaru, A.2    Gilham, F.3    Jagannathan, R.4    Jalali, C.5    Neuman, P.G.6
  • 7
    • 0037282635 scopus 로고    scopus 로고
    • Efficient anomaly detection by modeling privilege flows with hidden Markov model
    • Cho S-B, Park H-J. Efficient anomaly detection by modeling privilege flows with hidden Markov model. Computers and Security 2003; 22(1): 45-55.
    • (2003) Computers and Security , vol.22 , Issue.1 , pp. 45-55
    • Cho, S.-B.1    Park, H.-J.2
  • 8
    • 0034300835 scopus 로고    scopus 로고
    • Improving intrusion detection performance using keyword selection and neural networks
    • Lippmann R, Cunningham S. Improving intrusion detection performance using keyword selection and neural networks. Computer Networks 2000; 34(4):594-603.
    • (2000) Computer Networks , vol.34 , Issue.4 , pp. 594-603
    • Lippmann, R.1    Cunningham, S.2
  • 10
    • 0242667960 scopus 로고
    • Detecting unusual program behavior using the statistical components of NIDES
    • NIDES Technical Report, SRI International
    • Anderson D, Lunt TF, Tamaru HS, Javits A, Valdes A. Detecting unusual program behavior using the statistical components of NIDES. NIDES Technical Report, SRI International, 1995.
    • (1995)
    • Anderson, D.1    Lunt, T.F.2    Tamaru, H.S.3    Javits, A.4    Valdes, A.5
  • 13
    • 0242637092 scopus 로고    scopus 로고
    • Detecting intrusion with rule based integration of multiple models
    • Han S-J, Cho S-B. Detecting intrusion with rule based integration of multiple models. Computers and Security 2003; 22(7): 613-623.
    • (2003) Computers and Security , vol.22 , Issue.7 , pp. 613-623
    • Han, S.-J.1    Cho, S.-B.2
  • 15
    • 84902156141 scopus 로고    scopus 로고
    • Neuro-fuzzy systems: state-of-the-art modeling techniques, connectionist models of neurons, learning processes, and artificial intelligence
    • Mira J, Prieto A (eds). Springer-Verlag: Germany, Granada, Spain.
    • Abraham A. Neuro-fuzzy systems: state-of-the-art modeling techniques, connectionist models of neurons, learning processes, and artificial intelligence. In Lecture Notes in Computer Science, Vol. 2084, Mira J, Prieto A (eds). Springer-Verlag: Germany, 2001; 269-276. Granada, Spain.
    • (2001) Lecture Notes in Computer Science , vol.2084 , pp. 269-276
    • Abraham, A.1
  • 18
    • 79960464355 scopus 로고    scopus 로고
    • An effective intrusion detection model based on random forest and neural networks
    • Zhong SH, Huang HJ, Chen AB. An effective intrusion detection model based on random forest and neural networks. Advanced Materials Research 2011; 267(308): 308-313.
    • (2011) Advanced Materials Research , vol.267 , Issue.308 , pp. 308-313
    • Zhong, S.H.1    Huang, H.J.2    Chen, A.B.3
  • 19
    • 33745498517 scopus 로고    scopus 로고
    • Applications of fuzzy data mining methods for intrusion detection systems
    • Lagana A (ed.). Assisi Italy, LNCS 3045
    • Guan J, Da-xin Liu, Wang T. Applications of fuzzy data mining methods for intrusion detection systems. In ICOIN 2004, Lagana A et al. (ed.). Assisi Italy, LNCS 3045, 2004; 706-714.
    • (2004) ICOIN 2004 , pp. 706-714
    • Guan, J.1    Da-xin, L.2    Wang, T.3
  • 20
    • 34548613852 scopus 로고    scopus 로고
    • Network intrusion detection using wavelet analysis
    • New york, Das G, Gulati VP (eds). Springer Verlag: Berlin Heidelberg
    • Rawat S, Sastry CS. Network intrusion detection using wavelet analysis. In CIT, LNCS 3356, New york, Das G, Gulati VP (eds). Springer Verlag: Berlin Heidelberg, 2004; 224-232.
    • (2004) CIT, LNCS 3356 , pp. 224-232
    • Rawat, S.1    Sastry, C.S.2
  • 21
    • 34247226566 scopus 로고    scopus 로고
    • Immune systems, danger theory and intrusion detection
    • ICSRIM University of Leeds, The Society for the Study of Artificial Intelligence and the simulation of behaviour, U.K., 29 March- 1 April
    • Twycross J. Immune systems, danger theory and intrusion detection. In Proceedings of the AISB 2004 Symposium on Immune System and Cognition, ICSRIM University of Leeds, The Society for the Study of Artificial Intelligence and the simulation of behaviour, U.K., 29 March- 1 April 2004; 40-42.
    • (2004) Proceedings of the AISB 2004 Symposium on Immune System and Cognition , pp. 40-42
    • Twycross, J.1
  • 22
    • 26944501944 scopus 로고    scopus 로고
    • Intelligent Bayesian classifiers in network intrusion detection
    • Bari, LANI 3533. Springer: Italy, June 22-24
    • Bosin A, Dessi N, Pes B. Intelligent Bayesian classifiers in network intrusion detection. In Lecture Notecs in Computer Science, IEA/AIE 2005, Bari, LANI 3533. Springer: Italy, June 22-24, 2005; 445-447.
    • (2005) Lecture Notecs in Computer Science, IEA/AIE 2005 , pp. 445-447
    • Bosin, A.1    Dessi, N.2    Pes, B.3
  • 24
    • 34247203682 scopus 로고    scopus 로고
    • Combination artificial ant clustering and K-PSO clustering approach to network security model
    • Jeju Island, Korea, Springer Verlag, 9-11 November
    • Srinoy S, Kurutach W. Combination artificial ant clustering and K-PSO clustering approach to network security model. In IEEE International Conference on Hybrid Information Technology, Jeju Island, Korea, Springer Verlag, 9-11 November 2006; 128-134.
    • (2006) IEEE International Conference on Hybrid Information Technology , pp. 128-134
    • Srinoy, S.1    Kurutach, W.2
  • 26
  • 27
    • 68149099646 scopus 로고    scopus 로고
    • Modeling network intrusion detection system using feature selection and parameters optimization
    • Kim DS, Park JS. Modeling network intrusion detection system using feature selection and parameters optimization. IEICE Transactions on Information and Systems 2008; E91-D: 1050-1057.
    • (2008) IEICE Transactions on Information and Systems , vol.E91D , pp. 1050-1057
    • Kim, D.S.1    Park, J.S.2
  • 29
    • 72449131513 scopus 로고    scopus 로고
    • From feature selection to building of Bayesian classifiers: a network intrusion detection perspective
    • Khor K-C, Ting C-Y, Amnuaisuk S-P. From feature selection to building of Bayesian classifiers: a network intrusion detection perspective. American Journal of Applied Sciences 2009; 6: 1949-1960.
    • (2009) American Journal of Applied Sciences , vol.6 , pp. 1949-1960
    • Khor, K.-C.1    Ting, C.-Y.2    Amnuaisuk, S.-P.3
  • 33
    • 24944552355 scopus 로고    scopus 로고
    • Feature selection and intrusion detection using hybrid flexible neural tree
    • Springer-Verlag: Berlin Heidelberg
    • Chen Y, Abraham A, Yang J. Feature selection and intrusion detection using hybrid flexible neural tree. In Lecture Notes in Computer Science 3498. Springer-Verlag: Berlin Heidelberg, 2005; 439-444.
    • (2005) Lecture Notes in Computer Science 3498 , pp. 439-444
    • Chen, Y.1    Abraham, A.2    Yang, J.3
  • 34
    • 63749120226 scopus 로고    scopus 로고
    • Network intrusion detection design using feature selection of soft computing paradigms
    • Chou TS, Yen KK, Luo J. Network intrusion detection design using feature selection of soft computing paradigms. World Academy of Science, Engineering and Technology 2008; 47: 529-541.
    • (2008) World Academy of Science, Engineering and Technology , vol.47 , pp. 529-541
    • Chou, T.S.1    Yen, K.K.2    Luo, J.3
  • 35
    • 58149263390 scopus 로고    scopus 로고
    • A PSO-based approach to rule learning in network intrusion detection
    • Springer: Berlin/Heidelberg
    • Chen G, Chen Q, Guo W. A PSO-based approach to rule learning in network intrusion detection. In Fuzzy Information and Engineering, Advances in Soft Computing, Vol. 40. Springer: Berlin/Heidelberg, 2007; 666-673.
    • (2007) Fuzzy Information and Engineering, Advances in Soft Computing , vol.40 , pp. 666-673
    • Chen, G.1    Chen, Q.2    Guo, W.3
  • 36
    • 70350134739 scopus 로고    scopus 로고
    • The use of computational intelligence in intrusion detection systems: a review
    • Xiaonan S, Banzhaf W. The use of computational intelligence in intrusion detection systems: a review. Applied Soft Computing 2010; 10:1-35.
    • (2010) Applied Soft Computing , vol.10 , pp. 1-35
    • Xiaonan, S.1    Banzhaf, W.2
  • 37
    • 84944100714 scopus 로고    scopus 로고
    • The UCI KDD Archive KDD'99 datasets. Irvine, CA, USA
    • The UCI KDD Archive KDD'99 datasets. Irvine, CA, USA, 1999. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
    • (1999)
  • 38
    • 84944100715 scopus 로고    scopus 로고
    • PSO overview.
    • PSO overview. http://www.swarmintelligence.org/
  • 40
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Kluwer Academic Publishers: Netherlands
    • Breiman L. Random Forests. In Machine Learning, Vol. 45. Kluwer Academic Publishers: Netherlands, 2001; 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 41
    • 84944100716 scopus 로고    scopus 로고
    • Random Forests.
    • Random Forests. http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
  • 43
    • 10444280144 scopus 로고    scopus 로고
    • An extensive comparison of recent classification tools applied to microarray data
    • Lee J, Park M, Song S. An extensive comparison of recent classification tools applied to microarray data. Computational Statistics & Data Analysis 2005; 48: 869-885.
    • (2005) Computational Statistics & Data Analysis , vol.48 , pp. 869-885
    • Lee, J.1    Park, M.2    Song, S.3
  • 44
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forests
    • Uriarte RD, Andres SA. Gene selection and classification of microarray data using random forests. BMC Bioinformatics 2006; 7:3.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Uriarte, R.D.1    Andres, S.A.2
  • 45
    • 2942513120 scopus 로고    scopus 로고
    • Application of the random forest classification algorithm to a SELDI-TOF proteomics study in the setting of a cancer prevention trial
    • Izmirlian G. Application of the random forest classification algorithm to a SELDI-TOF proteomics study in the setting of a cancer prevention trial. Annals of the New York Academy of Sciences 2004; 1020: 154-174.
    • (2004) Annals of the New York Academy of Sciences , vol.1020 , pp. 154-174
    • Izmirlian, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.